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Abstract. In this paper, we propose a parametric uniform approxima-
tion method to solve NP-hard absolute value equation. For this, we uni-

formly approximate absolute value in such a way that the nonsmooth
absolute value equation can be formulated as a smooth nonlinear equa-
tion. By solving the parametric smooth nonlinear equation using Newton
method, for a decreasing sequence of parameters, we can get the solu-

tion of absolute value equation. It is proved that the method is globally
convergent under some weaker conditions with respect to existing meth-
ods. Moreover, preliminary numerical results indicate effectiveness and

robustness of our method to solve absolute value equation.
Keywords: Absolute value equation, Uniform approximation, Newton
method.
MSC(2010): Primary: 65K99; Secondary: 65K05; 90C99.

1. Introduction

In this article, we consider the Absolute Value Equation (AVE):

(1.1) f(x) = Ax− |x| − b = 0,

in which A ∈ Rn×n and b ∈ Rn are known. Here, |x| denotes a vector with com-
ponents |xi|, i = 1, 2, . . . , n. Notice that AVE (1.1) is a nonsmooth nonlinear
equation due to the non-differentiability of absolute value function.

The significance of absolute value equation (1.1) arises from the fact that the
general NP-hard linear complementarity problem (LCP) [2–4], which subsumes
many mathematical programming problems, can be formulated as an AVE
(1.1). This implies that AVE (1.1) is NP-hard in its general form [7, 10, 11].
There are some interesting results about the AVE (1.1), which we list as follows:

• Determining the existence of a solution to (1.1) is NP-hard [7];
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• AVE (1.1) is equivalent to LCP [7,10,11];
• If solvable, AVE (1.1) can have either unique solution or multiple so-
lutions [10];

• AVE (1.1) is uniquely solvable for any b if ∥A−1∥ < 1, or the singular
values of A exceed 1 [10];

• If 1 is not an eigenvalue of A, the singular values of A are merely greater
than or equal to 1 and {x|(A + I)x − b ≤ 0, (A − I)x − b ≥ 0} ̸= ∅,
then, AVE (1.1) is solvable [10];

• If b < 0 and ∥A∥ < γ/2, where γ = mini |bi|
maxi |bi| , then AVE (1.1) has

exactly 2n distinct solutions, each of which has no zero components
and a different sign pattern [10];

• Various characterizations of the solution set and the minimal norm
solution to (1.1) are given in [5, 14];

Recently, some computational methods have been presented for AVE (1.1)
(see [1, 5–9, 13, 16, 17]). In [9], a generalized Newton algorithm is proposed for
AVE (1.1). It is proved that the generalized Newton iterates are well defined
and bounded when the singular values of A exceed 1. However, the global linear
convergence of the method is only guaranteed under more stringent condition
∥A−1∥ < 1

4 rather than the singular values of A exceeding 1.
Another approach for solving (1.1) is the smoothing method (see [12] and

references therein). The feature of smoothing method is to construct a smooth-
ing approximation function fµ : Rn ×R 7→ Rn of f such that for any µ > 0, fµ
is continuously differentiable and

lim
µ→0+

∥f(x)− fµ(x)∥ = 0, ∀x ∈ Rn,

and then to find a solution of (1.1) by (inexactly) solving the following problems
for a given positive sequence {µk}, k = 0, 1, 2, . . . ,

(1.2) fµk
(x) = 0.

If x(µk) denotes the approximate solution of (1.2), we expect that x(µk) con-
verge to x∗, the solution of (1.1), as µk → 0+. To get this aim, we must prove
that:

• The equation (1.2) has a unique solution x(µk), for all µk > 0,
• x(µk) → x∗, when µk → 0+.

The merits of the smoothing method are global convergence and convenience
in handling smooth functions instead of nonsmooth functions. However, (1.2),
which needs to be solved at each step, is nonlinear in general.

