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Abstract. This paper deals with scrutinizing the convergence properties

of iterative methods to solve linear system of equations. Recently, several
types of the preconditioners have been applied for ameliorating the rate
of convergence of the Accelerated Overrelaxation (AOR) method. In this

paper, we study the applicability of a general class of the preconditioned
iterative methods under certain conditions. More precisely, it is demon-
strated that the preconditioned Mixed-Type Splitting (MTS) iterative
methods can surpass the preconditioned AOR iterative methods for an

entirely general class of preconditioners handled by Wang and Song [J.
Comput. Appl. Math. 226 (2009), no. 1, 114–124]. Finally some numer-
ical results are elaborated which confirm the validity of the established
results.

Keywords: Linear system, iterative method,mixed-Type splitting, pre-
conditioner, convergence rate.
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1. Introduction

Consider the linear system

(1.1) Ax = b,

where the nonsingular matrix A ∈ Rn×n and the right-hand side vector b ∈ Rn

are given and x is the unknown vector to be determined. Without loss of
generality, we may assume that the elements of main diagonal of A are nonzero.

For a given matrix A ∈ Rn×n, the decomposition A = M − N is called a
splitting if M and N belong to Rn×n and M is nonsingular. For an arbitrary
given splitting A = M − N , a basic stationary iterative method for solving
Ax = b has the subsequent form:

(1.2) x(k+1) = Vx(k) +M−1b, k = 0, 1, 2, . . . ,
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where the initial vector x(0) is given and V = M−1N is called the iteration
matrix. It is well-known that the convergence analysis of the iterative method
(1.2) relies on the spectral radius of the iteration matrix V, i.e., the smaller
spectral radius is the faster the convergence is; for further details see [24].

In this paper we work with special kinds of matrices which are introduced
in the following two definitions.

Definition 1.1. (Berman and Plemmons [3]). The matrix A ∈ Rn×n is called
a Z-matrix if aij ≤ 0 for i, j = 1, 2, 3, . . . , n (i ̸= j). A Z-matrix with positive
diagonal elements is named an L-matrix.

Definition 1.2. (Berman and Plemmons [3]). Let A be an L-matrix. Then
the matrix A is said to be an M -matrix if A is nonsingular and A−1 ≥ 0.

The next definition expounds different types of the splittings exploited in
this work.

Definition 1.3. (Woznicki [27]). The splitting A = M −N is called

(1) a regular splitting of A if M−1 ≥ 0 and N ≥ 0 ,
(2) a nonnegative splitting of A if M−1 ≥ 0, M−1N ≥ 0

and NM−1 ≥ 0,
(3) a weak nonnegative splitting of A if M−1 ≥ 0 and either

M−1N ≥ 0 (the first type) or NM−1 ≥ 0 (the second type),
(4) a convergent splitting of A if ρ(M−1N) < 1 .

Hitherto, several kinds of the preconditioners have been examined to improve
the speed of convergence of the iterative methods. In fact, there is a growing
interest to study about the performance of the preconditioners to ameliorate the
speed of convergence of both stationary and nonstationary iterative methods in
the literature; for instance see [2,5,18,19,22,23,25,28,29,31] and the references
therein.

For example, Moghadam and Beik [19] have applied the preconditioner

(1.3) P =


1 0 · · · 0

−a21

a11
1 · · · 0

...
...

. . .
...

−an1

a11
0 · · · 1

 ,

to accelerate the speed of convergence of the MTS method. It has been proved
that the preconditioned MTS method associated with the preconditioner (1.3)
can outperform the preconditioned AOR method for solving M -matrix linear
systems.

Note 1.4. In the sequel, we assume that the main diagonal elements of the
coefficient matrix A are all equal to one.
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In [5], the next two preconditioners have been introduced

P1 = I + S1, P2 = I + S2,

where

S1 =


0 0 · · · 0

−(a21 + α2) 0 · · · 0
...

...
. . .

...
−(an1 + αn) 0 · · · 0

 ,

and

S2 =


0 · · · 0 −(a1n + β1)
...

. . .
...

...
0 · · · 0 −(an−1n + βn−1)
0 · · · 0 0

 .

