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ABSTRACT. In this paper, we study the generalized order-k Jacobsthal
sequences modulo m for k£ > 2 and the generalized order-k Jacobsthal-
Padovan sequence modulo m for k > 3. Also, we define the generalized
order-k Jacobsthal orbit of a k-generator group for k > 2 and the gener-
alized order-k Jacobsthal-Padovan orbit a k-generator group for k > 3.
Furthermore, we obtain the lengths of the periods of the generalized order-
3 Jacobsthal orbit and the generalized order-3 Jacobsthal-Padovan orbit
of the direct product Dayn X Zom, (n, m > 3) and the semidirect product
D2n X Z2m, (n’ m 2 3)'
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1. Introduction

It is known that the Jacobsthal sequence {.J,} is defined recursively by the
equation

(11) In=Jn_1+ 22
for n > 2, where Jp =0 and J; = 1.
In [10], Koken and Bozkurt showed that the Jacobsthal numbers are also gen-

erated by a matrix

12 n_ | JInt1 2J,
F_{l 0}’F_[Jn 2Jn1]
Kalman [8] mentioned that these sequences are special cases of a sequence

which is defined recursively as a linear combination of the preceding k terms:

An+tk = CoQp + C1Qp41 + -+ + Ck—10nyk—1,
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The Jacobsthal sequences in finite groups 80

where ¢g, ¢1,- - ,ck—1 are real constants. In [8], Kalman derived a number of
closed-form formulas for the generalized sequence by companion matrix method
as follows:

[0 10 00 T
001 0 0
000 0 0

Ay =
00O0-- 01
CoC1C2 *+ Ck—2 Cp—1 |

Then by an inductive argument he obtained that

ao Qn
AZ ai _ Gn41
ap—1 Ap4k—1
In [13], Yilmaz and Bozkurt defined the k sequences of the generalized order-k

Jacobsthal numbers as follows:
forn>0and 1 <i<k

(1.2) Jh=J 2T T,

with initial conditions

, 1 ifn=1-1
v — ’ —k<n<
In { 0 otherwise, forl —k<n<Q0,

where J! is the nth term of the ith sequence. If k = 2 and i = 1, the generalized
order-k Jacobsthal sequence is reduced to the conventional Jacobsthal sequence.

In [13], the generalized order-k Jacobsthal matrix C' had been given as:

12 -+ 11

10 --- 00
(1.3) c=(0 100

00 --- 10
Also, it was proved that B,, = C - B,,_1 where

J1 J? Jk
J J? JE_
(1.4) B, = ' ' '
Toorer Tackn o Tiikn

Lemma 1.1. ([13]) Let C and B, be as is (1.3) and (1.4), respectively. Then,
for all integers n > 0
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B, =C".

In [3], Deveci defined the Jacobsthal-Padovan sequence {J (n)} as follows:
(1.5) J(n+2)=J(n)+2J(n—1)
for n > 0, where J (—1) =0and J(0) = J (1) = 1.
In [3], the Jacobsthal-Padovan matrix G had been given as:

01 0
(1.6) G = [gij]3><3 = 0 0 1

210

Definition 1.2. ( [3]) For a generating pair (z,y) € G, we define the Jacobsthal-
Padovan orbit J; , , (G) = {x;} by

To =T, L1 =Y, T2 =Y, Tit2 = (xi*1)2 : (x2)7 i > 1

A sequence of group elements is periodic if, after a certain point, it con-
sists only of repetitions of a fixed subsequence. The number of elements in the
repeating subsequence is called the period of the sequence. For example, the
sequence a,b,c,d,e,b,c,d,e,b,c,d,e,--- is periodic after the initial element a
and has period 4. A sequence of group elements is simply periodic with pe-
riod k if the first k& elements in the sequence form a repeating subsequence.
For example, the sequence a,b,c,d, e, f,a,b,c,d e, f,a,b,c,d,e, f,--- is simply
periodic with period 6.

Theorem 1.3. ( [3])A Jacobsthal-Padovan orbit of a finite group is periodic.

