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1. Introduction

This paper is devoted to the study of the following Kirchhoff type sys-
tems with nonlinear boundary conditions:

—M( [ IVul?de)Au = Af(z)|u|"?u, z€Q,

(1.1) —M( [ |VvPda ) Av = pg(z)lv]7 20, z€Q,
gz — ai_wh(x)|u|a_2u\v\5, T € 0N,
o — Lsh(@)|ul*[v]~2v, z € 99,

where € is a bounded domain in RY with smooth boundary, 2 < a4+ 3 <
2¢(2* = FL N >3,2 =0 if N=2), 1 <q<2 M(s)=as+b,a,b>0,
(A, 1) € R?2\{(0,0)} and the weight functions f, g, h are satisfying the following
conditions:

() /.9 € C@) with |/l = lglloe = 1, and cither f+ = max{f,0} # 0
or g* = max{g,0} # 0;
(i) h € C(09) with ||h]lc = 1 and At = max{h,0} # 0.
Problem (1.1) is called nonlocal because of the presence of the term —M ([, |Vul?
dz) which implies that the equation in (1.1) is no longer a pointwise identity.

Article electronically published on October 17, 2015.
Received: 5 April 2014, Accepted: 10 August 2014.
*Corresponding author.

(©2015 Iranian Mathematical Society
1299



On a class of Kirchhoff type 1300

This phenomenon causes some mathematical difficulties which makes the study
of such a class of problem particularly interesting. Beside, such a problem has
physical motivation. Moreover, problem (1.1) is related to the stationary ver-
sion of Kirchhoff equation

82u_ (Po _0

E [ ou, 0?u
(12) ror 7 Tar ), g @) 5me
presented by Kirchhoff [16]. This equation extends the classical D. Alembert’s
wave equation by considering the effects of the changes in the length of the
strings during the vibrations. The parameters in (1.2) have the following inter-
pretation: L is the length of the string, h is the area of cross section, E is the
Young’s modulus of the material, p is the mass density, and P, is the initial
tension.

When an elastic string with fixed ends is subjected to transverse vibra-
tions, its length varies with the time: this introduces changes of the tension
in the string. This inspired Kirchhoff to propose a nonlinear correction of the
classical D’Alembert’s equation. Later on, Woinowsky-Krieger (Nash-Modeer)
incorporated this correction in the classical Euler-Bernoulli equation for the
beam (plate) with hinged ends. See, for example, [4] and [5] and the references
therein.

Moreover, nonlocal problems also appear in other fields as, for example, bio-
logical systems, where (u,v) describes a process which depends on the average
of itself (for instance, population density). See, for example, [2,3,13,18] and [20]
and the references therein. In recent years, problems involving Kirchhoff type
operators have been studied in many papers, we refer to [12,14,17,23], in which
the authors have used different methods to get the existence of solutions.

In recent years, the existence of solutions for the semilinear / quasilinear
elliptic equations with nonlinear boundary conditions have been widely studied
( see, eg., [6,9,15] and the references therein). Motivated by these works, we
are interested in the existence of multiple nontrivial nonnegative solutions to
the Kirchhoff type systems with nonlinear boundary conditions. In fact we will
prove that:

Theorem 1.1. Suppose that the weight functions f,g and h satisfy condi-
tions (i) and (i) and o+ 3 > 4. Then there exists a positive number Co =
Co(a, B8,b,q,5,S) such that if the parameters A, i satisfy
0 < AT + [u] =7 < Co,

then problem (1) has at least two nontrivial nonnegative solutions (ug ,vy) and
(ug ,vg )-

Proof. The proof is based on the method of Nehari manifold, which was first
introduced by Nehari in [19], and the method turned out to be very useful in
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critical point theory (see, e.g., [1,7,8,10,11,21]) and eventually came to bear
his name. O

The rest of this work is organized as follows. In Section 2, we introduce some
preliminaries including definitions and some lemmas for later use. In Section
3, the proof of the main result is given.