The authors have improved the speed of convergence of the AOR method when
A is an L-matrix. The inspiration of the authors was proposing a modified ver-
sion of the AOR method under weaker conditions than usually assumed in the
literature, i.e., a1iai1 < 1 (i = 2, . . . , n) which have been also assumed in [18]
when the preconditioner (1.3) applied for improving the rate of convergence
of the Jacobi and Gauss-Seidel iterative methods. Nevertheless, the improve-
ment has been reached only in the circumstance that the AOR splitting is a
convergent splitting for an L-matrix. Whereas, Moghadam and Beik [19] have
shown that the AOR splitting is a regular splitting for an L-matrix under cer-
tain conditions for parameters which have been also assumed in [5]. Hence,
the convergence of the AOR splitting for an L-matrix implies that its inverse is
nonnegative, i.e., the matrix is in fact an M -matrix. Consequently, in [5], the
modified AOR methods are elaborated for an M -matrix. In the current paper,
it reveals that if A is an M -matrix then the matrix A gratifies the conditions
a1iai1 < 1 for i = 2, . . . , n. Meanwhile, this fact can be also seen in the authors’
utilized numerical examples; see [5] for more details.

In [25], the next general preconditioner have been handled

(1.4) P =


1 · · · −α1n−1a1n−1 −α1na1n

−α21a21
. . . −α2n−1a2n−1 −α2na2n

...
...

...
...

−αn1an1 · · · −αnn−1ann−1 1

 ,

where pii = 1 and 0 ≤ αij ≤ 1 for i, j = 1, . . . , n. As seen, the preconditioner
(1.4) is quite general and incorporates many of the previously studied precon-
ditioners such as (1.3) and those used in [6–11,15–17,20,25,30]. More precisely,
Wang and Song [25] have improved the rate of convergence of the AOR method
by applying the preconditioner (1.4) and the numerical experiments illustrate
that the best case occurs when αij = 1 for i, j = 1 . . . , n (i ̸= j). However, the
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results have been established under certain conditions which imply that the
(preconditioned) AOR method is a regular splitting. In this case, we show that
the preconditioned MTS is superior than the preconditioned AOR method by
choosing appropriate auxiliary matrices.

1.1. A brief survey on the MTS method. In [13,14], the mixed-type split-
ting (MTS) method has been introduced for solving the linear system Ax = b,
where A is a nonsingular, large, sparse and nonsymmetric matrix and AT +A
is a symmetric positive definite (SPD) matrix. Consider the decomposition
A = D − L − U for the matrix A where D, L and U denote the diagonal,
strictly lower triangular and strictly upper triangular matrices, respectively.
The MTS iterative method to solve Ax = b is given as follows.

The MTS method :

(D +D1 + L1 − L)x(k+1) = (D1 + L1 + U)x(k) + b, k = 0, 1, 2, . . ..

The iteration matrix of the MTS method is expounded by

T = (D +D1 + L1 − L)−1(D1 + L1 + U),

where D1 is an available auxiliary nonnegative diagonal matrix and L1 is a
given auxiliary strictly lower triangular matrix such that 0 ≤ L1 ≤ L.

It is well-known that the MTS method incorporates the Gauss-Seidel (GS)
method by setting D1 = L1 = 0 and the AOR method by the following choices
of D1 and L1.

The AOR method :

D1 =
1

ω
(1− ω)D, L1 =

1

ω
(ω − r)L,

(D − rL)x(k+1) = ((1− ω)D + (ω − r)L+ ωU)x(k) + ωb, k = 0, 1, 2, . . ..

The iteration matrix of the AOR method is determined by

Tr,ω = (D − rL)−1[(1− ω)D + (ω − r)L+ ωU ],

where ω and r are real parameters such that 0 ≤ r ≤ ω < 1 and ω ̸= 0.
Cheng et al. [4] have considered the linear system Ax = b where A is a Z-

matrix and propounded a new class of the MTS method which is similar to the
MTS approach presented in [13,14,26]. The method utilizes auxiliary matrices
and contains SOR and AOR iterative methods as special cases. It has been
proved that if the SOR (AOR) iterative method is convergent, then by suitable
selections of auxiliary matrices, the MTS method converges faster than the
SOR (AOR) iterative method. In [19], Moghadam and Beik have ameliorated
the rate of convergence of the MTS method [4] by applying the preconditioner
introduced by Milaszewicz [18]. Moreover, under the same assumptions con-
sidered in [4], it has been demonstrated that if the SOR (AOR) method is
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convergent for solving Ax = b where A is a Z-matrix, then the coefficient
matrix is in fact an M -matrix. In addition, it has revealed that the (precondi-
tioned) GS iterative method converges faster than the (preconditioned) SOR
and (preconditioned) AOR iterative methods.