The smoothing Newton method [12] can be regarded as a variant of the
smoothing method. It uses the derivative of fµ with respect to x in Newton
method, namely

(1.3) xk+1 = xk − αk∇fµk
(xk)

−1f(xk)
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where µk > 0, ∇fµk
(xk) denotes the Jacobian of fµ with respect to x at (xk, µk)

and αk > 0 is the step size. The smoothing Newton method (1.3) for solving
nonsmooth equation (1.1) has been studied for decades in different areas. In
some previous papers, method (1.3) was called a splitting method because f is
split into a smooth part fµ and a nonsmooth part f−fµ. The global and linear
convergence of (1.3) has been discussed, but so far no superlinear convergence
result has been obtained.

In [17], authors established global and finite convergence of a generalized
Newton method proposed for AVE (1.1). Their method utilizes both the semis-
mooth and the smoothing Newton steps, in which the semismooth Newton step
guarantees the finite convergence and the smoothing Newton step contributes
to the global convergence.

In this paper, to solve AVE (1.1), we approximate the nonsmooth function
f(x) with a parametric accurate smoothing approximation function fµk

(x) hav-
ing good properties, and solve the equation (1.2) using Newton method for a
fast convergent sequence of parameters {µk}. We will prove that the equa-
tion (1.2) has a unique solution x(µk), for all µk > 0, and Newton method,
initiated from x(µk−1), is well defined. Moreover, we prove that x(µk) → x∗,
when µk → 0+, in which x∗ is the unique solution of (1.1). This algorithm is
proved to be globally convergent under the condition that the singular values
of A exceed 1. This condition is weaker than the one used in [9]. Preliminary
numerical results given in Sec. 3 show that our method is very promising.

2. Uniform smooth approximation method for AVE

In this section, we propose a uniform smooth approximation method to solve
AVE (1.1). We begin with the following definitions.

Definition 2.1. ( [12]) A function Sµ : Rn 7→ Rm is called a smoothing
function of a nonsmooth function S : Rn 7→ Rm if, for any µ > 0, Sµ is
continuously differentiable and, for any x ∈ Rn,

lim
µ↓0, z→x

Sµ(z) = S(x).

Definition 2.2. ( [12]) Let S : Rn 7→ Rm be a locally Lipschitz continuous
function and Sµ : Rn 7→ Rm, µ ∈ R, continuously differentiable. Then, Sµ is
called a regular smoothing function of S if for any compact set D ⊆ Rn and
µ > 0, there exists a constant L > 0 such that, for any x ∈ D and µ ∈ (0, µ]

∥Sµ(x)− S(x)∥ ≤ Lµ.

Note that AVE (1.1) is nonsmooth due to the non-differentiability of absolute
value function. So, to smooth approximation of f(x), it is sufficient to smooth
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approximation of absolute value function. On the other hand, absolute value
function |xi| can be regarded as the integral of signum function defined by:

sign(xi) =


−1 xi < 0

0 xi = 0

1 xi > 0.

Hence, to smooth approximation of absolute value function, first of all, we
need to smooth approximation of the signum function. Suppose that µ > 0 is
a parameter and consider the following function:

tµ(xi) =


−1 xi ≤ −µ

2(xi/µ)

1 + (xi/µ)2
−µ ≤ xi ≤ µ

1 xi ≥ µ.

It can be observed that the tµ(xi) is continuously differentiable and satisfies

|tµ(xi)− sign(xi)| ≤ µ, ∀µ > 0.

Indeed, according to Definition 2.2, tµ(xi) is a regular smoothing approximation
to the signum function.

Using integration of tµ(xi) with respect to xi, we can obtain the following
regular smoothing function to the absolute value function:

ϕµ(xi) =


−xi xi ≤ −µ

µ ln
(
1 + (xi/µ)

2
)
+ µ(1− ln 2) −µ ≤ xi ≤ µ

xi xi ≥ µ.

Notice that the ϕµ(xi) is continuously differentiable and satisfies

0 ≤ ϕµ(xi)− |xi| ≤ µ(1− ln 2), ∀µ > 0.

Moreover, as Figure 1 indicates, it is a very accurate uniform smooth approxi-
mation to |xi|, especially for small µ.

Based on |xi| = max{xi,−xi}, Yong and etc [16] adopted the aggregate
function introduced by Li [6] to smooth the max function. The smoothing
approximation function to absolute function |xi| is then derived as:

ηµ(xi) = µ ln
[
exi/µ + e−xi/µ

]
.

