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ORDERS AND DEGREE PATTERNS
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(Communicated by Mohammad Reza Darafsheh)

Abstract. Let G be a finite group. The degree pattern of G denoted by

D(G) is defined as follows: If π(G) = {p1, p2, ..., pk} such that p1 < p2 <
... < pk, then D(G) := (deg(p1), deg(p2), ..., deg(pk)), where deg(pi) for
1 ≤ i ≤ k, are the degree of vertices pi in the prime graph of G. In this
article, we consider a finite groupG under assumptions |G| = |L4(2n)| and
D(G) = D(L4(2n)), where n ∈ {5, 6, 7} and we prove that G ∼= L4(2n).
Keywords: Degree pattern, prime graph, projective special linear group.
MSC(2010): Primary: 20D05; Secondary: 20D06.

1. Introduction

Let G be a finite group and ω(G) be the set of element orders for G. The
set ω(G) is partially ordered under divisibility and is uniquely determined by
a subset µ(G) of its maximal elements. We put all prime divisors of |G| in
π(G), and we associate to π(G) a simple graph Γ(G), called prime graph or
Grunberg-Kegel graph, whose vertex set is π(G) and every two primes p and
q are adjacent iff pq ∈ ω(G), in this case we write p ∼ q, and by p ≁ q we mean
that any element of order pq does not exist in G.

Definition 1.1. Let G be a group with π(G) = {p1, p2, ..., pk}. We define
degree of p as follows for p ∈ π(G):

deg(p) := |{q ∈ π(G)|p ∼ q}|.
Also D(G) := (deg(p1), deg(p2), ..., deg(pk)), where p1 < p2 < ... < pk, which
is called degree pattern of G.
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OD-characterization of some projective special linear groups 28

A group G is called k-fold OD-characterizable if there exist just k non-
isomorphic finite groups H with |H| = |G| and D(H) = D(G). If k = 1, a
1-fold OD-characterizable group is simply called OD-characterizable.

Many articles are devoted to characterize some finite simple groups by their
orders and degree patterns. As in the present paper we investigate OD-
characterizability of some projective special linear groups, we review only some
OD-characterizable groups of this kind that have been obtained up to now.

(1) L2(2) ∼= S3 and L2(3) ∼= A4 [7].
(2) L2(2

n), where n ≥ 2 [7].
(3) L2(q), where q ≥ 4 is an odd prime power and π(L2(q)) ≤ 4 [12].
(4) L2(q), where q ≥ 4 is an odd prime power and π(L2(q)) ≥ 5 [13].
(5) L4(q), where q = 5, 7, 9, 11, 13, 17 [1, 2].
(6) L4(2

n), where n = 2, 3, 4 [1].

(7) L3(q), with q = pn and |π(q
2+q+1)
d | = 1 where d = (3, q − 1) [8].

(8) L3(9) and L9(2) [5, 14].
(9) Ln(2), where n = p or p+ 1, for which 2p − 1 is a prime [2].

We add another projective special linear groups to the sixth part of the for-
mer list. In fact, we prove that L4(2

n) for n = 5, 6 and 7 areOD-characterizable.
All groups in this paper are assumed finite.
Throughout this paper, we use the following notations: We denote the socle
of G by Soc(G), which is the subgroup generated by the set of all minimal
normal subgroups of G. For p ∈ π(G), we denote by Gp and Sylp(G) a Sylow
p-subgroup of G and the set of all Sylow p-subgroups of G respectively. All
further unexplained notations are standard and and one may refer to [10].

2. Preliminary lemmas

Given a prime p ⩾ 5, we denote by Sp the set of all finite non-abelian
simple groups G such that p ∈ π(G) ⊆ {2, 3, ..., p}. It is clear that the set of
all finite non-abelian simple groups is the disjoint union of the finite sets Sp

for all primes p ⩾ 5.

Lemma 2.1. Let P be a non-abelian simple group belongs to Sp, where 5 ⩽
p ⩽ 997. Then π(Out(P )) ⊆ {2, 3, 5, 7, 11}.