1.2. Motivations and highlight points. In [5], Dehghan and Hajarian have
presented a modified AOR iterative method (0 < r ≤ ω ≤ 1) by exploiting
two new preconditioners for solving linear system Ax = b where A is an L-
matrix. In [18], Milaszewicz has assumed that the matrix A is an L-matrix
which satisfies the following properties

(1.5) ai,i+1ai+1,i > 0 and 0 < a1iai1 < 1 for i = 2, 3, . . . , n,

and improved the convergence speed of the Jacobi and Gauss-Seidel iterative
methods. Dehghan and Hajarian have proved that if A is an irreducible L-
matrix, their offered preconditioners can improve the rate of convergence the
AORmethod under weaker conditions than those given in (1.5). More precisely,
the authors try to omit the restrictions a1iai1 < 1 and ai,i+1ai+1,i > 0 for
i = 2, 3, . . . , n.We would like to comment here that the authors have established
the improvements of the AOR method under the assumption that the AOR
splitting is convergent. Thence, it is not difficult to verify the fact that the
modified AORmethods have been elaborated forM -matrices. Recently, Saberi-
Najafi et al. [22] have demonstrated that if A is an irreducible M -matrix then
without setting the restriction that 0 < a1iai1 < 1 and ai,i+1ai+1,i > 0 for
i = 2, 3, . . . , n, the Milaszewicz’s preconditioner outperforms those proposed
by Dehghan and Hajarian.

Considering the pointed works cited in the previous paragraph, we have
motivated to answer this question that

• Does there exist an M -matrix A = [aij ] ∈ Rn×n such that a1iai1 ≥ 1
for some i (2 ≤ i ≤ n)?

In this paper we show that the answer of the above question is negative. That is
if A is an M -matrix then a1iai1 < 1 for i = 2, 3, . . . , n. This fact demonstrates
that by setting the assumption that A is an M -matrix (or A is an L-matrix and
the AOR splitting is convergent), Saberi-Najafi et al. (Dehghan and Hajarian)
do not omit the restriction a1iai1 < 1 for i = 2, 3, . . . , n.

As pointed out, Moghadam and Beik [19] have shown that the (precondi-
tioned) MTS method can outperform the (preconditioned) AOR method for
solving M -matrix linear systems when 0 ≤ r ≤ ω ≤ 1 and ω ̸= 0. More pre-
cisely, the authors have investigated the preconditioner offered in [18]. Mean-
while, a general class of preconditioner is considered for improving the rate of
convergence of the AOR iterative method (0 ≤ r ≤ ω ≤ 1 and ω ̸= 0) in [25].
The preconditioner mentioned by Wang and Song [25] includes that given by
Milaszewicz. This inspirits us to investigate that
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• whether the preconditioned MTS method is superior than the precondi-
tioned AOR method for the general class of preconditioners examined
in [25].

In this paper, it turns out that under mild conditions the preconditioned MTS
method works better than the preconditioned AOR method when the Wang
and Song’s handled preconditioner is utilized.

The rest of this paper is organized as follows. In Section 2, we state some
required concepts including symbols, definitions, properties, theorems, and etc.
Some useful theoretical results are presented in Section 3. Afterward, we give a
brief survey on some comparison theorems which have been elaborated in [4,19]
as the first part of Section 4. The rest of the fourth section is devoted to
investigating about the application of the preconditioned MTS method with a
general preconditioner applied by Wang and Song [25]. In Section 5, we report
some numerical experiments which confirm the validity of the theoretical results
established throughout the current work. Finally, a brief conclusion is a subject
of Section 6.

2. Preliminaries

In what follows, we recall some definitions and results which are utilized
during the paper. For a square matrix A, the spectral radius of A is denoted
by ρ(A). For a given matrix U ∈ Rn×m, we say U ≥ 0 (U > 0) when all entries
of U are nonnegative (positive). For two n×m real matrices U and V , the
notation U ≥ V (U > V ) means that U − V ≥ 0 (U − V > 0).

Before ending this section, some theoretical results and facts are recollected
which are utilized for proving our main results.

Lemma 2.1. Let A be a Z-matrix. Then, A is an M -matrix if and only if
there is a positive vector x such that Ax > 0.

Proof. See [28]. □

Definition 2.2. (Varga [24]). A matrix A is said to be reducible if there is
a permutation matrix P such that PAPT is a block upper triangular matrix.
Otherwise, it is irreducible.

In what follows, the notation G(A) denotes the directed graph of matrix
A. The next lemma supplies another way to verify that whether a matrix is
irreducible or not.

Lemma 2.3. A matrix A is irreducible if G(A) is strongly connected.

Proof. See [24]. □

Theorem 2.4. Let A = M−N be a regular splitting of A. Then ρ(M−1N) < 1
if and only if A is nonsingular and A−1 is nonnegative.
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Proof. See [24]. □

Now we recall the following theorem which is an essential tool for analyzing
the speed of convergence of the (preconditioned) iterative methods through this
work.

