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Abstract. Let R be a right artinian ring or a perfect commutative ring.

Let M be a noncosingular self-generator
∑

-lifting module. Then M has
a direct decomposition M = ⊕i∈IMi, where each Mi is noetherian quasi-
projective and each endomorphism ring End(Mi) is local.
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1. Introduction

Throughout this paper R will denote an associative ring with identity. Mod-
ules over R will be right R-modules. We will use the notation N ≪ M to
indicate that N is small in M (i.e. ∀L ⪇ M,L + N ̸= M). Rad(M) will
denote the Jacobson radical of M . A non-zero module M is called hollow if
every proper submodule of M is small in M . M is called local if the sum of
all proper submodules of M is also a proper submodule of M . It is clear that
every local module is hollow. A module M is called lifting if for every sub-
module A ≤ M , there exists a direct summand B of M such that B ≤ A and
A/B ≪ M/B. M is said to be

∑
-lifting if every direct sum of copies of M

is lifting. Lifting modules are dual notions of extending modules and [4] deals
with different aspects of lifting modules. A module M is amply supplemented
and every coclosed submodule of M is a direct summand of M if and only if
M is lifting by [4, 22.3(d)]. In [8] Talebi and Vanaja defined Z(M) as follows:

Z(M) = Re (M,S) =
∩

{Ker(g) | g ∈ Hom(M,L),L ∈ S},

where S denotes the class of all small modules. They called M a cosingular
(noncosingular) module if Z(M) = 0 (Z(M) = M).

In this note, we study the decomposition of noncosingular (
∑

-) lifting mod-
ules. Following [5], Er asked the following question:
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(∗) When does the lifting condition on M (N) imply the same on M (I) for
arbitrary set I?

Er provides some answers to this question [5, Corollary 6 and Corollary 7].
In this paper we give another answer to this question (Proposition 3.3).

In Section 2, we prove the following proposition:
Let R be a right artinian ring or a perfect commutative ring. Let M be

a noncosingular lifting module which has no relatively projection component.
Then M = ⊕n

i=1Mi, where each endomorphism ring End(Mi) is local and the
following statements satisfy:

(1) The decomposition complements direct summands.
(2) Every local summand of M is a summand.
(3) M has the exchange property.
(4) The radical factor ring S/J(S) of the endomorphism ring S of M is von

Neumann regular, and idempotents lift modulo J(S).
In Section 3, as we stated in the abstract, we prove the following main

theorem:
Let R be a right artinian ring or a perfect commutative ring. Let M be a

noncosingular self-generator
∑

-lifting module. Then M has a direct decom-
position M = ⊕i∈IMi, where each Mi is noetherian quasi-projective and each
endomorphism ring End(Mi) is local.

A family {Xλ : λ ∈ Λ} of submodules of a module M is called a local
summand of M , if

∑
λ∈Λ Xλ is direct and

∑
λ∈F Xλ is a summand of M for

every finite subset F ⊆ Λ. If even
∑

λ∈Λ Xλ is a summand of M , we say that
the local summand is a summand. A module M is said to have the (finite)
exchange property if for any (finite) index set I, whenever M⊕N = ⊕i∈IAi for
modules N and Ai, then M ⊕N = M ⊕ (⊕i∈IBi) for submodules Bi ≤ Ai. Let
M = ⊕IMi be a decomposition of the module M into nonzero summands Mi.
This decomposition is said to complement direct summands if, whenever A is
a direct summand of M , there is a subset J of I for which M = (⊕JMj)⊕A.
The module M is called quasi-discrete if M is lifting and satisfies the following
condition:

For every direct summands K and L of M with M = K + L, K ∩ L is a
direct summand of M .

2. Noncosingular lifting modules

Lemma 2.1. [1, Lemma 2.2] Let M = ⊕∞
i=1Mi, where each Mi is local non-

cosingular. If, for each i, there is an epimorphism fi : Mi −→ Mi+1 which is
non-isomorphism, then M is not lifting.

