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Abstract. In this paper a nonlinear backward parabolic problem in one

dimensional space is considered. Using a suitable iterative algorithm, the
problem is converted to a linear backward parabolic problem. For the
corresponding problem, the backward finite differences method with suit-

able grid size is applied. It is shown that if the coefficients satisfy some
special conditions, this algorithm not only is convergent, but also is condi-
tionally stable. Moreover, it is proved that the estimated values converge
to the exact solution of the problem. All these approaches examined in

some numerical examples. corresponding theorems for the convergency
and stability of the solution are studied.
Keywords: Nonlinear backward parabolic problem, linear backward par-
abolic problem, iterative algorithm, stability, convergency. MSC(2010):

Primary: 35K55; Secondary: 65N21, 65N20, 65N12.

1. Introduction

In this paper we consider a nonlinear backward problem of the form

∂tu(x, t)− ∂x(D(u(x, t))∂xu(x, t)) = 0, (x, t) ∈ [0, 1]× (0, T ),
u(0, t) = u(1, t) = 0, t ∈ (0, T ),
u(x, T ) = uT (x), x ∈ [0, 1],(1.1)

where T > 0 is a known constant, uT is a nonnegative known function in
C[0, 1] and the conductivity term is given as D(u) = au+ b such that a( ̸= 0),
b, and all of their first partial derivatives are known functions and belong to
C1([0, 1] × [0, T ]). The solution, u(x, t), is unknown and it is computed for
(x, t) ∈ (0, 1) × [0, T ]. It should be mentioned that the above assumptions are
necessary for the proof of the next sections’ theorems. One may apply these
problems to find the distribution of temperature from the final time data. In
the simplest case D ≡ 1, Tikhonov in [16] showed that the problem is ill-posed.
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In fact, for a given final data, uT , there is no guarantee that a solution for the
problem (1.1) exists it depends continuously on the final data (see [16]).

In recent years, some new approaches for solving backward parabolic prob-
lems have been developed in both theory and practice, for example, Tikhonov
in [16] proposed a regularization method based on generalization of the above
inverse problem. Tuan et. al. in [17], have introduced a modified integral equa-
tion method for semilinear backward heat conduction problem and have esti-
mated the error of Hölder type of regularized solutions. The Galerkin method
is applied for forward-backward parabolic problems by Aziz et. al in [2]. Cheng
et. al in [3] have applied the finite difference method for the forward-backward
heat equation and have used a coarse mesh-second central difference at the
middle line mesh points. In addition, some numerical methods have been ap-
plied to solve backward parabolic stochastic partial differential equations, such
as using a numerical method for backward parabolic problems with nonselfad-
joint operators (see [9]), applying Galerkin and weighted Galerkin methods for
the numerical solution of parabolic partial differential equations (see [13]), in-
troducing space-time finite element method to solve a model forward-backward
heat equation (see [5]).

In this paper, based on an iterative algorithm and a suitable finite difference
method, an approach is proposed to find a conditionally stable approximation
of the solution (1.1), such that it converges to the exact solution. It is proved
if a ̸= 0, b and their first partial derivatives respect to the independent vari-
ables belong to C1([0, 1] × [0, T ]), and D(u)∂tD(u) > 0. In this situation, the
obtained solutions of iterative algorithm are unique for each iteration, con-
ditionally stable and they converge to the exact solution of (1.1). For this
purpose, an iterative algorithm is suggested in section two. Using finite dif-
ference method with suitable grid size, one can obtain an approximation of
the solution (1.1) in section three. Meanwhile some stability and convergency
theorems are given. Finally, we give a numerical example in the last section.

2. Reducing the nonlinear problem to a linear one

If D > 0 is constant or independent of u, the problem (1.1) is a linear back-
ward parabolic problem. In this case, several approaches are investigated in
some books and papers, which provide analytical and numerical schemes for
solving it, such as applying a method of fundamental solutions for inverse heat
conduction problems in an anisotropic medium (see [4]). Using a semi-implicit
finite difference method for backward inverse heat conduction problems in one-
dimensional space (see [15]), numerical iterative algorithm, using boundary el-
ement method in order to solve the one dimensional backward heat conduction
problem (see [14]), a heatlets approach to regularize the backward heat equation
and, more generally, ill-posed Cauchy problems (see [10]) and non-overlap do-
main decomposition method for the numerical solution of the forward-backward
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heat equation (see [8]), are typical samples of ill-posed inverse problems. If D
depends on u, then the problem is either forward-backward or backward. As
in [11], to reach the backward problem, we impose some suitable conditions
on the problem. Then, the nonlinear problem is converted to a sequence of
linear parabolic problems by an iterative algorithm. We first introduce some
practical notations.