Proof. All finite non-abelian simple groups P in Sp, for 5 ⩽ p ⩽ 997, are
collected in Table 4 in [11]. So by computing the order of outer automorphism
groups of them, we see that π(Out(P )) ⊆ {2, 3, 5, 7, 11}. In fact, 11 only divides
the order of outer automorphism group of L2(2

11), where L2(2
11) ∈ S683. □

To prove the propositions in the next section, we need degree patterns of
the special linear groups under study. Since we obtain these degree patterns
by a subset µ of these groups, we give following lemma.
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Lemma 2.2. Let L = L4(q). Then µ(L) = {(q2 + 1)(q + 1), (q3 − 1), 2(q2 −
1), 4(q − 1)}.

Proof. The proof follows from the structure of maximal tori in finite simple
classical groups, see [3, 6]. □

Lemma 2.3. [4, Theorem 10.3.1] Let G be a Frobenius group with kernel K
and complement H. Then:

(1) K is a nilpotent group.
(2) |K| ≡ 1(mod|H|).

Definition 2.4. G is said to be completely reducible group if and only if either
G = 1 or G is the direct product of a finite number of simple groups. A
completely reducible group will be called a CR-group.

A CR-group has trivial center if and only if it is a direct product of non-
abelian simple groups and in this case, it has been named a centerless CR-
group. The following lemma determines the structure of the automorphism
group of a centerless CR-group.

Lemma 2.5. [10, Theorem 3.3.20] Let R be a finite centerless CR-group and
write R = R1 × R2 × ... × Rk, where Ri is a direct product of ni isomorphic
copies of a simple group Hi, and Hi and Hj are not isomorphic if i ̸= j. Then
Aut(R) = Aut(R1) × Aut(R2) × ... × Aut(Rk) and Aut(Ri) ∼= Aut(Hi) ≀ Sni ,
where in this wreath product Aut(Hi) appears in its right regular representation
and the symmetric group Sni in its natural permutation representation. More-
over, these isomorphisms induce isomorphisms Out(R) ∼= Out(R1)×Out(R2)×
...× Out(Rk) and Out(Ri) ∼= Out(Hi) ≀ Sni .

3. Main results

Proposition 3.1. If G is a finite group such that D(G) = D(L4(2
5)) and

|G| = |L4(2
5)|, then G ∼= L4(2

5).

Proof. We break the proof of all propositions in this section to three steps. In
this case, we know that |G| = |L4(2

5)| = 230.32.52.7.112.313.41.151, now since
µ(L4(2

5)) = {(210+1)(25+1), (215− 1), 2(210− 1), 4(25− 1)} (by Lemma 2.2),
then D(L4(2

5)) = (3, 5, 3, 2, 5, 5, 3, 2). So D(G) = (3, 5, 3, 2, 5, 5, 3, 2)
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is

a {151, r}′-group, where r ∈ {11, 31, 41}. In particular, G is non-solvable.

First, we show that K is a {151}′
-group. Assume the contrary and let 151 ∈

π(K). Since deg(151) = 2, at least one of the primes in {11, 31, 41} and 151
aren’t adjacent, we put it r. Now we claim that r does not divide the order of
K. Otherwise, we may suppose thatH is a Hall {151, r}-subgroup ofK of order
151 · ri, where i ∈ {1, 2, 3}. It is seen that H is a nilpotent subgroup of G, thus
151.r ∈ ω(K) ⊆ ω(G), a contradiction. Thus, {151} ⊆ π(K) ⊆ π(G)−{r}. Let
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K151 ∈ Syl151(K), then by Frattini argument, G = KNG(K151). Therefore,
NG(K151) contains an element of order r, say σ. SinceG has no element of order
151.r, ⟨σ⟩ should act fixed point freely onK151, implying ⟨σ⟩K151 is a Frobenius
group. By Lemma 2.3, |⟨σ⟩||(|K151| − 1). It follows that r|151 − 1, which is

impossible. So K is a {151}′
-group. Next, we show that K is a {r}′-group.

Assume the contrary, let r||K| and Kr ∈ Sylr(K). Then by Frattini argument

G = KNG(Kr). Since K is a {151}′
-group, 151 must divide |NG(Kr)|, so

suppose x is an element of NG(Kr) of order 151. As ⟨x⟩ ⊆ NG(Kr), then
⟨x⟩Kr is a subgroup of G. Moreover this subgroup is nilpotent and therefore
151 ∼ r, which is a contradiction by assumption. Therefore , r and 151 do not
divide |K|. In addition, since G ̸= K, G is non-solvable.