It is shown that

0 ≤ ηµ(xi)− |xi| ≤ µ ln 2.

As we note, the approximation function ϕµ(xi) to |xi| is better than ηµ(xi)
because 1− ln 2 = 0.3069 < 0.6931 = ln 2.
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Figure 1 demonstrates functions |xi| (solid line), ϕµ(xi) (dotted line), and
ηµ(xi) (dashed line) over the interval [-1.5,1.5] for µ = 1. It show that our
smooth approximation ϕµ(xi) matches well with |xi|.

Now, let’s define the functions tµ, ϕµ, fµ : Rn 7→ Rn by

(2.1)

tµ(x) = [tµ(x1), . . . , tµ(xn)]
T ,

ϕµ(x) = [ϕµ(x1), . . . , ϕµ(xn)]
T ,

fµ(x) = Ax− ϕµ(x)− b.

The following Lemma denotes that fµ(x) is a regular smoothing approximation
for f(x) in (1.1).

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Figure 1.  Regular smoothing approximation for |x|

phi(x)
|x|
eta(x)

Lemma 2.3. (i) For any x ∈ Rn and µ > 0,

∥fµ(x)− f(x)∥ ≤
√
nµ(1− ln 2).

(ii) For any µ > 0, fµ(x) is continuously differentiable on Rn and

∇fµ(x) = A− diag(tµ(x1), . . . , tµ(xn)).
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Proof. (i) For any µ > 0 and xi ∈ R, we have 0 ≤ ϕµ(xi) − |xi| ≤ µ(1 − ln 2).
So,

∥fµ(x)− f(x)∥ = ∥ϕµ(x)− |x|∥ =

√√√√ n∑
i=1

(ϕµ(xi)− |xi|)2 ≤
√
nµ(1− ln 2).

(ii) Because of separability of ϕµ(x), we have

∇fµ(x) = A−∇ϕµ(x)

= A− diag(ϕ′
µ(x1), . . . , ϕ

′
µ(xn))

= A− diag(tµ(x1), . . . , tµ(xn)).

□

Lemma 2.4. ( [15]) Suppose that A is nonsingular. If matrix E is such that
∥A−1E∥ < 1, then A+ E is nonsingular and

∥A−1 − (A+ E)−1∥
∥A−1∥

≤ ∥A−1E∥
1− ∥A−1E∥

.

Lemma 2.5. Take D = diag(d1, . . . , dn) with di ∈ [−1, 1], i = 1, . . . , n. Sup-
pose that ∥A−1∥ < 1. Then, A+D is nonsingular.

Proof. Inequalities ∥A−1D∥ ≤ ∥A−1∥ ∥D∥ < ∥D∥ ≤ 1 and Lemma 2.4 imply
that the matrix A+D is nonsingular. □

Now we investigate the nonsingularity of the Jacobian matrix ∇fµ(x).

Lemma 2.6. For all x ∈ Rn, ∇fµ(x) is nonsingular if ∥A−1∥ < 1.

Proof. According to the definition of tµ(xi), we have |tµ(xi)| ≤ 1, for all i =
1, . . . , n. So, ∥diag(tµ(x1), . . . , tµ(xn))∥ ≤ 1. Since ∥A−1∥ < 1, the result can
be obtained from the previous Lemma. □

The following lemma gives the boundedness of the inverse matrix of ∇fµ(x).

Lemma 2.7. Suppose that ∥A−1∥ < 1. Then, there exists a constant M > 0
such that for any µ > 0 and any x ∈ Rn

∥[∇fµ(x)]
−1∥ ≤ M.
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Proof. Take E = −diag(tµ(x1), . . . , tµ(xn)). Then, from Lemma 2.4 we have

∥[∇fµ(x)]
−1∥ = ∥(A+ E)−1∥ ≤ ∥(I + F )A−1∥ ≤ (1 + ∥F∥)∥A−1∥,

where ∥F∥ ≤ ∥A−1E∥
1−∥A−1E∥ . Furthermore, from the fact that ∥E∥ ≤ 1, we have

∥(A+ E)−1∥ ≤
(
1 +

∥A−1∥ ∥E∥
1− ∥A−1∥ ∥E∥

)
∥A−1∥

≤
(
1 +

∥A−1∥
1− ∥A−1∥

)
∥A−1∥

=
∥A−1∥

1− ∥A−1∥
.