2. Preliminaries

Throughout this section, we denote by S, S the best Sobolev embedding
and trace constant for the operators H'(Q) — L(Q), H'(Q) — L*t5(0Q),
respectively. Define the Sobolev space H = H(Q) x H!(Q) with the standard

norm
|(u,v)|| = (/ \Vu|2dac+/ |Vv|2dx)2.
Q Q

Moreover, a pair of functions (u,v) € H is said to be a weak solution of (1.1)
if

M(/Q|Vu|2dx)VuV¢1d;v+M</Q|Vv|2dx)VvV¢2d:c

= [ M@l uinds ~ [ gla)lolt2uoads
Q Q
«
a+p

for all (¢1, ¢2) € H. Thus, the corresponding energy functional of (1) is defined
by

1/ - 1 N 1
T, 0) = 5 (Nl + 8 fellFn)) = = /@ Bl s Ko (),

where M(s) = Jo M(t)dt, Ky (u,v) = [o AMfluldz + [, pglv|?de and M :
R — RT is any function that is differentiable everywhere except at some finite
points. It is well known that solutions of (1.1) are the critical points of the
energy functional J) ,.

h(z)|u|®2ulv)? dsfi/ h(z)|u|®v]?~2vgads = 0,
| n@lul ol ords = L [ h@lallol 2o,

Now, we define the Nehari manifold

Ny = {(u,v) € H = {(0,0)}[(J5 ,(u,v), (u,v)) = 0} .
Thus (u,v) € Ny, if and only if

(A 0), (u0)) = M(J[ullF)[ulF
+M ([l E) vl — K u(u,v) = /aQ hlul*[v|"ds
= 0.
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Define
7/&,#(”» 'U) = <J§\,,u(uv U)? (’LL, 'U)>
Then for
(4,0) € Ny (P30 (w,0), (u,0)) = da(flullzr + (vl 1) + 26(1|(u, 0) 1)

—qK ,(u,v) — (a+ ,3)/ h\u|a|v\5ds.
a0

Now, we split IV , into three parts:
Ny, = {(w,v) € Ny (@), (u, v), (u,0)) > 0},
N3 = {(w,v) € Nx (W u(u, v), (u,0)) = 0},
Ny, = {(w,v) € Ny}, (u, v), (u,v)) <0}
Then, we have the following results.

Lemma 2.1. We have:
(i) if (u,v) € Nl\f”, then Ky, (u,v) > 0;
(i) if (u,v) € Ny, then [, hlu|*v|’ds > 0;

(iii) if (u,v) € NY ,, then Ky ,(u,v) >0, [0 hlu|*|v[Pds > 0.

Proof. (i) For (u,v) € N;F)M, we have
WAu(u0), (wv)) = da(ulli + o) + 260 (w, 0)I*) = ¢Kxu(u, v)
~(@+8) [ Hullol’ds
o

a(d —a = B)(lullin + llollin) + b2 — a - B)]|(u, v)]*
+ (a+8—q)(Kxu(u,v)) >0.

Then
bla+pB—2) 9 ala+pB—4) 4 4
Ky u(u,v) > m(ll(u,v)ll )+ m(”““m + [[v[|z) > 0.
(ii) For (u,v) € N, ,, we have
WA u(u,v), (w,v)) = da(llullzn + [ollz) + 20(]|(w,0)[1?)

B () — (a+/3)/ hlulo|?ds
tol9)
= a(d—q)(|ullfn +lvl[F) + b2 — @)l (u,v) ||
+(g—a— 3)/ hlu)®|v|?ds < 0.
o



1303 Rasoul and Norouzi

Then

/ hlul®[v]?ds > b(ﬂj D (u,0)[2 > 0

(iii) For (u,v) € NAW we have

bla+p5-2) ala+ 5 —4)
KA,u(uvU)ZiaJrﬁ_q (Il(u7v)ll2)+7a+ﬁ_ (llullF + l[oll7) > 0,
b(2—q)
hlu|*|v|Pds = ——2||(u,v)||*> > 0.
| wiulofPas = 220w
This complete the proof. O

Lemma 2.2. There exzists a positive C = C(a, 3,b,5,5), such that if
0 < A=7 + |u|=7 < C,
then Ny , = 0.

