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Abstract. Let R be a ring with involution ∗. An additive mapping
T : R → R is called a left(respectively right) centralizer if T (xy) = T (x)y
(respectively T (xy) = xT (y)) for all x, y ∈ R. The purpose of this paper
is to examine the commutativity of prime rings with involution satisfying

certain identities involving left centralizers.
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1. Introduction

Throughout this article, R will represent an associative ring with centre
Z(R). A ring R is said to be 2-torsion free if 2a = 0 (where a ∈ R) implies
a = 0. A ring R is called a prime ring if aRb = (0) (where a, b ∈ R) implies
a = 0 or b = 0. We write [x, y] for xy−yx and xoy for xy+yx, respectively. An
additive map x 7→ x∗ of R into itself is called an involution if (i) (xy)∗ = y∗x∗

and (ii) (x∗)∗ = x holds for all x, y ∈ R. A ring equipped with an involution is
known as ring with involution or ∗-ring. An element x in a ring with involution
∗ is said to hermitian if x∗ = x and skew-hermitian if x∗ = −x. The sets of
all hermitian and skew-hermitian elements of R will be denoted by H(R) and
S(R), respectively. If R is 2-torsion free then every x ∈ R can be uniquely
represented in the form 2x = h + k, where h ∈ H(R) and k ∈ S(R). Note
in this case x is normal, i.e., xx∗ = x∗x, if and only if h and k commute. If
all elements in R are normal, then R is called a normal ring. An example is
the ring of quaternions. A description of such rings can be found in [5], where
further references can be found.

Following [14], an additive mapping T : R → R is said to be a left (re-
spectively right) centralizer (multiplier) of R if T (xy) = T (x)y (respectively
T (xy) = xT (y)) for all x, y ∈ R. An additive mapping T is called a centralizer
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in case T is a left and a right centralizer of R. Considerable work has been done
on left (respectively right) centralizers in prime and semiprime rings during the
last few decades (see for example [1, 4, 7, 8, 11, 12, 13] and [14]) where further
references can be found. Over the last 30 years, several authors have investi-
gated the relationships between the commutativity of the ring R and certain
specific types of maps on R. The first result in this direction is due to Devinsky
[3] who proved that a simple artinian ring is commutative if it has a commuting
non-trivial automorphims. This result was subsequently refined and extended
by a number of authors in various directions (viz., [2, 6, 9, 10]). Recently,
first author together with Ashraf [1] proved that if a prime ring admits a left
centralizer (multiplier) T : R → R such that T ([x, y]) = [x, y] with T (x) ̸= x
for all x, y ∈ I, a nonzero ideal of R, then R is commutative. Moreover, in
[1] some related results involving left centralizers have also been discussed. In
[7] Oukhtite established similar problems for certain situations involving left
centralizers acting on Lie ideals.

In this paper, we shall consider similar problems when the ring R is
equipped with a fixed involution ∗ even in more general setting by replac-
ing y by x∗. More precisely, we prove that if a prime ring with involution
such that char(R) ̸= 2 admits a left centralizer T : R → R satisfying any
one of the following conditions: (i) T ([x, x∗]) = 0, (ii) T (xox∗) = 0, (iii)
T ([x, x∗]) ± [x, x∗] = 0, (iv) T (xox∗) ± (xox∗) = 0 for all x ∈ R, then R is
commutative.

We shall restrict our attention on left centralizers, since all results pre-
sented in this article are also true for right centralizers because of left-right
symmetry.

2. Preliminaries

We shall do a great deal of calculations with commutators and anti-
commutators and routinely use the following basic identities: For all x, y, z ∈ R,
we have

[xy, z] = x[y, z] + [x, z]y and [x, yz] = [x, y]z + y[x, z].

Moreover,

xo(yz) = (xoy)z − y[x, z] = y(x ◦ z) + [x, y]z

and

(xy)oz = (xoz)y + x[y, z] = x(y ◦ z)− [x, z]y.