First, assume that Ω ⊆ Rm is an open set, L2(Ω) is the space of functions
with the finite norm ∥u∥22 =

∫
Ω
|u|2dΩ, and H(k) is the space of functions

on Ω with partial derivatives of an order less than k in L2(Ω). The norm
of this space is defined by ∥.∥2,2 =

∑
|ρ|≤k ∥∂ρu∥22, where ρ is a multi-index

with nonnegative integer components ρj (j = 1, 2, ...,m) and the sum is over

| ρ |= ρ1+ρ2+ ...+ρm. Also, suppose that H̊(1)(Ω) is the completion of Ck
◦ (Ω),

where Ck
◦ (Ω) is the space of functions with compact support in Ck(Ω).

Isakov in [11] states a stability estimation theorem as follows.

Theorem 2.1. Suppose that A is a linear operator with domain H(2)(Ω) ∩
H̊(1)(Ω) ⊂ L2(Ω). If u(t) ∈ C(Ω× [0, T ]) is a solution of

∥∂tu+Au∥2 ≤ α∥u∥2,(2.1)

then A satisfies the following inequalities

∥A−u∥22 ⩽ α(∥A+u∥2 + ∥u∥2)∥u∥2(2.2)

and

∂t(A+u, u) ⩽ 2(∂tu,A+u) + α(∥A+u∥2 + ∥u∥2)∥u∥2(2.3)

for some constant α, where A+ and A− are symmetric and skew-symmetric
operators of A respectively, such that A = A+ + A−, and (., .) denotes the
scaler product in L2(Ω). Moreover, the following stability estimation holds.

∥u(t)∥2 ⩽ C∗∥u(0)∥1−θ
2 ∥u(T )∥θ2,

where C∗ ⩽ e((2α+2)T+2eCT /C), and θ = (1−e−Ct)/(1−e−CT ) or θ = (eC(t−T )−
e−CT )/(1−e−CT ) and C depends on α. When α = 0 then, C∗ = 1 and θ = t/T
is chosen.

Proof. See [11]. □

Now put u(0)(x, t) = uT (x) and u(0)(0, t) = u(0)(1, t) = 0. Then for r =
1, 2, ..., consider the linear backward problems of the form

∂tu
(r)(x, t)− ∂x(D(u(r−1)(x, t))∂xu

(r)(x, t)) = 0, (x, t) ∈ [0, 1]× (0, T ),(2.4)

u(r)(0, t) = u(r)(1, t) = 0, t ∈ (0, T ),(2.5)

u(r)(x, T ) = uT (x), x ∈ [0, 1].(2.6)
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where D and uT are as mentioned before. If there exists a constant M (r) ∈ R,
such that ∥u(r)∥2 ≤ M (r), in (0, T ), then an upper bound of the solution
u(r)(r ∈ N) is determinable. According to [11], it is immediately obtained:

∥u(r)∥2 ≤ (M (r))1−t/T ∥uT ∥t/T2 .

In addition, let ∥∂tu(r)∥2 ≤ M
(r)
1 in (0, T ), where M

(r)
1 is known constant

for r ∈ N. Then, using Macleurant formula for ∥ur∥22 and [11], the following
inequality is yield.

∥u(r)(0)∥22 ≤ −M (r)M
(r)
1 T (1− ln(−M

(r)
1 T/Mln(ε(r))))/ln(ε(r−1)),

where ε(r) = ∥uT ∥2/M (r).
Therefore, applying maximum principal (see [6]), homogeneous Dirichlet

conditions (2.5) and above inequality simultaneously, an upper bound for ∥u(r)∥
in [0, T ], is gained. So, the following theorem, related to stability estimation
and uniqueness, is proposed.