Proposition 2.2. Let R be an arbitrary ring and M a noncosingular local
module. If M is not noetherian, then there exists a countable family {Ni | i ∈
N} of non-noetherian images of M such that ⊕i∈NNi is not lifting.
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Proof. Assume that⊕i∈NNi is a lifting module for any countably family {Ni | i ∈
N} of non-noetherian images of M . We will prove that M is noetherian.
Let A1 ⊂ A2 ⊂ · · · be a strictly ascending chain of submodules of M . Let
Ni = M/Ai and fi : Ni → Ni+1 be the obvious projections. Hence there is an
infinite sequence of non-isomorphism epimorphisms

N1
f1−→ N2

f2−→ · · · −→ Nn
fn−→ · · · .

By Lemma 2.1, ⊕i∈NNi is not a lifting module which is a contradiction. Thus
M is noetherian. □

Recall that a family of modules {Mi | i ∈ I} is called (locally) semi-T-
nilpotent if, for any countable set of non-isomorphisms {fn : Min → Min+1}N
with all in distinct in I, ( and for any x ∈ Mi1), there exists k ∈ N (depending
on x) such that fk...f1 = 0 (fk...f1(x) = 0). It is obvious that if each Mi

is a local module, then the family {Mi | i ∈ I} of modules is locally semi-T-
nilpotent if and only if it is semi-T-nilpotent.

Proposition 2.3. Let M = ⊕∞
i=1Mi with Mi local noncosingular and Mj-

projective whenever j ̸= i. If M is a lifting module, then:
(1) {Mi} is locally semi-T-nilpotent.
(2) M is quasi-discrete.
(3) Rad(M) ≪ M .
(4) The decomposition M = ⊕∞

i=1Mi complements summands.

Proof. By [1, Corollary 2.1], {Mi} is locally semi-T-nilpotent. By [7, Theorem
4.53], (2), (3) and (4) hold. □

Recall that a module M is said to be Hopfian if any epimorphism is an
isomorphism.

Lemma 2.4. Let R be a right artinian ring or a perfect commutative ring.
Then every noncosingular hollow R-module M has a local endomorphism ring.

Proof. Let M be a noncosingular hollow R-module. Assume that ϕ : M → M
is a nonzero endomorphism. Since M is noncosingular and hollow, ϕ is an
epimorphism. Let R be right artinian. From the fact that hollow modules over
artinian rings are noetherian and so Hopfian, End(M) is local.

Now let R be a perfect commutative ring. Note that every hollow module
over a perfect ring is local. Thus M is local and so is cyclic. As finitely
generated modules over commutative rings are Hopfian, M is Hopfian. Thus
End(M) is local. □

A module M is said to have finite hollow dimension if there exists an epi-
morphism from M to a finite direct sum of n hollow factor modules with small
kernel.
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Theorem 2.5. [1, Theorem 2.1] Let R be a right perfect ring. Let M be a
noncosingular lifting module that does not have relatively projective component.
Then M has finite hollow dimension.

Proposition 2.6. Let R be a right artinian ring or a perfect commutative ring.
Let M be a noncosingular lifting module that does not have relatively projection
component. Then M = ⊕n

i=1Mi, where each endomorphism ring End(Mi) is
local and the following statements satisfy:

(1) The decomposition complements direct summands.
(2) Every local summand of M is a summand.
(3) M has the exchange property.
(4) The radical factor ring S/J(S) of the endomorphism ring S of M is von

Neumann regular, and idempotents lift modulo J(S).

Proof. By Theorem 2.5, there exist hollow submodules Mi (i ∈ {1, 2, · · · , n})
such thatM = ⊕n

i=1Mi. By Lemma 2.4, End(Mi) is local for all i ∈ {1, 2, · · · , n}.
Using [2, Corollary 12.7], this decomposition complements direct summands.
By [7, Theorem 2.25], (2), (3) and (4) hold. □
Proposition 2.7. Let M be a noetherian noncosingular lifting module. Then
there exists a decomposition M = M1 ⊕M2 ⊕ · · · ⊕Mn where for each i, Mi is
a noetherian hollow module with End(Mi) a local ring.