Proof. We consider the following two cases.
case(a): (u,v) € Ny, and [, hlu|*[v|’ds < 0. We have

(WA u(w,0), (u,0)) = da(llullz + ol 31) + 2601 (w, 0)[1*) — ¢Kx p(u, v)
hlu|®|v|Pd
(a+/3)/m o] ds
a(4 = @) (|ullfs + [vll3) + (2 = )| (u,v)|]?
+@—a—m/hMMﬂﬂ%s>O
o0

So (u,v) ¢ Ng,u'
Case(b): (u,v) € Ny, and [y, hlu|*[v|?ds > 0. Suppose that NY , # 0, by
lemma (2.1), we have

(a+B—q) /aQ hlu[*l’ds = a(4 = q)(|lullz + lolFn) +0(2 = @)l (w,v)||?

b(2 = q)||(u, )%,
Moreover, by the Holder and sobolev inequalities,

+58—q
w,v)|? < ai/ hlu|®|v|Pds
ot < SEEst [ bl

atpf-q uletB)75E plotB) 57
b(z_q)</m|| ) </m|| )

9 co+B a+p
— S U,V .
0]

Y

It follows that



On a class of Kirchhoff type 1304

and by (u,v) € N} , and o + 8 > 4 we have

(a+B=q)(Kxu(u, 0) +b(2—a=B)|(u,v)|* = a(a+B—4)(||ullz +[|v]F:) > 0.

Thus
bla+B=2)(wv)* < (a+p—q)(Exu(u,0)

< (a+B—@)Mullfars + plllvlEass

<

(a+B—q)S(IAZ=7 + [ul7=7) 2 [[(u,v)]|7,
and hence
a+B—q L, _a 2 2 1
< (——— 2 )2-a {3 2—q 2—q 2_
o)l < G g—g) ™ 5= (A7 + Jul=57)

This implies

(A= + [pl=59) ® > C.

This is contradiction by choose

C=C(a,8,1,8,8) = (m5a+ﬂ)2—3—ﬁ (Ws—q)@.
0

Lemma 2.3. Suppose that M(s) = as+b, then the energy functional Jx ,(u, v)
is coercive and bounded below on Ny .

Proof. For (u,v) € Ny ,, we have
M([[all ) llullz + Ml E) vl = K (u, v) +/mh|U\“|v|ﬁd8-
By the Sobolev inequality,

1, 2 9 2 1 1 a8
=-(M N - K -
Trou(,0) = 5 (M(Jullzgn) + M([[0h)) = Eou(u0) a+ﬁ/ﬂh|u| [0]"ds
1

= 5 Qi) + M1(I0l50)) = K a,0) = 5 (M)

M (lllol) + g Kon(uro)

= ol (LD s+ ba - 2)

+ 2?;"%23) (OB, bt 5-2) - ((Z(—;i_ﬁ)q)lﬁ,u(u, v)

> (Mol - (S Ko

> (%)nw)n? — (CEESD S (D) + () =5) = w1

Since 1 < ¢ < 2, Jy,, is coercive and bounded below on Ny ,,. O
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The following lemma shows that the minimizers on N} , are usually critical
points for Jy .

Lemma 2.4. Suppose that (ug,vo) is local minimizer for Jx, on Ny, and
(uo,v0) ¢ Nf\)w, then J,/\#(umUo) =0.

Proof. Let (ug,vo) be a local minimizer for Jy, on Ny ,. Then (ug,vo) is a
solution of the following optimization problem:

minimize Jy ,(u,v) subject to ¥, (u,v) = 0.
Hence, by the theory of Lagrange multipliers, there exists a A € R such that
I3 (w0, vo) = A |, (ug, vo) in H™".
Thus

<J//\,,u,(u07 UO)? (Uo, ’UO)> = A<¢l)\,u(u0a U0)7 (u07 U0)> =0.
Since (ug,vo) € Ny, (J} (10, v0), (u0,v0)) = 0. On the other hand, (¢} ,(uo,
vo), (1o, v0)) # 0. Hence A = 0, and this completes the proof. O
Lemma 2.2 suggests that we introduce the set

2—q
0= {()\,u) ceR? - {(0,0)}|0 < (|A\ﬁ + |u|ﬁ)T < CO},
where Cy = (4)73C < C. If (\,u) € O, we have Ny, = N, UNj, and
define

+ _ . . — _ .
0y, = inf . Dop(u,v); Oy, = inf  Jyu(u,0).
(u,v)ENY , (w,v)ENY ,

We have the following lemma:

Lemma 2.5. If (A, u) € O, then:

