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Abstract. A total dominating set of a graph G is a set D of vertices of

G such that every vertex of G has a neighbor in D. The total domination
number of a graph G, denoted by γt(G), is the minimum cardinality
of a total dominating set of G. Chellali and Haynes [Total and paired-

domination numbers of a tree, AKCE International Journal of Graphs
and Combinatorics 1 (2004), 69–75] established the following upper bound
on the total domination number of a tree in terms of the order and the
number of support vertices, γt(T ) ≤ (n+ s)/2. We characterize all trees

attaining this upper bound.
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1. Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we mean
the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted
by dG(v), is the cardinality of its neighborhood. By a leaf we mean a vertex
of degree one, while a support vertex is a vertex adjacent to a leaf. We say
that a support vertex is strong (weak, respectively) if it is adjacent to at least
two leaves (exactly one leaf, respectively). We denote the path on n vertices
by Pn. Let T be a tree, and let v be a vertex of T. We say that v is adjacent
to a path Pn if there is a neighbor of v, say x, such that the subtree resulting
from T by removing the edge vx and which contains the vertex x as a leaf,
is a path Pn. By a star we mean a connected graph in which exactly one vertex
has degree greater than one.

A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \ D
has a neighbor in D. The domination number of G, denoted by γ(G), is the
minimum cardinality of all dominating sets of G. For a comprehensive survey
of domination in graphs, see [6, 7].
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A subset D ⊆ V (G) is a total dominating set, abbreviated TDS, of G if
every vertex of G has a neighbor in D. The total domination number of G,
denoted by γt(G), is the minimum cardinality of all total dominating sets of G.
A total dominating set of G of minimum cardinality is called a γt(G)-set. Total
domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [3],
and further studied for example in [1, 5, 8].

Chellali and Haynes [2] established the following upper bound on the total
domination number of a tree, γt(T ) ≤ (n + s)/2, where n is the order and s
means the number of support vertices of the tree T .

DeLa Viña et al. [4] improved the above bound. They proved that if T is
a tree different from star, then γt(T ) ≤ (n + s)/2 − (l − s∗)/2, where l is the
number of leaves and s∗ means the number of support vertices non-adjacent to
any other support vertex.

We characterize all trees attaining the upper bound of Chellali and Haynes.

2. Results

Since the one-vertex graph does not have a total dominating set, in this
paper, by a tree we mean only a connected graph with no cycle, and which has
at least two vertices.

We begin with the following two straightforward observations.

Observation 2.1. Every support vertex of a graph G is in every TDS of G.

Observation 2.2. For every connected graph G of diameter at least three,
there exists a γt(G)-set that contains no leaf.

Chellali and Haynes [2] proved that for every tree T of order n ≥ 3 with s
support vertices we have γt(T ) ≤ (n+ s)/2. It is easy to see that the path P2

also satisfies the inequality. Therefore we have the following result.
Theorem 2.3. ( [2]) For every tree T of order n with s support vertices we
have γt(T ) ≤ (n+ s)/2.

To characterize the trees attaining the bound from the previous theorem,
we introduce a family T of trees T = Tk that can be obtained as follows. Let
T1 ∈ {P2, P3}. If T1 = P2, then the vertices of T1 are denoted by x and y. If
T1 = P3, then the support vertex of T1 is denoted by y, and one of the leaves is
denoted by x. Let A(T1) = {x, y}. Now let H1 be a path P3 with the support
vertex labeled v and one of the leaves labeled u. Let H2 be a path P4 with the
support vertices labeled u and v. We denote the leaf adjacent to u by t, and
the leaf adjacent to v we denote by w. If k is a positive integer, then Tk+1 can
be obtained recursively from Tk by one of the following operations.

• Operation O1: Attach a copy of H1 by joining the vertex u to a vertex
of Tk adjacent to a path P3. Let A(T ) = A(T ′) ∪ {u, v}.
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• Operation O2: Attach a copy of H1 by joining the vertex u to a vertex
of Tk which is not a leaf and is adjacent to a support vertex. Let
A(T ) = A(T ′) ∪ {u, v}.

• Operation O3: Attach a copy of H2 by joining the vertex t to a leaf of
Tk adjacent to a weak support vertex. Let A(T ) = A(T ′) ∪{u, v}.

Note that for the path P2, only operation O3 can be applied. Both vertices
of P2 are leaves and at the same time they have weak support vertices.

We now prove that for every tree T of the family T , the set A(T ) defined
above is a TDS of minimum cardinality equal to (n+ l)/2.

Lemma 2.3. If T ∈ T , then the set A(T ) defined above is a γt(T )-set of size
(n+ s)/2.