Theorem 2.2. Consider the problem (2.4)-(2.6). Suppose that for any t ∈
[0, T ], a fixed r ∈ N, ∂2

xu
(r) ∈ L2([0, 1] × [0, T ]), and ε > 0, just one of the

statements

(i) au(r−1) + b ≥ ε on [0, 1],
(ii) ∂t(au

(r−1) + b) ≤ 0 on [0, 1]

holds. Then u(r) is unique and conditionally stable. Moreover
{
u(r)

}∞
r=1

is

convergent to u ∈ L2([0, 1]× [0, T ]) and u(r) satisfies in (2.1), and we have

∥∂tu+ ∂x((au+ b)∂xu)∥2 = lim
r→∞

∥∂tu(r) + ∂x((au
(r−1) + b)∂xu

(r))∥2
≤ (lim supα(r))r→∞(lim supM (r))r→∞.

Furthermore, according to Theorem 2.1, the following estimation of solution
u(t) on [0, 1] exists

∥u(t)∥ ≤ C∗∥M∗∥θ∥uT ∥1−θ,

where θ = t/T , C∗ = limsup(C∗(r))r→∞, M∗ = limsup(M (r))r→∞ and
M (r) = Maxr∈N∥u(r)∥ on [0, 1] × (0, 1). C∗(r) and α(r) are the bounds of
u(r) which satisfy in Theorem 2.1 for all r ∈ N.

Proof. First, we show that the assumptions of Theorem 2.1 are hold. For this
purpose, we trivially have

A
(r−1)
+ = −∂x

(
(au(r−1) + b)∂xu

(r)
)
,

and inequality (2.2) is satisfied for any choice of α(r) ≥ 0. Now, put w(r−1) =
au(r−1) + b, and assume ∂2

xu
(r) ∈ L2([0, 1]× [0, T ]). Using integration by parts
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and (2.5), it is obtained

∂t(A
(r−1)
+ , u(r)) = ∂t

∫ 1

0

−∂x

(
w(r−1)∂xu

(r)
)
u(r)dx

=

∫ 1

0

∂tw
(r−1)(∂xu

(r))2dx+

∫ 1

0

2w(r−1)∂xu
(r)∂t∂xu

(r)dx

≤
∫ 1

0

(
∂tw

(r−1)(∂xu
(r))2 − 2∂x(w

(r−1)∂xu
(r))∂tu

(r)
)
dx,

Obviously, the second term in the last integral is∫ 1

0

∂x(w
(r−1)∂xu

(r))∂tu
(r)dx =

(
Au(r), ∂tu

(r)
)
.

If w(r−1) ≥ ε > 0, and since ∂2
xu ∈ L2([0, 1] × [0, T ]), the operator A(r−1) is

uniformly elliptic and ∥w(r−1)∥2,2 ≤ α(r)∥A(r−1)∥2. Otherwise, if ∂t(au
(r)+b) ≤

0, then ∂tw
(r−1) is not positive and by applying integration by parts to the first

term of the above integral, conditions (i), (ii) and Cauchy-Schwartz inequality
(see [11]), we get

−
∫ 1

0

∂x(∂tw
(r−1)∂xu

(r))u(r)dx ≤ M
(r)
2 ∥u(r)∥2,2∥u(r)∥2 ≤ α(r)∥Au(r)∥2∥u(r)∥2.

Therefore, (2.3) is hold.
To prove the convergency, it is noticed that L2([0, 1]×[0, T ]) is a complete space
and for all r ∈ N, u(r) ∈ L2([0, 1] × [0, T ]) so, {u(r−1)}∞r=0 uniquely converges
to u ∈ L2([0, 1]× [0, T ]). □

In general, by ignoring (i) and (ii), the conditions of the Theorem 2.1 are

still satisfied (see [11]). We have A
(r−1)
+ u(r) = −∂x

(
(au(r−1) + b)∂xu

(r)
)
so, we

deal with a linear backward parabolic problem. When Theorem 2.1 applies for
this problem, stability is guaranteed. Since

∥∂tu+ ∂x ((au+ b)∂xu) ∥2 = lim
r→∞

∥∂tu(r) + ∂x

(
(au(r−1) + b)∂xu

(r)
)
∥2,

then u(r) → u, where u is a solution of (1.1). Consequently, for all r ∈
N, u(r) ∈ L2([0, 1] × [0, T ]), any subsequence of {u(r−1)}∞r=0 tends to an el-
ement of L2([0, 1]× [0, T ]). Inequality (2.2) satisfies for all arbitrary α ≥ 0. To

prove (2.3), we use symmetric properties of A
(r−1)
+ and integration by parts.