Theorem 2.5. Let A = M1 −N1 = M2 −N2 be two convergent weak nonneg-
ative splittings of A where A−1 ≥ 0, if M−1

1 ≥ M−1
2 then

ρ(M−1
1 N1) ≤ ρ(M−1

2 N2).

In particular, if A−1 > 0 and M−1
1 > M−1

2 then

ρ(M−1
1 N1) < ρ(M−1

2 N2).

Proof. See [27]. □

Theorem 2.6. Let A be a Z-matrix. Moreover, suppose that A = M −N is a
weak nonnegative splitting of the first type. Then ρ(M−1N) < 1 if and only if
A is an M -matrix.

Proof. See [2]. □

3. Fundamental theoretical results

In this section, we present some useful theoretical results. It is not difficult
to establish these facts and their proofs are left to the conscious reader. It
is demonstrated that some of the restrictions, assumed in the literature while
preconditioners are applied for improving the convergence rate of the iterative
methods, are satisfied when A is an M -matrix; see for instance [12,18].

Proposition 3.1. Let A ∈ Rn×n be an M -matrix. Then each of its principle
submatrices is an M -matrix.

Remark 3.2. Let A be an M -matrix. The (n−1)×(n−1) matrix A(k) obtained
from A by removing its kth row and column is an M -matrix where 1 ≤ k ≤ n.

By Proposition 3.1 and Remark 3.2, we may establish the next proposition.

Proposition 3.3. Let A ∈ Rn×n be an M -matrix whose all of its main diagonal
elements are equal to one. Then

(3.1) a1iai1 < 1, i = 2, . . . , n.

Remark 3.4. In [12], Lei et al have presented some theoretical results and
supposed that A = I − L − U is an M -matrix with 0 < aii+1ai+1i < 1 for
i = 1, . . . , n − 1; see for instance Lemma 3.1, Theorem 3.2, and etc. It is not
difficult to see that if A is assumed to be an M matrix then aii+1ai+1i < 1
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for i = 1, . . . , n− 1. As a matter of fact, in view of Proposition 3.3, if A is an
M -matrix then the following principle submatrix of A is an M -matrix,

A2 =

(
1 aii+1

ai+1i 1

)
, i = 1, . . . , n− 1,

and hence by Proposition 3.3, we deduce that aii+1ai+1,i < 1 . We would like
to point here that in this work we do not aim to analyze the iterative methods
proposed in [12].

The following proposition reveals that under certain sufficient conditions,
the iteration matrix of the MTS method associated with an irreducible matrix
is irreducible. As the proposition can be established with a simmer manner
exploited in [Beik and Shams [2], Proposition 3.1], we omit its proof.

Proposition 3.5. Let A = D−L−U be an irreducible L-matrix where D is a
diagonal matrix, L and U are respectively lower and upper triangular matrices.
Suppose that D1 is nonsingular, 0 ≤ D1 ≤ D and 0 ≤ L1 ≤ L. Then the
iteration matrix of the MTS method is irreducible.

In the following, for an M -matrix, it is seen that the spectral radius of the
iteration matrix of the AOR iterative method is a decreasing function with
respect to the parameters r and ω in the case that 0 ≤ r ≤ ω ≤ 1 and ω ̸= 0.

Theorem 3.6. Let A be an M -matrix. Suppose that r ≥ 0 and 0 ̸= ω1 ≤ ω2 ≤
1 with ωi ≥ r for i = 1, 2. Presume that ρ(Tr,ω1) and ρ(Tr,ω2) denote the spec-
tral radius of the AOR method associated with (r, ω1) and (r, ω2), respectively.
Then ρ(Tr,ω2) ≤ ρ(Tr,ω1).

Theorem 3.7. Let A be an M -matrix. Suppose that 0 < ω ≤ 1 and 0 ≤
r1 ≤ r2 with ω ≥ ri for i = 1, 2. Suppose that ρ(Tr1,ω) and ρ(Tr2,ω) stand
for the spectral radius of the AOR method associated with (r1, ω) and (r2, ω),
respectively. Then ρ(Tr2,ω) ≤ ρ(Tr1,ω).

4. Comparison results on preconditioned MTS methods

The present section consists of two main parts. In the first subsection, we
recall some comparison results between MTS and AOR iterative methods. In
the second part of this section, in order to improve the rate of convergence of
the MTS iterative method, we apply the general precoditioner examined by
Wang and Song [25].