Proof. We use the terminology of the construction of the trees T = Tk, the set
A(T ), and the graphs H1 and H2 defined above. To show that A(T ) is a γt(T )-
set of cardinality (n+s)/2, we use the induction on the number k of operations
performed to construct the tree T . If T = P2, then (n+s)/2 = (2+2)/2 = 2 =
|A(T )| = γt(T ). If T = P3, then (n + s)/2 = (3 + 1)/2 = 2 = |A(T )| = γt(T ).
Let k be a positive integer. Assume that the result is true for every tree T ′ = Tk

of the family T constructed by k − 1 operations. For a given tree T ′, let n′

denote its order and s′ the number of its support vertices. Let T = Tk+1 be a
tree of the family T constructed by k operations.

First assume that T is obtained from T ′ by operation O1. We have n = n′+3
and s = s′ + 1. The vertex to which is attached P3 we denote by x. Let abc
denote a path P3 adjacent to x, and such that a ̸= u. Let a and x be adjacent.
It is easy to see that A(T ) = A(T ′) ∪ {u, v} is a TDS of the tree T . Thus,
γt(T ) ≤ γt(T

′) + 2. Now let D be a γt(T )-set that contains no leaf. By
Observation 2.1 we have v ∈ D. Each one of the vertices v and b has to have a
neighbor in D, thus u, a ∈ D. Let us observe that D\{u, v} is a TDS of the tree
T ′ as the vertex x has a neighbor in D \ {u, v}. Therefore, γt(T ′) ≤ γt(T )− 2.
We now conclude that γt(T ) = γt(T

′)+2. We get γt(T ) = |A(T )| = |A(T ′)|+2
= (n′ + s′)/2 + 2 = (n− 3 + s− 1)/2 + 2 = (n+ s)/2.

Now assume that T is obtained from T ′ by operation O2. We have n = n′+3
and s = s′ + 1. We denote the vertex which is attached to P3 by x. Let y be
a support vertex adjacent to x. It is easy to see that A(T ) = A(T ′) ∪ {u, v}
is a TDS of the tree T . Thus, γt(T ) ≤ γt(T

′) + 2. Now let D be a γt(T )-set
that contains no leaf. By Observation 2.1 we have v, y ∈ D. The vertex v has
to have a neighbor in D, thus u ∈ D. It is easy to observe that D \ {u, v} is
a TDS of the tree T ′. Therefore, γt(T

′) ≤ γt(T ) − 2. We now conclude that
γt(T ) = γt(T

′) + 2. We get γt(T ) = |A(T )| = |A(T ′)| + 2 = (n′ + s′)/2 + 2 =
(n− 3 + s− 1)/2 + 2 = (n+ s)/2.

Now assume that T is obtained from T ′ by operation O3. We have n = n′+4
and s = s′. It is easy to see that A(T ) = A(T ′)∪{u, v} is a TDS of the tree T .
Thus, γt(T ) ≤ γt(T

′)+2. Now let us observe that there exists a γt(T )-set that
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does not contain the vertices w and t. Let D be such a set. By Observation 2.1
we have v ∈ D. The vertex v has to have a neighbor in D, thus u ∈ D. Observe
that D \ {u, v} is a TDS of the tree T ′. Therefore, γt(T

′) ≤ γt(T )− 2. We now
conclude that γt(T ) = γt(T

′) + 2. We get γt(T ) = |A(T )| = |A(T ′)| + 2 = (n′

+s′)/2 + 2 = (n− 4 + s)/2 + 2 = (n+ s)/2. □

We now prove that if a tree attains the bound from Theorem 3, then the
tree belongs to the family T .

Lemma 2.4. Let T be a tree of order n with s support vertices. If γt(T )
= (n+ s)/2, then T ∈ T .

Proof. We proceed by induction on the number of vertices of the tree T . If
diam(T ) = 1, then T = P2 ∈ T . Now assume that diam(T ) = 2. Thus T
is a star. If T = P3, then T ∈ T . If T is a star different from P3, then
γt(T ) = 2 < 5/2 ≤ (n+ 1)/2 = (n+ s)/2.

Now assume that diam(T ) ≥ 3. Thus the order n of the tree T is at least
four. Assume that the lemma is true for every tree T ′ of order n′ < n with s′

support vertices.
First assume that some support vertex of T , say x, is strong. Let y be a leaf

adjacent to x. Let T ′ = T − y. We have n′ = n − 1 and s′ = s. Let D′ be
any γt(T

′)-set. By Observation 2.1 we have x ∈ D′. Obviously, D′ is a TDS of
the tree T . Thus, γt(T ) ≤ γt(T

′). We now get γt(T ) ≤ γt(T
′) ≤ (n′ + s′)/2 =

(n− 1 + s)/2 < (n+ s)/2, a contradiction. Thus every support vertex of T is
weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t be
a leaf at maximum distance from r, v be the parent of t, and u be the parent
of v in the rooted tree. If diam(T ) ≥ 4, then let w be the parent of u. If
diam(T ) ≥ 5, then let d be the parent of w. If diam(T ) ≥ 6, then let e be
the parent of d. By Tx we denote the subtree induced by a vertex x and its
descendants in the rooted tree T .