Many references may be given for Fibonacci sequence and k-step Fibonacci

(k-nacci) sequence in groups and related issues; see for example, [1,4,5,9,11,
, 14]. Deveci [3] expanded the theory to the Pell-Padovan sequence and the

Jacobsthal-Padovan sequence. Now we extend the concept to the generalized

order-k Jacobsthal sequence and the generalized order-k Jacobsthal-Padovan

sequence.

In this paper, the usual notation p is used for a prime number.

2. The generalized order-k Jacobsthal sequences modulo m and the
generalized order-k Jacobsthal-Padovan sequences modulo m

Now we define a new sequence called The generalized order-k (k > 3) Jacobsthal-
Padovan sequence {JP" (n)}, defined by

(21) JP*(n+k)=JP"(n+k—2)+2JP*(n+k—3)+---+JP"(n—1)
for n > 0, where J (i) =0for —1<i<k—-3andJ(k—2)=J(k—1)=1.
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By (2.1), we can write

JP* (n) ro 10 0 00 T JP* (n—1)
JP* (n+1) 001 000 JP* (n)
JP* (n+2) 000 000 JP* (n+1)

JPF(n4+k—1) 000--- 001 JP* (n+k—2)
JP* (n+ k) 1 11 -2 10 | JP* (n+k—1)
for the Jacobsthal-Padovan sequence. Let
rT010 - 000 T
001-- 000
000 -~ 000
E =
000-- 001
1 11 -2 10 |

The matrix G is said to be generalized order-k Jacobsthal-Padovan matrix.
Reducing the generalized order-k Jacobsthal sequence (k > 2) and the gener-
alized order-k (k > 3) Jacobsthal-Padovan sequence by a modulus m, we can
get the repeating sequences, respectively denoted by

{JhmY = {Jfa_% JEm Ll ghem L gEm 7}
and
{gpP*™ )} = {JpPF™(-1),JP"™(0), -, JP"™ (k—2),
JPE™ (B —1) - PR (i), L}
where J"™ = J*¥ (mod m) and JP*™ (i) = JP* (i) (mod m). They have the
same recurrences relation as in (1.2) and (2.1), respectively.

Theorem 2.1. [3] The sequence {J(m) (n)} is simply periodic if m is odd,
and it is periodic if m is even.

Theorem 2.2. The sequences {JE™} (k> 2) and {JP*™ (n)} (k> 3) are
periodic.

Proof. Let us consider the sequence {J,’j’m} and put

U = { (21,22, ,21)|0 <2y <m — 1}
Then we have |Uy| = m* which is finite, that is, for any a > 0, there exists
b > a such that Jfff = Jlf_’:f, e ,Jff; = Jf_’;,z, respectively.

The proof for the sequence {JP*™ (n)} (k > 3) is similar to the above and is
omitted.

Let hJ"™ and hJP*™ denote the smallest periods of {JF™} (k> 2) and
{JP*™ (n)} (k> 3). O
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Example 2.3. We have {J33} = {1,0,0,1,1,0,0,1,---}, and then repeat.
So, we get hJ>3 = 4.

Example 2.4. We have {JP*? (n)} = {0,0,1,1,1,1,0,0,1,1,---}, and then
repeat. So, we get hJP>? = 6.

Given an integer matrix A = (a;j), A (mod m) means that all entries of A are
modulo m, that is, A (mod m) = (ai; (mod m)). Let (C),. = {C* (mod p*)|i >0}
and (E),. = { E" (mod p*)|i > 0} be cyclic groups for p # 2 and let ‘(C’>pa‘

and ‘<E> pa |denote the orders of (C) . and (E),., respectively.

Theorem 2.5. If p # 2, then hJ"?" = ‘<C>pa

and h.JPFP" = ‘<E>,,a

Proof. Firstly, let us consider the case hJ*?" = ’<C> pa |- 1t is clear that ‘(C)FO

is divisible by hJ*?". Then we need only to prove that hJ*?" is divisible by
’<C>p“" Let hJ*P" = n. We have already seen that B, = C - B,_; and