We have

∂t

∫ 1

0

(A
(r−1)
+ u(r))u(r)dx =

∫ 1

0

∂t

(
w(r−1)(∂xu

(r))2
)
dx

=

∫ 1

0

(
∂tw

(r−1)(∂xu
(r))2 + 2A

(r−1)
+ u(r)∂tu

(r)
)
dx.
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Applying a simultaneous process, it is realized that
∫ 1

0
∂tw

(r−1)(∂xu
(r))2dx is

bounded, and (2.3) is yield. Now, using finite difference method or some ap-
proximation operators, which satisfy in conditions (2.5) and (2.6), a condition-
ally stable solution, u(r) is obtained.

In the next section a numerical method, based on a finite difference scheme,
is used to find an estimated solution of problem (2.4)-(2.6).

3. A numerical approach

Many numerical methods are widely used in solving backward parabolic
problems. Due to ill-posedness, usually when the solutions of the numerical
method exist, they are exponentially unstable. Recent years discretizing the
differential equations and finite difference methods are used to solve linear
and nonlinear parabolic problems and, in many cases, are accompanied by
regularization techniques. In this section, we use a finite difference scheme
to find an approximated solution for the reduced backward parabolic problem
(2.4)-(2.6). Consider N ×M nods on the rectangle [0, 1]× [0, T ], which formed
by points (xi, tj) = (ih, jk) for 0 ≤ i ≤ N, 0 ≤ j ≤ M, where h = 1

N and

k = T
M . Put ui,j = u(xi, tj). In this section, notation (.)i,j refers to the value

of function at point (xi, tj). Using finite difference scheme, the Eq. (2.4) is
written as follows

u
(r)
i,j+1 = u

(r)
i,j + k

(
ai,ju

(r−1)
i,j + bi,j)

u
(r)
i−1,j − 2u

(r)
i,j + u

(r)
i+1,j

h2

)

+ k

(
∂xai,ju

(r−1)
i,j + ∂xbi,j + ai,j

u
(r−1)
i+1,j − u

(r−1)
i,j

h

)(
u
(r)
i+1,j − u

(r)
i,j

h

)
(3.1)

where u
(r)
i,j is the solution u(r) at the node (xi, tj) and rth(r = 1, 2, ...) iteration.

The stability of this approach was already investigated in [8] and [9]. With some
elementary calculations, we reduce Eq. (3.1) to following form (see [1])

u
(r)
i,j+1 = (c

(r−1)
1 )i,ju

(r)
i+1,j + (c

(r−1)
0 )i,ju

(r)
i,j + (c

(r−1)
−1 )i,ju

(r)
i−1,j ,

(c
(r−1)
−1 )i,j =

k

h2
D

(r−1)
i,j ,

(c
(r−1)
0 )i,j = 1− 2

k

h2
D

(r)
i,j − k

h
B

(r−1)
i,j ,

(c
(r−1)
1 )i,j =

k

h2
D

(r−1)
i,j +

k

h
B

(r−1)
i,j ,(3.2)

where

D
(r−1)
i,j = ai,ju

(r−1)
i,j + bi,j ,
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and

B
(r−1)
i,j =

(
∂xai,ju

(r−1)
i,j + ∂xbi,j + ai,j

u
(r−1)
i+1,j − u

(r−1)
i,j

h

)
.

Remark 1. The following finite differences’ standard equations are used to
obtain the above equations.

∂tu(xi, tj) ≃ ui,j+1 − ui,j

k
,

∂xu(xi, tj) ≃ ui+1,j − ui,j

h
,

∂xxu(xi, tj) ≃ ui+1,j − 2ui,j + ui−1,j

h2
.

Obviously, Eq. (3.2) is of positive type (see [1]), and is written as a special
form

ui,j =
∑
s

(cs)i,jui+s,j+1 + kdi,j .(3.3)

According to [1] and [7], if D(r)(x, t) > 0, R = k
h2 < 1

2D(r)(x,t)
, then the finite

difference scheme (3.2) is conditionally stable.
Now, assume that coefficients cs are twice continuously differentiable with re-
spect to h. John in [12] proved, if u ∈ C2,1 be the solution of equation
ut = auxx + bux + cu + d subject to u(x, 0) = f(x) and U be the solution
of Eq. (3.3) with initial condition Ui,0 = fi,0, and the following consistency
conditions are hold, then the solution of the finite differences equation (3.3)
converges uniformly to u as h → 0 (k = Rh2) (see [12] and [7]).

ci,j = lim
h→0

1

k
(
∑
s

(cs)i,j − 1),

bi,j = lim
h→0

h

k

∑
s

s(cs)i,j ,

ai,j = lim
h→0

h2

2k

∑
s

s2(cs)i,j .