By setting M := ∥A−1∥
1−∥A−1∥ , we can get the desired result. □

Lemma 2.8. Suppose that ∥A−1∥ < 1 and µ is fixed. Then, the equation
fµ(x) = 0 has a unique solution.

Proof. If x and x̃ are two different solutions, then, using the mean value theo-
rem, we have

0 = fµ(x)− fµ(x̃) = ∇fµ(z)(x− x̃),

in which z = x̃ + t(x − x̃) and t ∈ [0, 1]. This means that ∇fµ(z) is singular,
which is a contradiction to Lemma 2.6. □

Now, consider the sequence

(2.2) µ0 = 1, µk+1 = µk − 1 + e−µk , k ≥ 0

that is Newton method for solving the equation eµ = 1. The sequence {µk}
is quadratically convergent to zero. Suppose that x(µ0) is given and x(µk),
k ≥ 1, is the solution of the equation

fµk
(x) = 0,

obtained by Newton method, initiated from x(µk−1). Notice that the function
fµk

(x) and the sequence {µk} are defined by relations (2.1) and (2.2), respec-
tively. In the following theorem, we show that lim

k→∞
f(x(µk)) = 0 which means

that x∗ = lim
k→∞

x(µk) exists and is a solution of AVE (1.1).

Theorem 2.9. Suppose that ∥A−1∥ < 1 and x(µk) is the unique solution of
fµk

(x) = 0, in which µk is defined by (2.2). Then, x∗ = lim
k→∞

x(µk) exists and

is a solution of AVE (1.1).
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Proof. First of all, AVE (1.1) has a unique solution because ∥A−1∥ < 1. On
the other hand, from fµk

(x(µk)) = 0 and Lemma 2.3, we have

∥f(x(µk))∥ = ∥f(x(µk))− fµk
(x(µk))∥ ≤

√
nµk(1− ln 2),

that denotes lim
k→∞

f(x(µk)) = 0. Continuity of f(x) implies that

f( lim
k→∞

x(µk)) = lim
k→∞

f(x(µk)) = 0.

Since the equation f(x) = 0 has a unique solution, x∗ = lim
k→∞

x(µk) exists and

is the unique solution of AVE (1.1). □

Corollary 2.10. Suppose that ∥A−1∥ < 1 and x(µk) is the unique solution of
fµk

(x) = 0, in which µk is defined by (2.2). Then, the sequence {∥f(x(µk))∥}
is linearly convergent to zero.

In the following algorithm to solve AVE (1.1), we use the above ideas. The
algorithm is initialized from an arbitrary point x0 ∈ Rn, µ = 1, and k = 0. It
stops when

(2.3) ∥f(xk)∥ ≤ ε

in which ε is user’s precision. In the beginning of an iteration, we check (2.3).
If it holds, xk is accepted solution of AVE (1.1). Otherwise, we approximately
solve the smooth nonlinear equation fµ(x) = 0, initiated from xk, using Newton
iteration xk+1 := xk − [∇fµ(xk)]

−1fµ(xk) until ∥fµ(xk)∥ ≤ δ. Then, the
parameter µ is updated according to (2.2). We note that, according to Lemmas
2.3, 2.8, and Theorem 2.9, the algorithm is well defined and convergent to the
unique solution of AVE (1.1).

Algorithm 1.
1. Take k := 0 and µ := 1. Select an initial point x0.
2. While ∥f(xk)∥ > ε do
3. Solve the nonlinear equation fµ(y) = 0, initiated from xk, using Newton
method:

While ∥fµ(xk)∥ > δ do
Take xk+1 := xk − [∇fµ(xk)]

−1fµ(xk).
Set xk := xk+1 and k := k + 1.
End While.

4. Set µ := µ− 1 + e−µ.
5. End While.

To prove that Algorithm 1 is bounded, we need the following theorem.
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Theorem 2.11. Suppose that ∥A∥−1 < 1. Then, the set

L = {x ∈ Rn | ∥f(x)∥ ≤ α}
is bounded for any α > 0.