We begin this section with the following lemmas which are essential for
developing the proof of our main results.

Lemma 2.1. Let R be a prime ring with involution ∗ such that char(R) ̸= 2
and S(R) ∩ Z(R) ̸= (0). If R is normal, then R is commutative.
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Proof. By the hypothesis, we have R is normal that is,

[h, k] = 0 for all h ∈ H(R) and k ∈ S(R).(2.1)

Let s be any nonzero element of S(R) ∩ Z(R). Then for any h1 ∈ H(R) and
k1 ∈ S(R), sh1 ∈ S(R) and sk1 ∈ H(R). Therefore in view of (2.1), we have

s[h, h1] = [h, sh1] = 0 for all h, h1 ∈ H(R),(2.2)

and

s[k1, k] = [sk1, k] = 0 for all k, k1 ∈ S(R).(2.3)

Now since every x ∈ R can be uniquely represented as 2x = h + k, where
h ∈ H(R), k ∈ S(R), so in view of equations (2.1), (2.2) and (2.3), we obtain
4s[x, y] = s[2x, 2y] = s[h+ k, h1 + k1] = 0 for all x, y ∈ R. Since char(R) ̸= 2,
we have s[x, y] = 0 for all x, y ∈ R. This further implies that sR[x, y] = (0) for
all x, y ∈ R. The primeness of R forces that [x, y] = 0 for all x, y ∈ R. Which
completes the proof of the lemma.

□

Lemma 2.2. Let R be a prime ring with involution ∗ such that char(R) ̸= 2
and S(R) ∩ Z(R) ̸= (0). If xox∗ = 0 for all x ∈ R or [x, x∗] = 0 for all x ∈ R,
then R is commutative.

Proof. We have xox∗ = 0 for all x ∈ R. Linearization of the above relation
yields that xoy∗ + yox∗ = 0 for all x, y ∈ R. Replacing y by x2 in the last
relation and using the given hypothesis, we obtain

0 = xo(x∗)2 + x∗ox2

= (xox∗)x∗ − x∗[x, x∗] + (x∗ox)x− x[x∗, x]
= x[x, x∗]− x∗[x, x∗]
= (x− x∗)[x, x∗]

for all x ∈ R. Substituting h + k for x, where h ∈ H(R), k ∈ S(R), we get
2k([k, h] − [h, k]) = 0 and hence 4k[h, k] = 0 for all h ∈ H(R) and k ∈ S(R).
Since char(R) ̸= 2, the above relation forces that k[h, k] = 0 for all h ∈ H(R)
and k ∈ S(R). Replacing k by k + k1 where k1 ∈ S(R) ∩ Z(R), we obtain
k1[h, k] = 0 for all h ∈ H(R), k ∈ S(R) and k1 ∈ S(R) ∩ Z(R). Since the
centre of a prime ring is free from zero divisors we have either k1 = 0 for
all k1 ∈ S(R) ∩ Z(R) or [h, k] = 0 for all h ∈ (R) and k ∈ S(R). But
S(R) ∩ Z(R) ̸= 0, we conclude that [h, k] = 0 for all h ∈ H(R) and k ∈ S(R).
That is R is normal. Hence, application of Lemma 2.1 yields the required
result. On the other hand, if [x, x∗] = 0 for all x ∈ R, then R is normal. Hence,
R is commutative by Lemma 2.1. This proves the lemma. □



On centralizers of prime rings 1468

3. Main results

We begin our investigations with the following theorem.

Theorem 3.1. Let R be a prime ring with involution ∗ such that char(R) ̸= 2
and S(R)∩Z(R) ̸= (0). If R admits a nonzero left centralizer T : R → R such
that T ([x, x∗]) = 0 for all x ∈ R, then R is commutative.