4.1. Comparison results. Throughout this subsection, we give an overview
on some comparison results established in [4] and [19].

Theorem 4.1. If A is an M -matrix, D1 ≥ 0 and 0 ≤ L1 ≤ L. Then the MTS
method is a convergent regular splitting.

Proof. See [19]. □
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Corollary 4.2. Let A be an M -matrix and 0 ≤ r ≤ ω < 1, ω ̸= 0. Then the
AOR splitting for the matrix A is convergent.

In the next two theorems, the authors have supposed that the matrix A
is a Z-matrix with positive diagonal elements, in fact A is assumed to be an
L-matrix. It has been seen that the speed of convergence of the MTS iterative
method is faster than the speed of convergence of the AOR method in the case
that the AOR is a convergent method; for more details see [4].

Theorem 4.3. Let A be a Z-matrix with positive diagonal elements and

0 ≤ D1 ≤ (
1

ω
− 1)D, 0 ≤ L1 ≤ (1− r

ω
)L.

Moreover assume that the matrices T and Tr,ω are the mixed-type splitting and
AOR iteration matrices, respectively, where 0 < r < ω < 1. If T and Tr,ω are
irreducible, then

(1) ρ(T ) < ρ(Tr,ω) if ρ(Tr,ω) < 1,
(2) ρ(T ) = ρ(Tr,ω) if ρ(Tr,ω) = 1,
(3) ρ(T ) > ρ(Tr,ω) if ρ(Tr,ω) > 1.

In the following proposition, Moghadam and Beik [19] have shown that if A
is an L-matrix, then MTS method is convergent iff A is an M -matrix.

Proposition 4.4. Let A be a Z-matrix with positive diagonal elements. Then
the MTS is a convergent splitting for the matrix A if and only if A is an M -
matrix.

Remark 4.5. Note that if the MTS (AOR) is a convergent splitting for a given
L-matrix A, then the matrix A is an M -matrix. Hence, we only focus on
M -matrix linear systems.

Theorem 4.6. Let A be an M -matrix, D1 ≥ 0 and 0 ≤ L1 ≤ L. Suppose that
TG and T are the MTS and GS iteration matrices, respectively. If TG and T
are irreducible, then ρ(TG) < ρ(T ).

Proof. See [19] □

Theorem 4.7. Let A be an M -matrix. Suppose that TG and Tr,ω are the GS
and AOR iteration matrices, respectively, where 0 ≤ r ≤ ω < 1, ω ̸= 0. If TG

and Tr,ω are irreducible, then

ρ(TG) < ρ(Tr,ω).

Proof. See [19] □
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4.2. Preconditioned MTS methods in a general form. In [25], the au-
thors have considered the general preconditioner (1.4) and improved the rate of
the convergence of the AOR iterative method. Moreover, it has been revealed
that the preconditioner P = I + L+ U is the best preconditioner between the
preconditioners belong to the general form (1.4). In the current subsection
we demonstrate that with the aid of appropriate auxiliary matrices, precon-
ditioned MTS iterative method outperforms MTS and (preconditioned) AOR
methods.

In view of Lemma 2.1, it is not difficult to see that if A is an M -matrix
and PA is a Z-matrix, then PA is an M -matrix where P is a nonnegative and
nonsingular matrix.

Note 4.8. Let A be a Z-matrix whose diagonal elements are all equal to one;
i.e., A = I − L − U . Suppose that P is defined by (1.4), straightforward
computations show that Ā = PA is an M -matrix.

Let us consider the subsequent preconditioned linear system

(4.1) Āx = Pb,

where Ā = PA and P is defined by (1.4). Assume that Ā = D̄−L̄−Ū where D̄
is a diagonal matrix, L̄ and Ū are respectively strictly lower and strictly upper
triangular matrices. The preconditioned MTS iterative method is specified by

(D̄ + D̄1 + L̄1 − L̄)x(k+1) = (D̄1 + L̄1 + Ū)x(k) + Pb k = 0, 1, . . . ,

where x(0) is given and the auxiliary matrices D̄1 and L̄1 have the following
form

(4.2) D̄1 = ξD̄ and L̄1 = ζL̄,

in which ξ ∈ [0, 1] and ζ ∈ [0, 1] are given parameters.
As known the preconditioned MTS (AOR, GS) iterative method is derived

by considering the MTS (AOR, GS) iterative method for solving the precondi-
tioned linear system Āx = Pb. As PA is a Z-matrix, hence the preconditioned
matrix Ā is an M -matrix when A is assumed to be an M -matrix. As a result
the preconditioned MTS (AOR, GS) method is convergent; see Proposition 4.4.