B,, = C™ [13]. Since B,, = I (mod p®), where I is the identity matrix, we get
that C"*! = C' (mod p®). Therefore, C™ = I (mod p®), which yields that n

is divisible by ]<c>pa :
Secondly, let us consider the case h.JP*?" = ’(E)pa . It is clear that ’<E>p“
is divisible by hJP*P". Then we need only to prove that hJP*?" is divisible

by ‘<E>pu . Let hJP*?" = pn. Thus
mii mi2 ce mik+1
gn mai ma2 ce mag41
Mmeg+11 Mg412 -0 ME41k+1

The elements of the matrix E™ are in the following forms:

mis = JP*(n—k+1), myp=JP"n—k+2), -,
mee = JPY(n), miyi2 = JP* (n+1),
mi +mo1 = JP¥(n—k+2), mo+ma=JP*(n—k+3), -,
mp +mern = JP¥(n+1),
mii = B1JP* (n—1) + BoJP* (n) + - + B JP  (n+k—2)+1
for1<i<k+1landfS, B2, -+, B >0

and
mij = mJP* (n— 1)+ n2JP* (n) + -+ +m JP" (n+k —2)
fori#j,lgi,jgk—&—landm, 72, 7771620
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We thus obtain that

mi; =1 (mod p®) for 1 <4, <k+1

and

mi; =0 (mod p®) for 1 < 4,5 < k+ 1 such that ¢ # j.

So we get that E™ = I (mod p®), which yields that n is divisible by ‘(E)pa . O

Theorem 2.6. Let p # 2 and let t be the largest positive integer such that
hJkP = hPEP | Then hJkP" = p~t . hJP for every a > t.

J)C‘qurl

Proof. Let ¢ be a positive integer. Since C" =1 (mod pq“), that is,
+1

chtT = 1 (mod p?), we get that hJ*P" divides hJ*P""". On the other

hand, writing chIt T 1 4 (agj) -pq), we have

M = (14 (o)) = 3 ( b ) (a %) =1 (mod 1)
=0

which yields that RJFP" divides hJEP* - p. Therefore, RJRPT = Bk or
hJEPTT = p gk’ - p, and the latter holds if, and only if, there is a agj) which

is not divisible by p. Since hJkP" #* fL<]’“’pt+l7 there is an agﬂ) which is not

divisible by p, thus, hJkP #* hJEP"? . The proof is finished by induction on
t. O

Theorem 2.7. Let p # 2 and let t be the largest positive integer such that
hJP*? = hjPk?" | Then hJPkr" = p>~t - hJP*P for every a > t.

Proof. The proof is smilar to the above and is omitted. O
Theorem 2.8. If m = H§=1 pit, (t > 1) where p;’s are distinct primes, then
h.Jkm :lcm[h,]k’p:i} (where the least common multiple of

th’pil, th’pgz, cee hJ*P: s denoted by lem {th’p:i}) and hJP*™ =lcm
(nTPrr ]

Proof. Let us consider the case hJ*™ =lcm [th’p:i] . The statement, “pgkp;’
is the length of the period of {Jﬁ’pii },” implies that the sequence {Jﬁ’pii}
repeats only after blocks of length w - th’pfi, (u € N); and the statement,
“hJ*™ is the length of the period {J%™}” implies that {Jﬁ’p"l} repeats

after hJ*™ terms for all values i. Thus, hJ*™ is of the form w - hJ*P for all
values of 7, and since any such number gives a period of {Jﬁm} Then we get

that hJ*™ =lem {hj’“vpfi]
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The proof of the case hJP*™ =lcm [hJPk’p:i} is similar to the above and is
omitted. 0

3. The generalized order-k Jacobsthal sequences and the generalized
order-k Jacobsthal-Padovan sequences in finite groups

Definition 3.1. For a finitely generated group G = (A), where A = {a1,ao, ...,
ay} we define the generalized order-k Jacobsthal orbit J% (G) with respect to
the generating set A to be the sequence {z;} of the elements of G such that
~ (@) (@i41), k=2,
T, = a1 for 0<i<k—1, 20 =
i * { (i) -+ (@ign-2)” (Tige-1), k>3
for 1 > 0.