Proof. By the given assumption we have

T ([x, x∗]) = 0(3.1)

for all x ∈ R. Linearizing (3.1) and using it, we obtain

T ([x, y∗] + [y, x∗]) = 0(3.2)

for all x, y ∈ R. Replacing y by xx∗ in (3.2) and using (3.1), we get

0 = T ([x, xx∗] + [xx∗, x∗])
= T (x[x, x∗] + [x, x∗]x∗)
= T (x)[x, x∗] + T ([x, x∗])x∗

= T (x)[x, x∗]

for all x ∈ R. The last relation forces that

T (x)[x, x∗] = 0(3.3)

for all x ∈ R. Replacing x by h+ k, where h ∈ H(R), k ∈ S(R), we obtain

T (h)[k, h]− T (h)[h, k] + T (k)[k, h]− T (k)[h, k] = 0

for all h ∈ H(R) and k ∈ S(R). This implies that

2T (h)[h, k] + 2T (k)[h, k] = 0

for all h ∈ H(R) and k ∈ S(R). Since char(R) ̸= 2, the above expression forces
that

T (h)[h, k] + T (k)[h, k] = 0(3.4)

for all h ∈ H(R) and k ∈ S(R). Replacing h by −h in (3.4), we get

T (h)[h, k]− T (k)[h, k] = 0(3.5)

for all h ∈ H(R) and k ∈ S(R). Adding (3.4) and (3.5) and using the fact that
char(R) ̸= 2, we obtain

T (h)[h, k] = 0(3.6)

for all h ∈ H(R) and k ∈ S(R). Replacing h by h + h
′
in (3.6), where h

′ ∈
H(R) ∩ Z(R) we obtain

T (h
′
)[h, k] = 0(3.7)

for all h ∈ H(R), h
′ ∈ H(R) ∩ Z(R) and k ∈ S(R). Replacing k by h1k

′
in

(3.7), where h1 ∈ H(R) and k
′ ∈ S(R)∩Z(R), we get T (h

′
)[h, h1]k

′
= 0 for all
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h, h1 ∈ H(R), h′ ∈ H(R) ∩ Z(R) and k
′ ∈ S(R) ∩ Z(R). Using the fact that

the centre of a prime ring is free from zero divisors and S(R) ∩ Z(R) ̸= 0, we
obtain

T (h
′
)[h, h1] = 0(3.8)

for all h, h1 ∈ H(R) and h
′ ∈ H(R) ∩ Z(R). Now since every x ∈ R can be

uniquely represented as 2x = h + k, where h ∈ H(R), k ∈ S(R). Thus, in

view of equations (3.7) and (3.8), we obtain 0 = T (h
′
)[h, 2x] = 2T (h

′
)[h, x].

Since char(R) ̸= 2, we arrive at T (h
′
)[h, x] = 0 for all x ∈ R, h ∈ H(R) and

h
′ ∈ H(R) ∩ Z(R). Replacing x by yx in the above equation and using it, we

get T (h
′
)y[h, x] = 0. Using the primeness of R, we have either T (h

′
) = 0 for all

h
′ ∈ H(R)∩Z(R) or [h, x] = 0 for all x ∈ R and h ∈ H(R). Suppose T (h

′
) = 0

for all h
′ ∈ H(R) ∩ Z(R). Replacing h

′
by (k

′
)2, where k

′ ∈ S(R) ∩ Z(R), we

get T (k
′
)k

′
= 0 for all k

′ ∈ S(R)∩Z(R). Since R is prime, the last expression

yields that either T (k
′
) = 0 or k

′
= 0. Since k

′
= 0 also implies T (k

′
) = 0, so

finally we arrive at T (k
′
) = 0 for all k

′ ∈ S(R) ∩ Z(R). Thus we have

T (h
′
) = 0 for all h

′
∈ H(R) ∩ Z(R).(3.9)

T (k
′
) = 0 for all k

′
∈ S(R) ∩ Z(R).(3.10)