Note that the MTS method includes the preconditioned GS method for
ξ = ζ = 0. Moreover, if we set ξ = 1

ω (1−ω), ζ = 1
ω (ω−r) for 0 ≤ r ≤ ω ≤ 1 and

ω ≥ 0.5, then the preconditioned MTS method reduces to the preconditioned
AOR method which has been mentioned in [25]. In view of Theorem 3.6, it
is not difficult to verify that the preconditioned AOR method for ω ≥ 0.5
converges faster than the preconditioned AOR method for 0 < ω < 0.5. Hence,
in what follows, we only need to mention the preconditioned AOR method for
0.5 ≤ ω ≤ 1 which is a special case of the preconditioned MTS method.

Theorem 4.9. Let A be an M -matrix and Ā = PA where P is defined by
(1.4). Suppose that the auxiliary matrices D̄1 and L̄1 satisfy (4.2). Assume
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that ρ(T̄r,ω) and ρ(T̄ ) represent the iteration matrices of the preconditioned
AOR and preconditioned MTS methods, respectively. If

0 ≤ D̄1 ≤ (
1

ω
− 1)D̄ and 0 ≤ L̄1 ≤ (1− r

ω
)L̄.

where 0 ≤ r ≤ ω ≤ 1 and 0.5 ≤ ω ≤ 1, then ρ(T̄ ) ≤ ρ(T̄r,ω).

Proof. As A is an M -matrix, it is not difficult to verify that Ā is an M -matrix.
Therefore, Proposition 4.4 implies that ρ(T̄r,ω) < 1 and ρ(T̄ ) < 1. Presume
that Ā = M̄ − N̄ and Ā = M̄r,ω − N̄r,ω denote the MTS and AOR splittings
for Ā, respectively. Straightforward computations show that

M̄ − M̄r,ω = D̄1 − (
1

ω
− 1)D̄ + L̄1 − (1− r

ω
)L̄.

Thus, we deuce that M̄ ≤ M̄r,ω. As M̄
−1 and M̄−1

r,ω are nonnegative matrices,

we may conclude that M̄−1 ≥ M̄−1
r,ω . Now the result follows immediately from

Theorem 2.5. □

Exploiting a quite similar strategy utilized in the proof of Theorem 4.9, the
next proposition can be established. The proposition turns out that when A is
an M -matrix and a nonnegative preconditioner P = [pij ] is applied with pii = 1
and pij ≥ 0 for i, j = 1, . . . , n (i ̸= j) such that PA is a Z-matrix, the precondi-
tioned GS method outperforms both preconditioned AOR and preconditioned
MTS methods. That is the best convergence speed in the (preconditioned)
AOR method occurs when r = ω = 1 for 1 ≤ r ≤ ω ≤ 1 and ω ̸= 0. This fact
has been also seen in the numerical experiments part of [22, Table 2].

Proposition 4.10. Let A be an M -matrix. Suppose that the auxiliary ma-
trices D̄1 and L̄1 satisfy (4.2). Presume that ρ(T̄) and ρ(T̄G) stand for the
iteration matrices of the preconditioned MTS and preconditioned GS methods,
then ρ(T̄G) ≤ ρ(T̄ ).

Let us consider the preconditioner (1.4), the ensuing theorem demonstrates
that the preconditioned MTS (AOR, GS) converges faster than the MTS (AOR,
GS) method.

Theorem 4.11. Let A be an M -matrix. Presume that T and T̄ stand for
the iteration matrices of the MTS and preconditioned MTS iterative methods.
Suppose that D1 = ξD, L1 = ζL, D̄1 = ξD̄ and L̄1 = ζL̄ for ξ ∈ [0, 1] and
ζ ∈ [0, 1]. Then ρ(T̄ ) ≤ ρ(T ) < 1.

Proof. The matrix A is anM -matrix which implies that ρ(T ) < 1 and ρ(T̄ ) < 1.
Now we show that ρ(T̄ ) ≤ ρ(T ). Suppose that

Ā = M̄ − N̄ ,

where
M̄ = D̄ + D̄1 + L̄1 − L̄, N̄ = D̄1 + L̄1 + Ū .
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We handel the auxiliary matrices in the next forms

D1 = ξD, D̄1 = ξD̄, L1 = ζL and L̄1 = ζL̄,

with 0 ≤ ξ, ζ ≤ 1. It is not difficult to see that D̄ ≤ D, hence D̄1 ≤ D1. As Ā is
an M -matrix, it is concluded that Ā = M̄ − N̄ is a regular splitting. Consider
the following splitting for the matrix A,

M1 = P−1M̄, N1 = P−1N̄ .