(i) 0%, <0;
(i) there exists dy = do(av, B,b, S, S, \, 1) > 0, such that 0., > do-

Proof. (i) Let (u,v) € N;M. Since

(@ + B = @K u(u,v) > ala+ B = 4)(Julln + [lollf) +bla+ 8 = 2)][ (u, v)[I?,
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and so
Tonwen) = 5Tl + M) = £ Bnln) = o5 [ blullolds
= STl + 3E(lelfn) = 2w v)
5 Ol )l + Mol ol = Ko )
= g~ )l + ol +G = )Gl
S K u(u)
1 1

IN

a(a+ 8= (lullz + o) (5
1 1

(a+ﬂ)_q(a+ﬂ))

+b(a+ 5 = 2)(II(u, v)II") (5

Thus, 9:\*"” < 0.
(ii) Let (u,v) € Ny ,. By Lemma 2.1

/ hlu|®v|Pds > 0,
19}

(a+B8) qla+p)

) <0.

2-gq
=

)%

(u,v)

1.

by Lemma 2.2
a+ﬁ_qia+5 2—a—
(2'1) ”(U»U)H > ( b(2 — q) S ) ’
Moreover, by Lemma 2.3, we have
I, (u,v)
b -2 + B — q 2 2
> (G ol - (SEEZ s (a7 + 1)
— qrbla+p8-2) 2—q _ (At B =4\ 2 225\
= ltw, )] 15 [l (w, )| (q(a+5) )S)(IAZ=a + |p|z=a) =]
o+ B—qgatpys=tm0a+B—2) o+ B—qgass
> Ga—g " )" et G- °
LSS N + =) )

Thus if

2—gq

0 < (A7 + [u|77) 7 < Co,

for each (u,v) € Ny ,,» we have

J)\,u(uv U)a (U7U) Z dO == dO(avﬂvba Sa S7>\HU‘) > 07

for some dy > 0. This completes the proof.

Lemma 2.6. For each (u,v) € Ny, we have:
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(i) if Kx p(u,v) <0, then there is a uniquet™ > tq max such that (t"u,t™v) €
N/\_w and
Iapu(t"u, t7v) = sup Jy ,(tu, tv);
t>0

(i) if Kx pu(u,v) > 0, then there are unique t*,t~ with 0 < t7 < tg max <
t= such that (tTu,ttv) € N/\*M, (t"u,t"v) € Ny, and

Ipttu,tto) = inf Ty u(tu, to) and Ty, (tu, t ") = sup Jy . (tu, to).
0<t<ta,max t>0

Proof. (i) Fix (u,v) € Ny, let
ma(t) = at*([[ull g + [0l 72) + 0622 (u, 0)|1?) —ta+5_q/ hlu|*[v|’ds
a0

for a,t > 0. Clearly, my(0) = 0, ma(t) — —o0 as ¢ — —oo. Since
Joq hlu|*|v]Pds > 0 and

mo(t) =

7 (a(4 = @) (lullz + ollF)E* + b2 = g)ll(u, v)|?)

~(a+ 8-t [ pp ol ds

29

there is a unique ¢4 max > 0 such that m,(¢) achieves its maximum at ¢, max, in-
creasing for t € [0, ¢4 max) and decreasing for t € (t4 max, 00) With lim;_,oo m4(t) =
—o00 . Moreover

fomax = ( b(2 — g)|l(u, v)|* )ﬁH
e (a+p—-29q) fBQ h|u‘a|”|ﬁd3

)

and
mO(tO,max)
b(2 — g)||(u,v)|? s 2
= b o+ =2 | (u,
((a+/3_ q) ffm h|u\°‘|v|5d5) H(u ’U)”
b2 — q)||(u,v)|]? %/ oy (B
_ o h d
((a+B—Q)fagh|u|"|v\BdS) o0 el
= b||(u,v)]| [(oﬁ—ﬁ—q) =2 (a—f—ﬁ—q a2 fmh|u|"‘|v\5ds)
- b(2—q) 57
> b a(@ftb=2y S
= [ (w, v)] (aJrﬂfq)(SaJrﬁ(a_,_B_q))
(i) K pu(u,v) < O There is a unique t~ > tq max such that mq () = K ,(u,v)
and m/ (t~ ) < 0.
(YAt u,t 7o), (T u,t ™ v)) = a(t™) (4= @) (lullzr + [0ll51) +b(E)* (2 = @)l (w,v)||?