Definition 3.2. For a finitely generated group G = (A), where
A:{a17 ag, -+, ak}(kz?))

we define the generalized order-k Jacobsthal-Padovan orbit JP% (G) with re-
spect to the generating set A to be the sequence {x;} of the elements of G such
that

o =4ai, r1 =4az, *-*, k-1 = ag, T = ak,
Tipkr1 = (23) (@ig1) - (Tigr-2)” (@igko1) for i > 0.

Theorem 3.3. A generalized order-k Jacobsthal orbit and a generalized order-
k Jacobsthal-Padovan orbit of a finite group are periodic.

Proof. Let us consider the generalized order-k Jacobsthal orbit and let n be
the order of G. Since there are n* distinct k-tuples of elements of G, at least
one of the k-tuples appears twice in a generalized order-k Jacobsthal orbit of
G. Thus, the subsequence following this k-tuples. Because of the repeating,
the generalized order-k Jacobsthal orbit is periodic.

The proof for a generalized order-k Jacobsthal-Padovan orbit of a finite group
is similar to the above and is omitted. |

We denote the lengths of the periods of the generalized order-k Jacobsthal
orbit J% (@) and the generalized order-k Jacobsthal-Padovan orbit JP% (G)
by LJ% (G) and LJP% (G), respectively, respectively and we call them the
generalized order-k Jacobsthal length and the generalized order-k Jacobsthal-
Padovan length of G, recpectively.

From the definitions it is clear that the generalized order-k Jacobsthal length
and the generalized order-k Jacobsthal-Padovan length of a group depend on
the chosen generating set and the order in which the assignments of xq, z1, ..., zg
are made.

We will now address the generalized order-k Jacobsthal lengths and the gener-
alized order-k Jacobsthal-Padovan lengths of specific classes of finite groups.
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We use the natural generating set for Ds,, as in [2], defined as satisfying

Dy, = <x,y cx? =y = (ch)2 = e>. This is extended to direct product by

using the following well known method of construction:

If Gl = <A : R1> and G2 = <B : R2>, then G1 X Gg = <A,B : R17 R27 [A,B]>

where [A, B] = {[a,b] : a € A, b € B}, see [7].

The direct product Da,, X Zam, (n, m > 3) is defined by the presentation
D2n X ZZm = <x,y,z : .’E2 = yn = (l’y)2 = sz = [1’72] = [y,z} = €> .

The usual notation G x, Ga is used for the semidirect product of the group

G by G, where ¢ : Go — Aut (G1) is a homomorphism such that by = ¢

where ¢, : G1 — G is an element Aut (Gy).

The semidirect product Daj, X, Zay,, (n, m > 3) is defined by the presentation

2 n 2 2m —1 —1
DQHX¢Z27,L:<m7y7Z:x =y z(acy) =2z"=e, z x2x=0c¢, 2 yzy:e>7

where if Zo,,, = (z), then ¢ : Za,,, — Aut (D) is a homomorphism such that
20 = @5 @, Doy — Day, is defined by xp, = x and yp, = y~ L

For more information see [6].
Theorem 3.4. LJET .
i)

Proof. The orbit J(3 ) (D2 X Zoy,) is

T,y,z

) (Dgn X ng) = hJ3,2m .

6 71Z13 2

2 3 126
m) y7 Z7 xy Z? myz ) xyz I’ y

N T e e
Using the above information, the orbit J(?’I,yyz) (Day, X Zoy,) becomes:

Lo =T, L1 =Y, L2 =2, -,

J2 J3 Jg
6, Tg =Yz"7, Tg = 28, .

3
J13

Ty = T2 .

J3 J3
T4 = T2718, XT15 = Yz, T1e = 2715, ...,

g3 J3 73
T7q = TZ7770, Tyl = Y2UTE, Ty = 20T, L

The smallest non-trivial integer satisfiying the above conditions occurs when
the period is lem [7, hJ3’2m] = hJ3:2m,
O

Theorem 3.5. LJP?