Evidently, A = M1−N1 is a weak nonnegative splitting of the first kind. Hence
Lemma 2.6 implies that ρ(M−1

1 N1) < 1. By some straightforward computa-
tions, we have L ≤ L̄. Therefore, it can be seen that

L1 − L− (L̄1 − L̄) = ζL− L− ζL̄+ L̄

= ζ(L− L̄) + (L̄− L)

= (ζ − 1)(L− L̄) ≥ 0.

Thence, we may conclude that

L̄1 − L̄ ≤ L1 − L.

The above inequality together with the facts that D̄ ≤ D and D̄1 ≤ D1 imply
that

M̄ −M = (D̄ −D) + (D̄1 −D1) + (L̄1 − L̄)− (L1 − L) ≤ 0,

i.e., M̄ ≤ M . Now, it can be seen that M−1 ≤ M̄−1. The result follows from
Theorem 2.5 and the subsequent relations

M−1 ≤ M̄−1 ≤ M̄−1P = M−1
1 ,

and

0 ≤ M̄−1N̄ = M−1
1 N1.

□

Remark 4.12. We would like to comment here that Theorem 4.11 is true for
any precoditioner P = [pij ]n×n where pii = 1 and pij ≥ 0 for i ̸= j and
i, j = 1, . . . , n such that PA is a Z-matrix; e.g., the preconditioners mentioned
in [5].

As seen the preconditioner P = I + L + U is the best between the precon-
ditioners incorporated in the form (1.4); for more details see [25]. Hence, in
what follows, we focus on the application of the preconditioner P = I +L+U .
Considering Theorem 2.5, it is interesting to know that when A−1 > 0. It is
well-known that the inverse of an irreducible M -matrix is a positive matrix.
The next theorem provides a mild condition under which the irreducibility of
A implies that Ā = (I + L + U)A is irreducible. The proof of the theorem
follows from straightforward computations, hence we discard the proof.
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n ω r AOR MTS GS

100 0.5 0.4 0.9749 0.9619 0.9206
900 0.8 0.6 0.9949 0.9932 0.9898
2500 0.9 0.7 0.9974 0.9969 0.9962

Table 1. Comparison results between spectral radii of the iteration matrices
for Example 5.1.

Theorem 4.13. Assume that A = [aij ] = I − L − U is an irreducible Z-
matrix where L and U are strictly lower and strictly upper triangular matrices
respectively. Moreover, suppose that there exists τ ̸= i, j such that aiτaτj ̸= 0
whenever aij ̸= 0 where i ̸= j. Then Ā = (I + L+ U)A is irreducible.

Remark 4.14. Suppose that the same hypophyses assumed in Theorem 4.13
satisfy. With a similar manner exploited in the proof of Proposition 3.5, we may
conclude that the iteration matrices of the preconditioned AOR, preconditioned
MTS and preconditioned GS methods are irreducible.

5. Numerical experiments

In order to illustrate the validity of the results established in this work, we
report some numerical experiments in this section. All numerical procedures
were computed in Mathematica 6.

In the subsequent two examples, the right sides b are chosen such that b = Ae
where e = (1, . . . , 1)T . The initial guess is taken to be zero. It is not difficult
to verify that the considered coefficient matrices are M -matrix. For simplicity,
we convert all of the main diagonal elements of A to one.

In all of the following simulations, the auxiliary matrices are selected such
that D1 = 0.5( 1

ω − 1)I, L1 = 0.5(1 − r
ω )L, D̄1 = 0.5( 1

ω − 1)I and L̄1 =

0.5(1− r
ω )L̄.

Example 5.1. As a symmetric example, we mention the Poisson equation in
two dimensions, i.e.

−∆u = f in Ω = (0, 1)× (0, 1),

u = 0 on Γ := ∂Ω.

A finite difference discretisation with mesh-width h = 1
N+1 leads to a linear

system Ax = b where A ∈ Rn×n and n = N2. It can be seen that the matrix A
has the following form A = IN ⊗ B + T ⊗ IN where B = trid (−1/4, 1,−1/4)
and T = trid (−1/4, 0,−1/4) are N ×N matrices.