Let x1 ∈ Z(R). Since char(R) ̸= 2, every x1 ∈ Z(R) can be uniquely rep-
resented as 2x1 = h1 + k1 where h1 ∈ H(R) ∩ Z(R) and k1 ∈ S(R) ∩ Z(R).
This implies that T (2x1) = T (h1 + k1) = T (h1) + T (k1) = 0. This implies
that T (x1) = 0 for all x1 ∈ Z(R). Now x1 ∈ Z(R) implies x1y = yx1 for all
y ∈ R. This yields T (x1)y = T (y)x1 for all y ∈ R. This give T (y)x1 = 0 for
all x1 ∈ Z(R) and y ∈ R. Thus the primeness of R yields that either x1 = 0
for all x1 ∈ Z(R) or T (y) = 0 for all y ∈ R. Which gives a contradiction
since Z(R) ̸= 0 and T is nontrivial. Thus the only possibility is [h, x] = 0 for
all x ∈ R and h ∈ H(R). That is, R is normal. Hence R is commutative by
Lemma 2.1. This completes the proof of the theorem. □

If we replace commutator by anti-commutator in Theorem 3.1, the corre-
sponding result also holds.

Theorem 3.2. Let R be a prime ring with involution ∗ such that char(R) ̸= 2
and S(R)∩Z(R) ̸= (0). If R admits a nonzero left centralizer T : R → R such
that T (xox∗) = 0 for all x ∈ R, then R is commutative.

Proof. We are given that

T (xox∗) = 0(3.11)

for all x ∈ R. Replacing x by x+ y in (3.11) and using it, we obtain

T (xoy∗ + yox∗) = 0(3.12)
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for all x, y ∈ R. Substituting x2 for y in (3.12) and using (3.11), we get

0 = T (xo(x∗)2 + x2ox∗)
= T ((xox∗)x∗ − x∗[x, x∗] + (x∗ox)x− x[x∗, x])
= −T (x∗)[x, x∗]− T (x)[x∗, x]
= T (x)[x, x∗]− T (x∗)[x, x∗].

The last relation forces that

T (x− x∗)[x, x∗] = 0

for all x ∈ R. Replacing x by h+ k, where h ∈ H(R) and k ∈ S(R) and using
the fact that char(R) ̸= 2 we get

T (k)[h, k] = 0(3.13)

for all h ∈ H(R) and k ∈ S(R). Substituting k + k
′
for k, where k

′ ∈ S(R) ∩
Z(R) in (3.13), we find that

T (k
′
)[h, k] = 0(3.14)

for all h ∈ H(R), k ∈ S(R) and k
′ ∈ S(R) ∩ Z(R). Replacing h by k1k

′

2 in

(3.14), where k1 ∈ S(R) and k
′

2 ∈ S(R)∩Z(R), we get T (k
′
)[k1, k]k

′

2 = 0 for all

k, k1 ∈ S(R), k′, k
′

2 ∈ S(R) ∩ Z(R). Using the fact that the centre of a prime
ring is free from zero divisors and S(R) ∩ Z(R) ̸= 0, we obtain

T (k
′
)[k1, k] = 0(3.15)

for all k, k1 ∈ S(R) and k
′ ∈ S(R) ∩ Z(R). Now since every x ∈ R can be

uniquely represented as 2x = h + k, where h ∈ H(R), k ∈ S(R), in view of

equations (3.14) and (3.15), we obtain 0 = T (k
′
)[2x, k] = 2T (k

′
)[x, k]. Since

char(R) ̸= 2, we arrive at T (k
′
)[x, k] = 0 for all x ∈ R, k ∈ S(R) and k

′ ∈
S(R) ∩ Z(R). Replacing x by yx in the above equation and using it, we get

T (k
′
)y[x, k] = 0. Using the primeness of R, we have either T (k

′
) = 0 for all

k
′ ∈ S(R) ∩ Z(R) or [x, k] = 0 for all x ∈ R and k ∈ S(R). Suppose T (k

′
) = 0

for all k
′ ∈ S(R)∩Z(R). Substituting h

′
k

′
for k

′
, where h

′ ∈ H(R)∩Z(R), we

get T (h
′
k

′
) = 0 i.e., T (h

′
)k

′
= 0 for all h

′ ∈ H(R)∩Z(R) and k
′ ∈ S(R)∩Z(R).