(z,y,2) (D2n X ZQm):lCm[lQ, hlJP3,2m]'

Proof. The orbit JP(S%%Z) (Dap X Zagw) is

2 3 2, 4 6 -2 _11
T, Y, 2,2, XY =z, Yz, rYy =2, Yz, Yy =,

217 2,27 —1,45 . 72 116 189 _305
yz 7‘ryz 7y z 7‘TZ 7yz 72 7Z

PICICIR
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Using the above information, the orbit .J P(3 (Day X Zoy,) becomes:

©,Y,2)

To =T, T1 =Y, T2 =2, T3 =2y «..,
(1133(11)7 Ti3 = yZJP3(12)’

Loy = Q:ZJP3(23)7 Tos = yZJP3(24)’ T26

T1o; = IZJP3(12.1'71)7 T19441 = yZJPB(u.i)7

LTPP(12.041) Tioips = LIPP(12042)

P3(1 P?(14
14 Z‘] (3), 15 ZJ ( ), ..
P3(2 P?(2
—ZJ (5),$27—Z‘] (6),...

12 =2

T12.442 =

The smallest non-trivial integer satisfying the above conditions occurs when
the period is lem[12, hJP32™]. O

lem [7.2, hJ>*™] if n=0(mod 4),
Theorem 3.6. LJ{, , .) (Dan X Zam) = { lem [7.5, hJ>*™] if n =2 (mod 4),
lem [7.n, hJ‘;’Zm] if Otherwise.

Proof. The orbit J?, | (Day X Zom) is

2 3 6,5 13, —1 28 60,5 129, 4
Z, Y, 2, XY 2, 2Yr, Yy T, 2Y , 2 T,z Y,z Y,

3

Using the above information, the orbit JP(z’y’Z) (Dap, Xy Zam) becomes:

To =T, L1 =Y, T2 =2,...,

3 3 3
x7:ZJ6x7 x8:zJ7y57 $14:ZJ8y4a"'7

3 3 3
T14 = ZJlsxa T15 = ZJ14y97 Ti6 = ZJ15y87 ceey

4.1+1

I R _ J3. 4.4
Ty = 2°71X, Xy = 27Ty ) Triqo = 2TARLyTt L

So we need an i such that 4.i = n.u for u € N and J3,_; =0 (mod 2m),
J2,=0(mod 2m) and J?,,, =1 (mod 2m).

If n=0mod 4, i =2 Thus, LJ}, (Day Xy Zap) = lom [7.2, hJ52m].

If n=2mod 4, i =2 Thus, LI}, (Day Xy Zap) = lem [7.2, hJ32m].

If n=1mod 4 or n =3 mod 4, i = n. Thus,

LJ¢, o) (Dan Xy Zoy) = lem [Tn, hJ>2™]

lem [Sn hJP3’2m] if n is even
3 _ ) )
Theorem 3.7. LJP, , . (D2n Xy Zom) = { lem [6n, ATP**™] it n s odd.

Proof. The orbit JP(3 ) (Dap X Zom,) is

T,Y,z

2 3 4,2 6 11 17,2
T, Y, 2y 2, XY 2, Yz, 2 Y T, 2, &, 2 Y,
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Using the above information, the orbit JP(3 (Dap, X Zaym,) becomes:

z,Y,2)
To =T, L1 =Y, T2 =2, T3 =2,...,

_ ,JP3(5),2 _ ,JP3(6),3 _ JP3(7 _ ,JP3(8),2
Tg = 2z ()y T,y =% ()y7338—2 (),I‘Q—Z ()y77
_ JP3(11),4 _ ,JP3(12),5
=z ()y%fﬂls—z ()y,

T12

Ty = ZJP3(13),Z,15 _ ZJP3(14)y47 o

Tei = ZJP3(6.i—1)y2.ix7x6.i+1 — zJP3(6.i)y2.i+17
To.ivs = ZJP3(6.i+1),x6_i+3 _ ZJP~’*(6.¢+2)y2.i7 .

So we need an i such that 2.i = n.v for v € N and JP3 (6.i — 1) = 0 (mod 2m),
JP3(6.1) = 0(mod2m), JP3(6.i+1) = 1(mod2m) and JP3(6.i +2) =
1 (mod 2m).

If niseven, i = %. Thus, LJP?,

lem [Sn, hJ3’2m].
If nis odd, i = n. Thus, LJP(?’L%Z) (Day Xy Zgp) = lem [6n, hJ2™]. O

(D2p Xy Zom) = lem [6.5,hJ32™] =

1Ys2)
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