Step 2. The quotient G
K is an almost simple group (recall that a group G is

an almost simple group, if S⊴G ≲ Aut(S), for some non-abelian group S). In
fact, S ≤ G

K ≲ Aut(S), where S is a finite non-abelian simple group isomorphic

to L4(2
5).

Let G = G
K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite

non-abelian simple groups and S ≤ G
K ≲ Aut(S) (see [9, Proposition 3.1, Step

2]). First, we show that m = 1. Suppose that m ≥ 2. We consider these
separate parts:
Part A. Let 151 ≁ 2 or 151 ≁ 3. We claim 151 does not divide |S|. Assume the
contrary and let 151 | |S|, on the other hand by Table 1 in [11], {2, 3} ⊆ π(Pi)
for every i, hence 2 ∼ 151 and 3 ∼ 151, which is a contradiction. Now,
by Step 1, we observe that 151 ∈ π(G) ⊆ π(Aut(S)). However, Aut(S) =
Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct products
of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore, for some j,
151 divides the order of an automorphism group of a direct product Sj of t
isomorphic simple groups Pi. Since Pi ∈ Sp (5 ⩽ p ⩽ 151), Lemma 2.1 follows
that |Out(Pi)| is not divisible by 151, so 151 does not divide the order of
Aut(Pi). Now, by Lemma 2.5, we obtain |Aut(Sj)| = |Aut(Pi)|t!.t!. Therefore,
t ≥ 151 and so 2302 must divide the order of G, which is a contradiction.
Part B. Let 151 ∼ 2 and 151 ∼ 3. Since deg(151) = 2, then 151 ≁ {11, 31, 41}.
So by Step 1, K is a {11, 31, 41, 151}′-group. Now since deg(2) = 3, 2 and at
least one prime in {11, 31, 41} are not adjacent, put it u. Now we claim u does
not divide |S|. Assume the contrary and let u | |S|. Therefore, u ∼ 2, which
is impossible. Using similar argument as before, we see that 3u ⩾ 311 must
divide the order of G, which is a contradiction.

Part A and Part B imply that m = 1 and hence S = P1.
By Table 1 and Step 1, it is evident that |S| = 2α1 .3α2 .5α3 .7α4 .11α5 .31α6 .41α7 .
151, where αi’s have the following conditions:

(1) 1 ≤ α1 ≤ 30, 1 ≤ α2 ≤ 2, 0 ≤ α3, α5 ≤ 2, 0 ≤ α4, α7 ≤ 1 and
0 ≤ α6 ≤ 3;

(2) α5 = 2, α6 = 3 or α7 = 1.
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Table 1. Finite simple groups S ∈ S151

S |S|
L3(32) 215.3.7.11.312.151
L4(32) 230.32.52.7.112.313.41.151
L5(8) 230.34.5.74.13.31.73.151
L6(8) 245.37.5.75.13.19.31.732.151
L2(151) 23.3.52.19.151
A151 3× 4× 5× ...× 151
A152 3× 4× 5× ...× 152
A153 3× 4× 5× ...× 153
A154 3× 4× 5× ...× 154
A155 3× 4× 5× ...× 155
A156 3× 4× 5× ...× 156

Now, using Table 1 follows that S ∼= L4(2
5), and this completes the proof of

Step 2.
Step 3. G is isomorphic to L4(2

5).
By Step 2, L4(2

5)⊴ G
K ≲ Aut(L4(2

5)). As |G| = |L4(2
5)|, we deduce K = 1,

so G ∼= L4(2
5), and the proof is completed. □

Proposition 3.2. If G is a finite group such that D(G) = D(L4(2
6)) and

|G| = |L4(2
6)|, then G ∼= L4(2

6).

Proof. By Lemma 2.2, µ(L4(2
6)) = {(212+1)(26+1), (218−1), 2(212−1), 4(26−

1)}, then D(G) = D(L4(2
6)) = (4, 6, 6, 6, 6, 3, 3, 3, 3). Also we have |G| =

|L4(2
6)| = 236.37.52.73.132.17.19.73.241.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {73, 241}′-group. In particular, G is non-solvable.