Proof. Since ∥A−1∥ < 1, then σmin(A) > 1, in which σmin(A) denotes the
smallest singular value of A. Using the fact that ∥Ax∥ ≥ σmin(A)∥x∥, we have

∥Ax− |x| − b∥ ≥ ∥Ax∥ − ∥ |x| ∥ − ∥b∥

= ∥Ax∥ − ∥x∥ − ∥b∥

≥ (σmin(A)− 1)∥x∥ − ∥b∥.
Thus, for any x ∈ L, we have

(σmin(A)− 1)∥x∥ − ∥b∥ ≤ α,

that is,

∥x∥ ≤ α+ ∥b∥
σmin(A)− 1

.

This denotes that the set L is bounded. □

Using the two above theorems, we conclude that all iterates xk, k ≥ 1,
generated by Algorithm 1, belong to the set L, with α =

√
n(1 − ln 2). This

proves that Algorithm 1 is bounded and convergent.

Theorem 2.12. If ∥A−1∥ < 1, then the sequence {xk}k≥1 generated by Al-
gorithm 1 is well defined and bounded, while belonging to the compact set L,
with α =

√
n(1 − ln 2). So, there exists an accumulation point x∗ such that

f(x∗) = 0.

3. Computational results

In this section, we report some numerical results of our algorithm for solving
AVE (1.1) compared with [16]. All experiments are done using a PC with
CPU of 2.6 GHz and RAM 2 GB, and all codes are finished in MATLAB 7.1.
Specially, each required inverse is computed by the MATLAB command ”inv”.

In order to generate a random solvable AVE with fully dense matrix A ∈
Rn×n, we take

A = 10 ∗ randn(n, n)− 10 ∗ randn(n, n),

x = randn(n, 1)− randn(n, 1),

and set

b := Ax− |x|.



A uniform approximation method 1268

Following the procedure in [8], we ensured that ∥A−1∥ < 1 by actually com-
puting σ = σmin(A) and rescaling A by A := A/(τσ), in which τ is a nonzero
random number in the interval [0,1]. We choose the starting point x0 = 0 and
the maximum number of iterations is set to be 50. Also, we have ε = 10−6

and δ = 10−1. For each n = 100, 200, 300, 400, 500, we generated 10 random
test problems. The numerical results are listed in Table 1, where n denotes
the dimension of the testing problem; for the problem of every size, among ten
tests, AIt, ACPU, MaxIt, MinIt, ARes, and AF denote the average value of the
iteration numbers, the average value of the CPU time in seconds, the maximal
value of the iteration numbers, the minimal value of the iteration numbers, the
average value of those of ∥f(xk)∥ when Algorithm 1 stops, and the number of
tests where the algorithm fails, respectively.

Numerical results are summarized in Table 1. For any dimension n, the
first line is related to our smooth approximation function ϕµ(x) and another
is for aggregate function ηµ(x) from [16]. From Table 1, it is easy to see that
all randomly generated problems can be solved with few number of iterations
and short CPU time; and the numerical results are very stable such that the
iteration number does not change when the size of the problem varies. However,
our smooth approximation function gives better numerical results with respect
to aggregate function. Thus, Algorithm 1 based on smooth approximation
ϕµ(x) is very effective to solve AVE (1.1).

Table 1. The numerical results of Algorithm 1

n AIt ACPU MaxIt MinIt ARes AF
100 5.1 0.0157 6 5 6.1e-12 0

5.1 0.0158 6 5 6.1e-12 0
200 5.2 0.0610 6 5 5.6e-11 0

5.3 0.0630 7 5 5.6e-10 0
300 5.3 0.1687 6 5 2.9e-10 0

5.5 0.1798 7 5 2.5e-9 0
400 5.3 0.3468 6 5 3.9e-8 0

5.6 0.3675 8 6 2.7e-7 0
500 5.4 0.6534 6 5 1.0e-7 0

5.7 0.7506 8 6 1.0e-6 0

4. Conclusion

In this paper, we proposed an accurate smooth approximation method to
solve the NP-hard absolute value equation Ax − |x| = b under certain as-
sumptions on A. We proved that our method is well defined, bounded, and
convergent. Numerical experiments over random solvable AVEs showed that
our method works very well.
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