Therefore, if all the above conditions are hold, then convergency is guaranteed.
In next section, we give a numerical experiment. Using the iterative algo-

rithm and finite difference method, an approximated solution for a nonlinear
backward problem is obtained.

4. Numerical experiment

Consider the following nonlinear backward equation

∂tu = ∂x

((
et

6(1 + et)2
u+

1

12(1 + et)

)
∂xu

)
, (x, t) ∈ [0, 1]× (0, 1),
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Figure 1. Exact solution in [0, 1]× [0, 1].

with the Dirichlet boundary condition

u(0, t) = u(1, t) = 0, t ∈ (0, 1),

and final data

u(x, 1) = e−1(1− x)x+ (1− x)x, x ∈ [0, 1].

The exact solution of the backward parabolic problem is

u(x, t) = x(1− x)(e−t + 1), (x, t) ∈ [0, 1]× (0, 1)

First the iterative algorithm (2.4)-(2.6) and then the finite difference scheme
(3.2) are applied to solve this problem with five steps. To avoid discontinuity,
we choose u(0) = e−1(1−x)x+(1−x)x. Results are obtained by Mathematica
8.2 software on a common dual-core CPU personal computer with 3.07GHz
frequency. Approximate solutions are computed for r = 1, 2, ...5. According to
section (3), we have R = k

h2 ≪ 6 ( the bounds of R for these 5 steps are not

bigger than 6 ) with 5×600 mesh points (h = 1
5 , and k = 1

600 ) to discretize this
problem. To apply finite difference approach, explained in previous section, on
a backward problem, we need to solve some systems of linear equations. We
obtained good results however, due to severely ill-posedness of the problem,
errors at initial points are eligible.

The exact solution, approximation solution, relative error and absolute error
for some points in 5th step are represented in table 1. The exact solution,
approximation solutions and relative error functions are shown in pictures 1, 2
and 3.
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(i, j) exact solution approximated solution relative error absolute error

(2,575) 0.332048 0.332155 3.24021× 10−4 1.0759× 10−4

(3,550) 0.335964 0.335322 1.91062× 10−3 6.41898× 10−4

(4,525) 0.224275 0.224275 1.06871× 10−2 2.42275× 10−3

(1,500) 0.232116 0.232116 1.12423× 10−2 2.58075× 10−3

(2,475) 0.348741 0.347006 1.59866× 10−3 5.57519× 10−4

(3,450) 0.353368 0.351235 6.03685× 10−3 2.13323× 10−4

(4,425) 0.238794 0.232046 2.82593× 10−2 6.74817× 10−3

(1,400) 0.242147 0.248824 2.7576× 10−2 6.67746× 10−3

(2,375) 0.368463 0.369333 2.36294× 10−3 8.70657× 10−4

(3,350) 0.373928 0.370088 1.02699× 10−2 3.84022× 10−3

(4.325) 0.253084 0.240191 5.24296× 10−2 1.28932× 10−2

(1,300) 0.257045 0.270522 5.24296× 10−2 1.34768× 10−2

(2,275) 0.391761 0.386685 1.10012× 10−3 4.30983× 10−4

(3,250) 0.398218 0.392804 1.35951× 10−2 5.41381× 10−3

(4,225) 0.269966 0.24809 8.10324× 10−2 2.1876× 10−2

(1,200) 0.274645 0.30009 9.26464× 10−2 2.54449× 10−2

(2,175) 0.419284 0.416669 6.2366× 10−3 2.61491× 10−3

(3,150) 0.429612 0.421318 1.00192× 10−2 5.59391× 10−3

(4,125) 0.28991 0.254341 1.22689× 10−2 3.55688× 10−2

(2,100) 0.443156 0.433535 2.1687× 10−2 9.61073× 10−3

(1,75) 0.3012 0.358037 1.88702× 10−1 5.6831× 10−2

(2,50) 0.460811 0.441591 4.17085× 10−2 1.92197× 10−2

(3,25) 0.470205 0.473256 6.48868× 10−3 3.05101× 10−3

(4,0) 0.32 0.254408 2.04976× 10−1 6.55922× 10−2

Table 1 Exact solution, approximated solution, relative error and absolute error

at point (xi, tj) in 5th iteration.
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