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Abstract. In this note we point out and rectify some errors in a re-

cently published paper “N. Singh, R. Jain: Coupled Fixed Point Results
For Weakly Related Mappings in Partially Ordered Metric Spaces, Bull.
Iranian Math. Soc. 40 (2014), no. 1, 29–40”.
Keywords: Coupled fixed point, common coupled fixed point, partially

ordered space, weakly related mappings.
MSC(2010): Primary: 47H10; Secondary: 54H25.

In [1], the authors showed the existence of coupled fixed points for the non-
decreasing mappings in partially ordered complete metric space using a partial
order induced by an appropriate function ϕ. The reader should consult [1] for
terms not specifically defined in this note.

Remark 1. The authors in [1] claimed that Example 2.4 supports Theorem 2.3.
In Theorem 2.3, the function ϕ is considered to be bounded from above but
in Example 2.4, the function ϕ : X(= [0,+∞)) → R defined by ϕ(x) = 2x for
x ∈ X is not bounded from above. Further, the order relation “≼’ must be
induced by ϕ but in Example 2.4 it is considered to be the usual ordering.

We now rectify Example 2.4 as follows:

Example 2. Let X = [0, 1] and d(x, y) = |x − y|, then (X, d) is a complete
metric space. Let ϕ : X → R be the mapping defined by ϕ(x) = −2x for all
x ∈ X. Define the relation “≼” on X as follows:

x ≼ y iff d(x, y) ≤ ϕ(y)− ϕ(x).

Then “≼” is partial order induced by ϕ.

Clearly, ϕ is bounded from above on X.
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Define F : X ×X → X by F (x, y) =
x(1 + y)

2
for all x, y ∈ X.

Then F is non-decreasing function on X.

Let x0 = 0, y0 = 1, then F (x0, y0) =
x0(1 + y0)

2
= 0 and

F (y0, x0) =
y0(1 + x0)

2
=

1

2
.

Finally, we check that x0 ≼ F (x0, y0) and y0 ≼ F (y0, x0).

Now,

x0 ≼ F (x0, y0) iff d(x0, F (x0, y0)) ≤ ϕ(F (x0, y0))− ϕ(x0)

iff d(0, 0) = 0 ≤ ϕ(0)− ϕ(0) = 0, which is true.

Also,

y0 ≼ F (y0, x0) iff d(y0, F (y0, x0)) ≤ ϕ(F (y0, x0))− ϕ(y0)

iff d

(
1,

1

2

)
≤ ϕ

(
1

2

)
− ϕ(1)

iff
1

2
≤ (−2)

(
1

2

)
− (−2)(1) = 1, which is again true.

Hence all the conditions of Theorem 2.3 are satisfied. Applying Theorem 2.3,
(0, 0) is the coupled fixed point of F .

Remark 3. (i) In Example 2, the partial order “≼” induced by ϕ is not the

usual ordering “≤”. Clearly, 1 ≼ 1

2
but 1 ≰

1

2
.

(ii) Again, the authors in [1] claimed that Example 3.3 supports Theorem 3.2.
In Theorem 3.2, the function ϕ is considered to be bounded from above but
in Example 3.3, the function ϕ : X(= [0,∞)) → R defined by ϕ(x) = 2x
for x ∈ X is not bounded from above. Further, the order relation “≼”
must be induced by ϕ but in Example 3.3 it is considered to be the usual
ordering.

We now rectify Example 3.3 as follows:

Example 4. Let X = [0, 1] and d(x, y) = |x − y|, then (X, d) is a complete
metric space. Let ϕ : X → R be the mapping defined by ϕ(x) = −2x for all
x ∈ X. Define the relation “≼” on X as follows:

x ≼ y iff d(x, y) ≤ ϕ(y)− ϕ(x).

Then “≼” is partial order induced by ϕ.

Since 1 ≼ 1

2
, so “≼” is not the usual order “≤”.

Clearly, ϕ is bounded from above on X.



51 Jain, Gupta and Kumar

Define F : X ×X → X by F (x, y) =
x(1 + y)

4
for all x, y ∈ X and G : X → X

by G(x) = x
2 for x ∈ X.

Now, GF (x, y) =
x(1 + y)

8
, F (Gx,Gy) = F

(x
2
,
y

2

)
=

x(2 + y)

16
,

GF (y, x) =
y(1 + x)

8
, F (Gy,Gx) = F

(y
2
,
x

2

)
=

y(2 + x)

16
for x, y ∈ X.

We first show that the pair {F,G} is weakly related.

We consider the following:

(i) F (x, y) ≼ GF (x, y)

iff d(F (x, y), GF (x, y)) ≤ ϕ(GF (x, y))− ϕ(F (x, y))

iff

∣∣∣∣x(1 + y)

4
− x(1 + y)

8

∣∣∣∣ ≤ ϕ

(
x(1 + y)

8

)
− ϕ

(
x(1 + y)

4

)
iff

x(1 + y)

8
≤ −x(1 + y)

4
+

x(1 + y)

2

iff
x(1 + y)

8
≤ x(1 + y)

4
, which is true for x, y ∈ X.

(ii) Gx ≼ F (Gx,Gy)
iff d(Gx,F (Gx,Gy)) ≤ ϕ(F (Gx,Gy))− ϕ(Gx)

iff

∣∣∣∣x2 − x(2 + y)

16

∣∣∣∣ ≤ ϕ

(
x(2 + y)

16

)
− ϕ

(x
2

)
iff

∣∣∣∣6x− xy

16

∣∣∣∣ ≤ −x(2 + y)

8
+ x

iff

∣∣∣∣6x− xy

16

∣∣∣∣ ≤ 6x− xy

8
, which is true for x, y ∈ X.

Similarly, we show that F (y, x) ≼ GF (y, x) and Gy ≼ F (Gy,Gx) for all x, y ∈
X. Hence the pair {F,G} is weakly related.

Let x0 = 0, y0 = 1, then F (x0, y0) = 0 and F (y0, x0) =
1

4
.

Finally, we check that x0 ≼ F (x0, y0) and y0 ≼ F (y0, x0).

x0 ≼ F (x0, y0) iff d(x0, F (x0, y0)) ≤ ϕ(F (x0, y0))− ϕ(x0)

iff d(0, 0) ≤ ϕ(0)− ϕ(0), which is true.

y0 ≼ F (y0, x0) iff d(y0, F (y0, x0)) ≤ ϕ(F (y0, x0))− ϕ(y0)

iff d

(
1,

1

4

)
≤ ϕ

(
1

4

)
− ϕ(1)

iff
3

4
≤ (−2)

(
1

4

)
− (−2)(1)

iff
3

4
≤ −1

2
+ 2 =

3

2
, which is true.
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Hence all the conditions of Theorem 3.2 are satisfied. Applying Theorem 3.2,
(0, 0) is the common coupled fixed point of the pair {F,G}.
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