—(t7) P (a+ B - q) /a ol ds

=@t )" ml(t7) <0,



On a class of Kirchhoff type 1308

and
(Jﬁ\_’#(t*u,t*v), (t"u,t”v)) = (t7)? [ma(t*) — K>\7u(u,v)} =0.

Thus (¢ u,t"v) € Ny tm=1 Since for t > t4 maz, We have
M4—QXWUﬁp+W“MHﬂ4+M2—QWUw“0W—%a+ﬁXé hltu|*[tv| ds < 0
Q

and %JA7M(tu, tv) < 0, moreover for t =t~

d - _ o — a
Pty ) = at® (JJullfn + ollin) — 9 (K u(u,v) — 27 1/ hlu|*[v|7ds
Ely)
= tqfl(ma(t) — K u(u,v)) =0.

Thus, Jy,,,(t7u, t7v) = sup,q Jx,u(tu, tv).
. 2-q

(ii) K pu(u,v) > 0. For 0 < (|A|=7 4 |u|77) 2 < Cy < C, we have
mq(0) =0 < K ,.(u,v)

a+ﬁ—2)( _ b(2—q) )7&;‘12

atf—q’ St (a+p—q) '
< mO(tO,max) < ma(ta,max)-

There are unique ¢t and ¢~ such that 0 < T < t4max <17,

Ma(t") = Ky u(u,v)) = ma(t"),

< bll(u )]

and
mi () >0>ml(t7).
We have (tTu,ttv) € N;:M, (t"u,t"v) € Ny , and
It u, t™v) > Jy u(tu, to) > Jy (T, tTo) for each t € [t1,¢7],
Thus

J,\,M(ﬁu, tto) = inf  Jy . (tu, tv) and Jy ,(t"u,t”v) = sup Jx ,(tu, tv).
0<t<ta,max t>0
This complete the proof. U

3. Proof of Theorem 1.1

First we establish the existence of local minimum for Jy , on Ny .

Theorem 3.1. If (A, 1) € ©, then Jy,, has a minimizer (ug ,vg) in N;:M and
satisfies:

() Iaulug,vg) =05 s

(ii) (ug,vd) is a solution of (1.1) such that ui > 0,05 >0 in Q.
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Proof. By there is a minimizing sequence (u,,vy) for Jy , on N ;r ,, such that
Inp(Un, vp) = 0;'7” +o(1) and J} ,(tun,vy) = o(1) in H*(£2).

Then by Lemma 2.3 and compact embedding theorem, there exist a subse-
quence (un,vy,) and (uf,vg) € H is solution of (1.1) and

u, — ug, weakly in H'(Q),

u, — ug, strongly in L9(Q) and in LA (09),

v, — vy, weakly in H1(Q),

vp, — vy, strongly in L9(Q) and in Lo+4(99).
This implies

K)\,M(unavn) — KA,M(US_, U(—)i_), as n — o0,

(3.1) / R|tun|® v, | P ds —>/ hlud | |vd |Pds, asn — oc.
o9 o)

First, we claim that Ky ,(ug,vg) > 0. Suppose otherwise, by (3.1) we can
conclude that

K (tp,vn) = KA,M(usr,vsr) =0, asn — 00,

and so
M(Ilun||§11)+M(anllip)=/ hlun|* |vn |’ ds + o(1).
o
Thus
JA,IJ‘(u’ﬂvv’ﬂ)
= G0l + N onlF0)) = Kol on) = o | B0 ds
2 = " qg VT a+ B Jq
a 4 4 b 2 a 4 4
= gUuals +llonllm)) + 5l wn, on)lI” ~ a+ﬂ(|lunl|H1 + llvnllz)”)
b
- aJrﬂH(umvn)HQ +o(1)
a a b b
= (3~ a+ﬁ)(|\ug\|§{1 + I\UJ||§1)+(§ - a+6)\|(ﬂ§,vo+)\|2 as n — oo,