First, we show that K is a {241}′
-group. Assume the contrary and let 241 ∈

π(K). Since deg(241) = 3, at least one of the primes in {7, 13, 19, 73} and 241
aren’t adjacent, we put it r. Now we claim that r does not divide the order of
K. Otherwise, we may suppose thatH is a Hall {241, r}-subgroup ofK of order
241 · ri, where i ∈ {1, 2, 3}. It is seen that H is a nilpotent subgroup of G, thus
241.r ∈ ω(K) ⊆ ω(G), a contradiction. Thus, {241} ⊆ π(K) ⊆ π(G)−{r}. Let
K241 ∈ Syl241(K), then by Frattini argument, G = KNG(K241). Therefore,
NG(K241) contains an element of order r, say σ. Since G has no element of
order 241.r, ⟨σ⟩ should act fixed point freely on K241, implying ⟨σ⟩K241 is a
Frobenius group. By Lemma 2.3, |⟨σ⟩||(|K241| − 1). It follows that r|241 − 1,

which is impossible. So K is a {241}′
-group. Next, we show that K is a {73}′-

group. Assume the contrary, let 73||K|, since deg(73) = 3 then at least one of
the primes in {13, 17, 19, 241} and 73 aren’t adjacent, we put it r. By similar
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way we obtain that r|73−1, which is impossible. Therefore K is a {73}′
-group

too. In addition since G ̸= K, G is non-solvable.
Step 2. The quotient G

K is an almost simple group. In fact, S ≤ G
K ≲

Aut(S), where S is a finite non-abelian simple group isomorphic to L4(2
6) or

O−
8 (8).
Let G = G

K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi
,s are finite

non-abelian simple groups and S ≤ G
K ≲ Aut(S). First, we show that m = 1.

Suppose that m ≥ 2. We consider these separate parts:
Part A. Let 241 ≁ 2 or 241 ≁ 3. By the same way in Proposition 3.1 (Step 2,
Part A) we get a contradiction, because 2482 must divide the order of G, which
is impossible.
Part B. Let 73 ≁ 2 or 73 ≁ 3. Similarly to those in Proposition 3.1 (Step
2, Part A), we can prove that 2146 must divide the order of G, which is a
contradiction.
Part C. Let 241 ∼ {2, 3} and 73 ∼ {2, 3}. In this case, we consider the
following two subcases:

• Subcase 1. 241 ∼ 73.
As deg(241) = 3, then 241 ≁ {13, 17, 19}. We easily see that K is a
{13, 17, 19}′-group. For example we investigate this fact for 13. As-
sume the contrary, let 13||K| and K13 ∈ Syl13(K). Then by Frattini

argument G = KNG(K13). Since K is a {241}′
-group, 241 must di-

vide |NG(K13)|, so suppose x is an element of NG(K13) of order 241.
As ⟨x⟩ ⊆ NG(K13), then ⟨x⟩K13 is a subgroup of G. Moreover, this
subgroup is nilpotent and therefore 241 ∼ 13, which is a contradiction
by assumption. So K is a {13}′

-group.
On the other hand deg(2) = 4, therefore 2 and at least one of the

primes in {13, 17, 19} are not adjacent, put it u. similarly to Proposi-
tion 3.1 (Step 2, Part B), we conclude that 3u ⩾ 313 must divide the
order of G, which is a contradiction.

• Subcase 2. 241 ≁ 73.
(i) Suppose there exists one prime in {13, 17, 19} which is not adjacent

to 241 or 73, and also to 2. we put it u. By a similar way in Subcase
1, it is seen that K is a {u}′-group. Now, we claim u does not
divide |S|. Otherwise we must have u ∼ 2, which is impossible.
The same technique in Proposition 3.1 (Step 2, Part B), implies
that 3u ⩾ 313 must divide the order of G, which is a contradiction.