Again using the fact that the centre of a prime ring is free from zero divisors we
have either k

′
= 0 for all k

′ ∈ S(R)∩Z(R) or T (h
′
) = 0 for all h

′ ∈ H(R)∩Z(R).

But S(R) ∩ Z(R) ̸= 0. So we have the only possibility that T (h
′
) = 0 for all

h
′ ∈ H(R) ∩ Z(R). Therefore, we have

T (h
′
) = 0 for all h

′
∈ H(R) ∩ Z(R).(3.16)

T (k
′
) = 0 for all k

′
∈ S(R) ∩ Z(R).(3.17)

Henceforth using similar approach as we have used after equations (3.9) and
(3.10) in the proof of Theorem 3.1, we get the required result. This finishes the
proof of the theorem. □
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Theorem 3.3. Let R be a prime ring with involution ∗ such that char(R) ̸= 2
and S(R) ∩ Z(R) ̸= (0). If R admits a left centralizer T : R → R such that
T ([x, x∗])± [x, x∗] = 0 for all x ∈ R and T (x) ̸= ±x, then R is commutative.

Proof. First we consider the case

T ([x, x∗])− [x, x∗] = 0(3.18)

for all x ∈ R. Linearization of (3.18) yields that

T ([x, y∗])− [x, y∗] + T ([y, x∗])− [y, x∗] = 0(3.19)

for all x, y ∈ R. Replacing y by x2 in (3.19) and using (3.18), we obtain

T (x∗)[x, x∗] + T (x)[x, x∗]− x∗[x, x∗]− x[x, x∗] = 0

for all x ∈ R. The above relation can be further written as

(T (x+ x∗)− (x+ x∗))[x, x∗] = 0(3.20)

for all x ∈ R. Taking x = h + k where h ∈ H(R) and k ∈ S(R) in (3.20) and
using the fact that char(R) ̸= 2, we get

(T (h)− h)[h, k] = 0(3.21)

for all h ∈ H(R), k ∈ S(R). Let h
′ ∈ H(R) ∩ Z(R). Replacing h by h + h

′
in

(3.21), we obtain

(T (h
′
)− h

′
)[h, k] = 0(3.22)

for all h
′ ∈ H(R) ∩ Z(R), h ∈ H(R) and k ∈ S(R). Replacing k by h1k

′
in

(3.22), where h1 ∈ H(R) and k
′ ∈ S(R)∩Z(R), we get (T (h

′
)−h

′
)[h, h1]k

′
= 0

for all h, h1 ∈ H(R), h′ ∈ H(R) ∩ Z(R) and k
′ ∈ S(R) ∩ Z(R). Using the fact

that the centre of a prime ring is free from zero divisors and S(R)∩Z(R) ̸= (0),
we obtain

(T (h
′
)− h

′
)[h, h1] = 0(3.23)

for all h, h1 ∈ H(R) and h
′ ∈ H(R) ∩ Z(R). Now since every x ∈ R can be

uniquely represented as 2x = h + k, where h ∈ H(R), k ∈ S(R), in view of

equations (3.22) and (3.23), we obtain 0 = (T (h
′
) − h

′
)[h, 2x] = 2(T (h

′
) −

h
′
)[h, x]. Since char(R) ̸= 2, we arrive at (T (h

′
) − h

′
)[h, x] = 0 for all x ∈ R,

h ∈ H(R) and h
′ ∈ H(R) ∩ Z(R). Replacing x by yx in the above equation

and using it, we get (T (h
′
)− h

′
)y[h, x] = 0. Using the primeness of R, we have

either T (h
′
) − h

′
= 0 for all h

′ ∈ H(R) ∩ Z(R) or [h, x] = 0 for all x ∈ R

and h ∈ H(R). Suppose T (h
′
) = h

′
for all h

′ ∈ H(R) ∩ Z(R). Replacing h
′

by (k
′
)2 where k

′ ∈ S(R) ∩ Z(R), we have T ((k
′
)2) − (k

′
)2 = 0. This implies

(T (k
′
) − k

′
)k

′
= 0 for all k

′ ∈ S(R) ∩ Z(R). Using the primeness of R we
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have either k
′
= 0 or T (k