Example 5.2. As a non-symmetric example, let us consider the two dimen-
sional convection–diffusion equation

−(uxx + uyy) + 2exp(x+ y)(xux + yuy) = f(x, y),
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n ω r PAOR PMTS PGS

100 0.5 0.4 0.9357 0.9033 0.8020
900 0.8 0.6 0.9864 0.9819 0.9729
2500 0.9 0.7 0.9930 0.9918 0.9899

Table 2. Comparison results between spectral radii of the iteration matrices
for Example 5.1.

n ω r AOR MTS GS

100 0.5 0.4 0.9786 0.9675 0.9322
900 0.8 0.6 0.9950 0.9937 0.9913
2500 0.9 0.7 0.9978 0.9973 0.9968

Table 3. Comparison results between spectral radii of the iteration matrices
for Example 5.2.

on Ω = (0, 1) × (0, 1), with the homogeneous Dirichlet boundary conditions.
By discretizatig the above equation with the central difference scheme on a
uniform grid with N ×N interior nodes (n = N2), we can derive the system of
linear equations Ax = b with the five diagonal coefficient matrix; see [1].

In Tables 1 and 2 (3 and 4), we report the comparison results between the
spectral radii of the AOR, MTS and GS iterative methods and their precon-
ditioned versions where the preconditioner P = I + L + U is applied. The
results confirm the validity of our established results. It is seen that the (pre-
conditioned) MTS method surpasses the (preconditioned) AOR method. As
demonstrated theoretically, the (preconditioned) GS iterative method is supe-
rior than both (preconditioned) AOR and (preconditioned) MTS methods. For
more details, we utilize the AOR, MTS, GS, preconditioned AOR (PAOR), pre-
conditioned MTS (PMTS) and preconditioned GS (PGS) methods for solving
linear system Ax = b and stop the iterations as soon as

(5.1)
∥b−Ax(k)∥

∥b∥
< ϵ,

where x(k) denotes the kth approximate solution and ϵ = 10−5. The corre-
sponding results are reported in Table 5 which demonstrate the validity of the
established results.

Let us compare the application of the preconditioners (1.3) and (1.4) for
improving the speed of convergence of the GMRES(10) [21]. In Tables 5 and
6, we present the required number of iterations and CPU-times(s) of the GM-
RES(10) and its preconditioned version (PGMRES(10)) methods when the
stopping criterion (5.1) is exploited with ϵ = 10−6.
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n ω r PAOR PMTS PGS

100 0.5 0.4 0.9446 0.9166 0.8286
900 0.8 0.6 0.9868 0.9832 0.9769
2500 0.9 0.7 0.9940 0.9930 0.9914

Table 4. Comparison results between spectral radii of the iteration matrices
for Example 5.2.

Example GS MTS AOR PGS PMTS PAOR

Example 5.1 920 1124 1328 357 436 516
(0.69) (0.73) (1.04) (0.24) (0.33) (0.38)

Example 5.2 1074 1319 1564 415 510 605
(0.83) (1.03) (1.24) (0.34) (0.40) (0.48)

Table 5. Number of iterations (CPU-time in second) for n = 1024 (N = 32)
with r = 0.7 and ω = 0.9.

Example PGMRES(10) PGMRES(10) GMRES(10)
P = I + L+ U [18, 22]

Example 5.1 15 (0.062) 21 (0.156) 20 (0.125)
Example 5.2 15 (0.063) 39 (0.172) 42 (0.203)
Table 6. Number of iterations (CPU-time in second) for n = 2500 (N = 50).

6. Conclusion

Recently, Dehghan and Hajarian [J. Vib. Control, 20 (2014), no. 5, 661–669]
have offered two types of preconditioners to improve the rate of convergence of
the AOR method for solving linear system Ax = b under the restriction that
the method is convergent. The authors have aimed to propose modified AOR
methods under weaker condition than those assumed by Milaszewicz [Linear
Algebra Appl. 93 (1987) 161–170] when A is an L-matrix.

Lately, Saberi-Najafi et al. [Mediterr. J. Math. DOI: 10.1007/s00009-
014-0412-3] have demonstrated that if A is an irreducible M -matrix, the Mi-
laszewicz’s preconditioner can be exploited under mild conditions and it also
performs better than preconditioners introduced by Dehghan and Hajarian for
ameliorating the rate of convergence of the AOR method.

We have demonstrated that some of the restrictions assumed by the Mi-
laszewicz hold if A is assumed to be an M -matrix (or the AOR method is
convergent for the L-matrix A). Hence these restrictions have not been relaxed
really. To improve the rate of convergence of the Mixed-Type Splitting (MTS)
iterative method, we have examined the application of a quite general precon-
ditioner applied by Wang and Song [J. Comput. Appl. Math. 226 (2009), no.
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1, 114–124]. In this work, it has been proved that the (preconditioned) MTS
works better than the (preconditioned) AOR method by choosing appropriate
auxiliary matrices. Numerical experiments have illustrated the validity of the
theoretical results established through the paper.
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