Proof. Since M is noetherian, it has a finite decomposition with indecompos-
able noetherian direct summands. Since every direct summand is hollow non-
cosingular, every non-zero homomorphism is an epimorphism. As every noe-
therian module is Hopfian, each noncosingular hollow direct summand has a
local endomorphism ring. □

3. Noncosingular
∑

-lifting modules

Lemma 3.1. [1, Lemma 2.3] Let U and V be noncosingular hollow modules
such that the module U ⊕ V is lifting. Then there exists an epimorphism from
U to V or V is U -projective.

Proposition 3.2. Let M be a nonzero noncosingular
∑

-lifting module. If M
is a local module, then End(M) is a division ring and M is quasi-projective.

Proof. Let ϕ ∈ End(M). Since M is hollow and noncosingular, ϕ is an epi-
morphism. Suppose ϕ is not monomorphism. By [1, Corollary 2.1], the fam-
ily {Mn}n∈N, where Mn = M for all n ∈ N, is semi-T-nilpotent. Consider
ϕn = ϕ : Mn → Mn+1, for all n ∈ N. Since {Mn}n∈N is semi-T-nilpotent,
there exists a positive number k such that ϕk : M1 = M → Mk = M is a
zero epimorphism, which is a contradiction. As M ⊕M is lifting and M is not
isomorphic to any nonzero image of M , M is quasi-projective (Lemma 3.1). □

The next proposition addresses Question (*).
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Proposition 3.3. Let R be a right artinian ring or a perfect commutative ring.
If M is a noncosingular hollow R-module such that M (N) is a lifting module,
then for any set I, M (I) is a lifting module with the exchange property.

Proof. First note that M has a local endomorphism ring (Lemma 2.4). By [3,
Theorem 2 and Lemma 3], any family of copies of M is locally semi-T-nilpotent
and M is almost M -projective. Now, by [3, Theorem 2 and Lemma 3] again,
we obtain that M (I) is a lifting module for any set I. Also, by locally semi-T-
nilpotent property and [7, Theorem 2.25], M (I) has the exchange property for
any set I. □

Theorem 3.4. Let R be a right artinian ring or a perfect commutative ring.
Let M be a noncosingular self-generator

∑
-lifting module. Then M has a direct

decomposition M = ⊕i∈IMi, where each Mi is noetherian quasi-projective and
each endomorphism ring End(Mi) is local.

Proof. By [6, Theorem 2.14 and Corollary 2.6(ii)], there exist an index set I
and hollow submodules Mi (i ∈ I) such that M = ⊕i∈IMi. By Lemma 2.4,
End(Mi) is local for all i ∈ I.

Since Mi ⊕Mi is lifting and Mi is not isomorphic to any nonzero image of
Mi, so it follows that Mi is Mi-projective by Lemma 3.1. Now we show that
Mi is noetherian for each i ∈ I. Let A be any submodule of Mi. Then, since
M is self-generator, there exists an exact sequence

M (J) f−→ A −→ 0

for some index set J . But M (J)/Kerf ∼= A, hence A is noncosingular and so A
is a coclosed submodule of Mi by [8, Lemma 2.3(2)]. Since Mi is lifting, A is a
direct summand of Mi and so a direct summand of M . As End(Mi) is local for
all i ∈ I, we get by the Krull-Schmidt-Azumaya theorem ( [2, Theorem 12.6])
that A ∼= Mj for some j ∈ I.

Now suppose that there exists a strictly ascending chain of submodules of
Mi

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · ⊆ Mi.

Then, by the above argument, each An is isomorphic to Min for some in ∈ I.
Hence the external direct sum D = ⊕∞

n=1An is isomorphic to ⊕∞
n=1Mn which

is a direct summand of M (N). So D is a lifting module. Clearly there exists an
infinite sequence of non-isomorphic epimorphisms

Mi/A1
f1−→ Mi/A2

f2−→ · · · −→ Mi/An
fn−→ · · · ,

where fn is the projection map on An. By Lemma 2.1, we get a contradiction
which proves that Mi is noetherian for each i ∈ I. □
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