′
) = k

′
. Since k

′
= 0 implies T (k

′
) = k

′
, we have

T (k
′
) = k

′
for all k

′ ∈ S(R) ∩ Z(R). Thus we have

T (h
′
) = h

′
for all h

′
∈ H(R) ∩ Z(R).(3.24)

T (k
′
) = k

′
for all k

′
∈ S(R) ∩ Z(R).(3.25)

Let x1 ∈ Z(R). Since char(R) ̸= 2, every x1 ∈ Z(R) can be uniquely repre-
sented as 2x1 = h1 + k1 where h1 ∈ H(R)∩Z(R) and k1 ∈ S(R)∩Z(R). This
implies that T (2x1) = T (h1 + k1) = T (h1) + T (k1) = h1 + k1 = 2x1. Thus we
obtain

T (x1) = x1 for all x1 ∈ Z(R).(3.26)

But x1 ∈ Z(R) implies x1y = yx1 for all y ∈ R. This yields T (x1)y = T (y)x1

for all y ∈ R. Using (3.26) we obtain (T (y) − y)x1 = 0 for all x1 ∈ Z(R) and
y ∈ R. Using the primeness of R we have x1 = 0 for all x1 ∈ Z(R) or T (y) = y
for all y ∈ R. Which gives a contradiction, since Z(R) ̸= 0 and T (x) ̸= x.
Thus the only possibility is that, [h, k] = 0 for all h ∈ H(R) and k ∈ S(R) and
hence R is normal. In view of Lemma 2.1, we conclude that R is commutative.

By the same argument, we obtain the similar conclusion in the case
T ([x, x∗]) + [x, x∗] = 0 for all x ∈ R. This proves the theorem completely. □

Theorem 3.4. Let R be a prime ring with involution ∗ such that char(R) ̸= 2
and S(R) ∩ Z(R) ̸= (0). If R admits a left centralizer T : R → R such that
T (xox∗)± (xox∗) = 0 for all x ∈ R and T (x) ̸= ±x, then R is commutative.

Proof. First we consider the case

T (xox∗)− (xox∗) = 0(3.27)

for all x ∈ R. Linearizing the above relation, we get

T (xoy∗)− xoy∗ + T (yox∗)− yox∗ = 0(3.28)

for all x, y ∈ R. Replacing y by x2 in (3.28) and using (3.27), we obtain

−T (x∗)[x, x∗] + T (x)[x, x∗] + x∗[x, x∗]− x[x, x∗] = 0

for all x ∈ R. This can be further written as

(T (x− x∗)− (x− x∗))[x, x∗] = 0(3.29)

for all x ∈ R. Replacing x by h+ k, where h ∈ H(R) and k ∈ S(R) and using
the fact that char(R) ̸= 2, we get

(T (k)− k)[h, k] = 0(3.30)

for all h ∈ H(R), k ∈ S(R). Let k
′ ∈ S(R) ∩ Z(R). Replacing k by k + k

′
in

(3.30), we obtain

(T (k
′
)− k

′
)[h, k] = 0(3.31)
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for all k
′ ∈ S(R) ∩ Z(R), h ∈ H(R) and k ∈ S(R). Replacing h by k1k

′

2 in

(3.31), where k1 ∈ S(R) and k
′

2 ∈ S(R)∩Z(R), we get (T (k
′
)−k

′
)[k1, k]k

′

2 = 0

for all k, k1 ∈ S(R), k′, k
′

2 ∈ S(R) ∩ Z(R). Using the fact that the centre of a
prime ring is free from zero divisors and S(R) ∩ Z(R) ̸= (0), we obtain