(1) Suppose that we do not have the conditions in [(i)], i.e., two primes
in {13, 17, 19} := {u1, u2, u3} are adjacent to 2, we put them u2

and u3, and the other ones, u1, is adjacent to 73 and 241 simul-
taneously. By a similar way in Proposition 3.1(Step 1), K is a
{u2}′-group (because 241 ≁ u2), and after that similar as before
as K is a {u2}′-group (because u2 ≁ u1). Now similarly to those
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Table 2. Finite simple groups S ∈ S241

S |S|
U3(16) 212.3.5.172.241
3D4(4) 224.34.52.7.132.241
L2(2

12) 212.32.5.7.13.17.241
G2(16) 224.33.52.7.13.172.241
S4(64) 224.33.52.72.132.17.241
O−

8 (8) 236.37.5.73.13.17.19.73.241
L4(64) 236.37.52.73.132.17.19.73.241
S8(8) 248.39.52.74.133.17.19.241
U4(64) 236.34.53.72.133.17.37.109.241
O+

10(8) 260.39.52.75.132.172.19.31.73.151.241
L3(2

12) 236.35.52.72.132.17.19.37.73.109.241
S6(64) 254.36.53.73.133.17.19.37.109.241
O+

8 (64) 272.37.53.74.134.172.37.73.109.2412

F4(8) 272.310.52.74.132.17.37.732.109.241
L2(241) 24.3.5.112.241
A241 3× 4× 5× ...× 241
. .
. .
. .

A250 3× 4× 5× ...× 250

in Proposition 3.1 (Step 2, Part B), we can prove 3u1 ⩾ 313 must
divide the order of G, which is a contradiction.

Part A, Part B and Part C imply that m = 1 and hence S = P1.
By Table 2 and Step 1, it is evident that |S| = 2α1 .3α2 .5α3 .7α4 .13α5 .17α6 .19α7 .
73.241, where αi’s have the following conditions:

1 ≤ α1 ≤ 36, 1 ≤ α2 ≤ 7, 0 ≤ α3, α5 ≤ 2, 0 ≤ α4 ≤ 3 and
0 ≤ α6, α7 ≤ 1

Now, using Table 2 follows that S ∼= L4(2
6) or O−

8 (8), and this completes the
proof of Step 2.

Step 3. G is isomorphic to ∼= L4(2
6).

If S ∼= L4(2
6), as S ⊴ G

K ≲ Aut(S) and |G| = |L4(2
6)|, we deduce K = 1, so

G ∼= L4(2
6).

If S ∼= O−
8 (8), by S ⊴ G

K ≲ Aut(S) we have,

1 | 5.13
|K| || Out(O−

8 (8)) |= 6
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Therefore | K |= 5 · 13. Then K ∼= Z5.13 and therefore K ≤ CG(K). But
CG(K)

K ⊴ G
K

∼= O−
8 (8), then simplicity of O−

8 (8) implies that CG(K)
K = 1 or

CG(K)
K

∼= O−
8 (8). If

CG(K)
K = 1, K = CG(K) and hence,

| O−
8 (8) |=| G

K |=| G
CG(K) ||| Aut(K) |= 48

which is impossible. Therefore CG(K)
K

∼= O−
8 (8), this implies that G = CG(K),

so K ≤ Z(G), that is, G is a central extension of Z5.13 by O−
8 (8). If G splits

over K, then G ∼= Z5.13 × O−
8 (8), which is impossible because deg(5) ̸= 8,

by assumption. Otherwise G ∼= Z5.13.O
−
8 (8), which is impossible too, because

5.13 must divide the Schur multiplier of O−
8 (8), which is 1. The proof here is

completed.
□

Proposition 3.3. If G is a finite group such that D(G) = D(L4(2
7)) and

|G| = |L4(2
7)|, then G ∼= L4(2

7).

Proof. As µ(L4(2
7)) = {(214+1)(27+1), (221−1), 2(214−1), 4(27−1)}, D(G) =

D(L4(2
7)) = (3, 6, 4, 2, 4, 6, 4, 5, 2). Also |G| = |L4(2

7)| = 242.32.5.72

.29.432.113.1273.337.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is

a {337, r}′-group, where r ∈ {43, 113, 127}. In particular, G is non-solvable.