First assume that dT (u) ≥ 3. Assume that among the children of u there is
a support vertex, say x, different from v. Let T ′ = T −Tv. We have n′ = n− 2
and s′ = s− 1. Let D′ be a γt(T

′)-set that contains no leaf. The vertex x has
to have a neighbor in D′, thus u ∈ D′. It is easy to see that D′ ∪ {v} is a TDS
of the tree T . Thus, γt(T ) ≤ γt(T

′) + 1. We now get γt(T ) ≤ γt(T
′) + 1 ≤

(n′ + s′)/2 + 1 = (n − 2 + s − 1)/2 + 1 = (n + s)/2 − 1/2 < (n + s)/2, a
contradiction.

Thus, dT (u) = 3 and the child of u other than v, say x, is a leaf. Let
T ′ = T − x. We have n′ = n − 1 and s′ = s − 1. Let D′ be a γt(T

′)-set that
contains no leaf. The vertex v has to have a neighbor in D′, thus u ∈ D′. It is
easy to see that D′ is a TDS of the tree T . Thus, γt(T ) ≤ γt(T

′). We now get
γt(T ) ≤ γt(T

′) ≤ (n′ + s′)/2 = (n− 1 + s− 1)/2 < (n+ s)/2, a contradiction.
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Now assume that dT (u) = 2. First assume that there is a child of w other
than u, say x, such that the distance of w to the most distant vertex of Tx is
three. It suffices to consider only the possibility when Tx is a path P3. Let
T ′ = T −Tu. We have n′ = n−3 and s′ = s−1. Let D′ be any γt(T

′)-set. It is
easy to see that D′∪{u, v} is a TDS of the tree T . Thus, γt(T ) ≤ γt(T

′)+2. We
now get γt(T

′) ≥ γt(T )−2 = (n+s)/2−2 = (n′+3+s′+1)/2−2 = (n′+s′)/2.
This implies that γt(T

′) = (n′ + s′)/2. By the inductive hypothesis, we have
T ′ ∈ T . The tree T can be obtained from T ′ by operation O1. Thus, T ∈ T .

Now assume that there is a child of w, say x, such that the distance of w
to the most distant vertex of Tx is two. Thus x is a support vertex. Let
T ′ = T − Tu. In the same way as in the previous possibility we conclude that
T ′ ∈ T . The tree T can be obtained from T ′ by operation O2. Thus, T ∈ T .

Now assume that some child of w, say x, is a leaf. It suffices to consider only
the possibility when dT (w) = 3. Let T ′ = T − t− x. We have n′ = n− 2 and
s′ = s− 1. Let D′ be a γt(T

′)-set that contains no leaf. By Observation 2.1 we
have u ∈ D′. The vertex u has to have a neighbor in D′, thus w ∈ D′. It is easy
to observe that D′ ∪ {v} is a TDS of the tree T . Thus, γt(T ) ≤ γt(T

′) + 1. We
now get γt(T )≤ γt(T

′)+1 ≤ (n′+s′)/2+1 = (n−2+s−1)/2+1 = (n+s)/2−1/2
< (n+ s)/2, a contradiction.

If dT (w) = 1, then T = P4. We have γt(T ) = 2 < 3 = (4+2)/2 = (n+s)/2, a
contradiction. Now assume that dT (w) = 2. First assume that dT (d) ≥ 3. Let
T ′ = T − Tw. We have n′ = n− 4 and s′ = s− 1. Let D′ be any γt(T

′)-set. It
is easy to see that D′∪{u, v} is a TDS of the tree T . Thus, γt(T ) ≤ γt(T

′)+2.
We now get γt(T ) ≤ γt(T

′) + 2 ≤ (n′ + s′)/2 + 2 = (n − 4 + s − 1)/2 + 2 =
(n+ s)/2− 1/2 < (n+ s)/2, a contradiction.

If dT (d) = 1, then T = P5. We have γt(T ) = 3 < 7/2 = (5+2)/2 = (n+s)/2,
a contradiction. Now assume that dT (d) = 2. Let T ′ = T −Tw. We have
n′ = n − 4 and s′ ≤ s. Let D′ be any γt(T

′)-set. It is easy to see that
D′ ∪ {u, v} is a TDS of the tree T . Thus, γt(T ) ≤ γt(T

′) + 2. We now get
γt(T

′) ≥ γt(T ) − 2 = (n + s)/2 − 2 ≥ (n′ + 4 + s′)/2 − 2 = (n′ + s′)/2. This
implies that γt(T

′) = (n′ + s′)/2 and s′ = s. Therefore, T ′ ∈ T and the vertex
e is not adjacent to any leaf in T . The tree T can be obtained from T ′ by
operation O3. Thus, T ∈ T . □

As an immediate consequence of Lemmas 2.3 and 2.4, we have the following
characterization of the trees attaining the bound from Theorem 2.3.

Theorem 2.5. Let T be a tree. Then γt(T ) = (n+ s)/2 if and only if T ∈ T .
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