(T (k
′
)− k

′
)[k1, k] = 0(3.32)

for all k, k1 ∈ S(R) and k
′ ∈ S(R) ∩ Z(R). Now since every x ∈ R can be

uniquely represented as 2x = h + k, where h ∈ H(R), k ∈ S(R), in view of

equations (3.31) and (3.32), we obtain 0 = (T (k
′
) − k

′
)[2x, k] = 2(T (k

′
) −

k
′
)[x, k]. Since char(R) ̸= 2, we arrive at (T (k

′
) − k

′
)[x, k] = 0 for all x ∈ R,

k ∈ S(R) and k
′ ∈ S(R) ∩ Z(R). Replacing x by yx in the above equation

and using it, we get (T (k
′
) − k

′
)y[x, k] = 0. Using the primeness of R, we

have either T (k
′
) = k

′
for all k

′ ∈ S(R) ∩ Z(R) or [x, k] = 0 for all x ∈ R

and k ∈ S(R). Suppose T (k
′
) = k

′
for all k

′ ∈ S(R) ∩ Z(R). Replacing

k
′
by h

′
k

′
, where h

′ ∈ H(R) ∩ Z(R) we get T (h
′
)k

′
= h

′
k

′
. This implies

(T (h
′
) − h

′
)k

′
= 0 for all h

′ ∈ H(R) ∩ Z(R) and k
′ ∈ S(R) ∩ Z(R). Again

using the fact that the centre of a prime ring is free from zero divisors, we have
T (h

′
) = h

′
for h

′ ∈ H(R)∩Z(R) or k
′
= 0 for all k

′ ∈ S(R)∩Z(R). But since

S(R) ∩ Z(R) ̸= (0) we have T (h
′
) = h

′
for all h

′ ∈ H(R) ∩ Z(R). Therefore
we find that

T (h
′
) = h

′
for all h

′
∈ H(R) ∩ Z(R).(3.33)

T (k
′
) = k

′
for all k

′
∈ S(R) ∩ Z(R).(3.34)

Hence using the same approach as we have used after equations (3.24) and
(3.25) in the proof of the Theorem 3.3 we get the required result.

By the same argument, we obtain the similar conclusion in the case
T (xox∗) + (xox∗) = 0 for all x ∈ R. This proves the theorem. □
Theorem 3.5. Let R be a prime ring with involution ∗ such that char(R) ̸= 2
and S(R) ∩ Z(R) ̸= (0). If R admits a left centralizer T : R → R such that
T ([x, x∗])± (xox∗) = 0 for all x ∈ R and T (x) ̸= ±x, then R is commutative.

Proof. First we consider the case

T ([x, x∗])− (xox∗) = 0(3.35)

for all x ∈ R. Linearizing the above relation, we get

T ([x, y∗])− xoy∗ + T ([y, x∗])− yox∗ = 0(3.36)

for all x, y ∈ R. Replacing y by x2 in (3.36) and using (3.35), we obtain

T (x∗)[x, x∗] + T (x)[x, x∗] + x∗[x, x∗] + x[x, x∗] = 0

for all x ∈ R. This can be further written as

(T (x+ x∗) + (x+ x∗))[x, x∗] = 0(3.37)
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for all x ∈ R. Replacing x by h+ k, where h ∈ H(R) and k ∈ S(R) and using
the fact that char(R) ̸= 2, we get

(T (h) + h)[h, k] = 0(3.38)

for all h ∈ H(R), k ∈ S(R). Henceforth using the similar approach with nec-
essary variations as we have used after equation (3.21) in the proof of the
Theorem 3.3, we are forced to conclude that R is normal. Further in view of
Lemma 2.1, we get the commutativity of R.

By the same argument, we obtain the similar conclusion in case T ([x, x∗])+
(xox∗) = 0 for all x ∈ R. This completes the proof of theorem. □
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