which contradicts Jy ,,(un, Up) = QLL < 0 asn — oco. Now we prove that
u, — ug, strongly in H!(€),
v, — vy, strongly in H1(Q).
Suppose otherwise, then either |lug || < liminf, oo ||un| g2 or |Jog | <
liminf,, o ||vn| g1 and so
allug 71 + lvg )*) + bll (g, v)I1* = K (ud,vg) 7/3 hlug [*|vg | ds
Q

dmgi@mMm+mm%www%wW—Kmmwm—Amme%@

< 0
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which is contradicts (ug,v5) € Ny . Moreover, we have (ug,vg) € N ,. In
fact, if (ug,vy) € N5 ,- By Lemma 2.6, there are unique ¢ and #; such that
(touo,tovO)EN;' ( uo,tOUO)EN and t§ < t; = 1. since

d 2
7 —Iu(tdud tog) =0 and — JM(tO ug tgvd) > 0.

There exists t§ < ¢ < t; such that J,\,M(ta“mL tdvd) < Jau(tugd,tvg). by
Lemma 2.6 , we have
Iultgug.tgvg) < Iaultug,tvg)
< Daltougstovg)
= Julug,vg)

< lim Jy . (un,vp)

n— oo

= 05,
Which is contradicts 9+ = inf, v)ENT, Iy u(u,v). Since Jy ,(ud,vg) =
Ip(ug ]y log ) and (Jud |, |v0 ) € N;H, by Lemma 2.4 we may assume that
(ug,vy) is a nonnegative solution of (1.1). O

Next we establish the existence of local minimum for Jy , on Ny,

Theorem 3.2. If (A, ;1) € ©, then Jy , has a minimizer (u, , v, ) in Ny, and
satisfies:

(1) Sau(ug,vg) =05,

(ii) (ug,vy) is a solution of (1.1) such that uy, > 0,v5 >0 in Q.

Proof. Let (un,vy) be a minimizing sequence for Jy , on Ny u Then by Lemma
2.3 and compact embedding theorem, there exist a subsequence (u,,v,) and
(ug ,vy ) € H is solution of (1.1) and

up — ugy , weakly in H*(Q),

un — ug , strongly in L9(Q) and in L8 (99,

vn — vy, weakly in H(Q),

vp — vy, strongly in L(Q) and in L*2(09).
This implies

Ky u(tn,vn) = Ky u(ug,vg ), asn— oo,

/ R|tun|®|v,|Pds —>/ hlug |*vg |Pds, asn — oc.
o9 o9
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Since

<¢S\,u(unavn), (tn, vn))

= da(unll + onlld) + 260 (un, 0n)[2) — B p(tn, v0)
(a+B) / Rltun|*|vn P ds
oN

= a(d—a—=B)([[uali + [vallz) + b2 = a = B)||(un, va)||*
+  (a+ 8= q)(Kxu(un,vm)) <0.

‘We have

4 4
(unllzs + lloallz) + [IC2R]

(3.2) Kp(un,on) > 2E=0=0) b2—a—B)

g-a—pf -p
By (2.1) and (3.2) there exists a positive number C' such that
K (tp,vy) > C.

This implies

Now we prove that

up = ug , strongly in H(),

vn — vy, strongly in H(Q).
Suppose otherwise, then either ||ug || < lminf, o |Junllgr or |lvg || <
liminf,,—, oo ||Un| g1. By Lemma 2.6, there is a unique ¢, such that (¢5 ug ,tq vg ) €
Ny . Since (tn,vn) € Ny o Inp(Un,v) > I u(tg Un, ty vy) for all t > 0, we
have

Ity ug,tovy ) < nlbrrgo Ity Un, tgvn) < nl;rrgo Inp(Un, vn) = 000

and this is contradiction. Hence
up — ug , strongly in H' (),
vn, — vy, strongly in H(9).
This implies
Ixpu(Un, vn) = Iaulug vy ) =05, as n — oo.

Since Ji . (ug,v9) = Iaullug | [vg |) and (Jug |, [vg'|) € Ny ,, by Lemma 2.4
we may assume that (ug , v, ) is a nonnegative solution of (1). |

Now, we complete the proof of Theorem 1.1: By Theorem 3.1 and 3.2,

problem (1.1) has two nonnegative solutions (ud,vg) € Ny ,and (ug,vy) €

Ny, Since NIM NNy, =0, this implies (ug,vd) and (ug , vy ) are distinct.
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