First, we show that K is a {337}′
-group. Assume the contrary and let 337 ∈

π(K). Since deg(337) = 2, at least one of the primes in {43, 113, 127} and 337
are not adjacent, we put it r. Now, we claim that r does not divide the order of
K. Otherwise, we may suppose thatH is a Hall {337, r}-subgroup ofK of order
337 · ri, where i ∈ {1, 2, 3}. It is seen that H is a nilpotent subgroup of G, thus
337.r ∈ ω(K) ⊆ ω(G), a contradiction. Thus, {337} ⊆ π(K) ⊆ π(G)−{r}. Let
K337 ∈ Syl337(K), then by Frattini argument, G = KNG(K337). Therefore,
NG(K337) contains an element of order r, say σ. SinceG has no element of order
337.r, ⟨σ⟩ should act fixed point freely onK337, implying ⟨σ⟩K337 is a Frobenius
group. By Lemma 2.3, |⟨σ⟩||(|K337| − 1). It follows that r|337 − 1, which is

impossible. So K is a {337}′
-group. Next, we show that K is a {r}′-group.

Assume the contrary, let r||K| and Kr ∈ Sylr(K). Then by Frattini argument

G = KNG(Kr). Since K is a {337}′
-group, 337 must divide |NG(Kr)|, so

suppose x is an element of NG(Kr) of order 337. As ⟨x⟩ ⊆ NG(Kr), then
⟨x⟩Kr is a subgroup of G. Moreover, this subgroup is nilpotent and therefore
337 ∼ r, which is a contradiction by assumption. Therefore r and 337 do not
divide |K|. In addition since G ̸= K, G is non-solvable.

Step 2. The quotient G
K is an almost simple group. In fact, S ≤ G

K ≲
Aut(S), where S is a finite non-abelian simple group isomorphic to L4(2

7).
Let G = G

K . Then S := Soc(G) = P1 × P2 × ... × Pm, where Pi
,s are finite

non-abelian simple groups and S ≤ G
K ≲ Aut(S). First, we show that m = 1.
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Suppose that m ≥ 2. We consider these separate parts:
Part A. Let 337 ≁ 2 or 337 ≁ 3. Similarly to those in Proposition 3.1 (Step 2,
Part A), we obtain 2674 must divide the order of G, which is a contradiction.
Part B. Let 337 ∼ 2 and 337 ∼ 3. Since deg(2) = 3, 2 and at least one
prime in {43, 113, 127} are not adjacent, put it u. Since deg(337) = 2, then
337 ≁ {43, 113, 127}. So by Step 1, K is a {43, 113, 127, 337}′-group. Now we
claim u does not divide |S|. Assume the contrary and let u | |S|. By similar
way in Proposition 3.1 (Step 2, Part A), we conclude that 3u ⩾ 343 must divide
the order of G, which is a contradiction.

Part A and Part B imply that m = 1 and hence S = P1.

Table 3. Finite simple groups S ∈ S337

S |S|
L3(2

7) 221.3.72.43.1272.337
L2(337

2) 25.3.5.7.132.41.277.337
S4(337) 210.32.5.72.134.41.277.3374

L4(2
7) 242.32.5.72.29.432.113.1273.337

L7(8) 263.37.5.76.13.19.31.73.127.151.337
L8(8) 284.39.52.78.132.17.19.31.73.127.151.241.337
O+

14(8) 2126.314.53.79.11.133.192.31.37.732.109.127.151.241.331.337
L2(337) 24.3.7.132.337
A337 3× 4× 5× ...× 337
A338 3× 4× 5× ...× 338

By Table 3 and Step 1, it is evident that |S| = 2α1 .3α2 .5α3 .7α4 .29α5 .43α6 .113α7

.127α8 .337, where αi’s have the following conditions:

(1) 1 ≤ α1 ≤ 42, 1 ≤ α2 ≤ 2, 0 ≤ α4, α6 ≤ 2, 0 ≤ α3, α5, α7 ≤ 1 and
0 ≤ α8 ≤ 3;

(2) α6 = 2, α7 = 1 or α8 = 3.

Now, using Table 3 follows that S ∼= L4(2
7), and this completes the proof of

Step 2.
Step 3. G is isomorphic to L4(2

7).
By Step 2, L4(2

7)⊴ G
K ≲ Aut(L4(2

7)). As |G| = |L4(2
7)|, we deduce K = 1,

so G ∼= L4(2
7), and the proof is completed. □
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