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Abstract. In 2005, Abdollahi and Rejali, studied the relations between

paradoxical decompositions and configurations for semigroups. In the
present paper, we introduce another concept of amenability on semi-
groups and groups which includes amenability of semigroups and inner-

amenability of groups. We have the previous known results to semigroups
and groups satisfying this concept.
Keywords: Amenability, configuration, paradoxical decomposition, semi-
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1. Introduction

The notion of a configuration for groups was first introduced by Rosenblatt
and Willis in [6], but here, the definition is changed to another form.
Let G be a finitely generated group and F be a non-empty subset of the set
S(G) of all bijective maps on G. Let φ = (φ1, . . . , φn) be a sequence in F such
that the subgroup < F > generated by F in S(G), is equal to < φ1, . . . , φn >
and let E = {E1, . . . , Em} be a partition ofG. An (n+1)-tuple C = (c0, . . . , cn),
where ci ∈ {1, . . . ,m} for each i ∈ {0, 1, . . . , n}, is called an F -configuration
corresponding to the configuration pair (φ, E), if there exists an element x ∈ G
with x ∈ Ec0 such that φi(x) ∈ Eci , for each i ∈ {1, . . . , n}. The set of all
F -configurations corresponding to the configuration pair (φ, E) will be denoted
by ConF (φ, E).
Let x0(C) = Ec0 ∩ φ−1

1 (Ec1) ∩ . . . ∩ φ−1
n (Ecn) and xj(C) = φj(x0(C)), for

C ∈ ConF (φ, E). Then the F -configuration equation corresponding to the
configuration pair (φ, E) is the system of equations

(1.1)
∑

{fC | x0(C) ⊆ Ei} =
∑

{fC | xj(C) ⊆ Ei},
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where fC is the variable corresponding to the configuration C. This system of
equations will be denoted by EqF (φ, E). In this case, this equation system is
equivalent to a matrix equation as

(1.2) AX = 0,

where A is an nm× |ConF (φ, E)| matrix whose entries are 0, 1 or -1 and X is
the vector [fC ], where C runs over ConF (φ, E).
A solution [fC ] to EqF (φ, E) satisfying

∑
C{fC | C ∈ ConF (φ, E)} = 1 and

fC ≥ 0, for all C ∈ ConF (φ, E) will be called a normalized solution of the
equations system (1.1). The corresponding matrix form whose solution is nor-
malized, has the form AX = B, where A is an (nm+1)× |ConF (φ, E)| matrix
whose entries are 0, 1 or -1 and all entries of the last row of A are 1. X is the
vector [fC ] and B is the vector whose last entry is 1 and all others are 0. It
is well known that, if A = [ai,j ], then ai,j = 1 [resp. ai,j = −1] if and only
if xi(C) ⊆ Ej and x0(C) ⊈ Ej [resp. xi(C) ⊈ Ej and x0(C) ⊆ Ej ], for some
C ∈ ConF (φ, E); otherwise ai,j = 0.
By a non-zero solution of EqF (φ, E), we mean a solution {fC | C ∈ ConF (φ, E)}
of EqF (φ, E) such that fC ̸= 0 for some C ∈ ConF (φ, E). We show that (see
proposition 2.1) the equation in matrix form has a non-zero solution if and only
if the latter has a normalized solution. It is easy to see that a matrix equation
AX = 0 has a non-zero solution if and only if rank(A) is less than the number
of columns of A. Therefore the matrix equation (1.2) has no non-zero solution
if and only if rank(A) ≤ |ConF (φ, E)|.
The relation between amenability and configuration of a group was studied
in [6] and [7]. Here, we introduce the concept of F -amenability of a group.

Definition 1.1. A group G is called F -amenable, if there exist an F -invariant
mean M on ℓ∞(G) that is M(f ◦ φ) = M(f), for all f ∈ ℓ∞(G) and φ ∈ F ,
where ℓ∞(G) denotes the set of all real valued bounded functions on G.

Now let G be a finitely generated group and L(G) = {λx : x ∈ G}, where
λx : G→ G is the left translation y 7→ xy for each y ∈ G, and I(G) = {Ix : x ∈
G} where Ix : G→ G is the inner automorphism y 7→ x−1yx. Then, according
to our terminology, G is L(G)-amenable [I(G)-amenable] if and only if G is
amenable [resp. inner amenable]. In general, inner amenability is much weaker
than amenability. So, F -amenability does not imply amenability.
The configuration which introduced in [6] can be obtained as an important
special case of our notion. In fact, Rosenblatt and Willis studied

Con(G) = {ConF (φ, E)|F is a finite subset of L(G) s.t. λ(G) =< F >}.

Remark 1.2. Let F =< φ1, . . . , φn >, for some φi ∈ S(G). Then each φ ∈ F
is a finite product of φj and φ−1

j . Let M be a {φ1, . . . , φn}-invariant mean on

ℓ∞(G). Then

M(f) =M((f ◦ φ−1
j ) ◦ φj) =M(f ◦ φ−1

j ),
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for all f ∈ ℓ∞(G) and j ∈ {1, 2, . . . , n}. Therefore M is an F -invariant mean
on ℓ∞(G).
Now suppose that F is a non-empty subset of S(G), not necessarily finite. We
have the following two facts.
(1) ifM is an F -invariant mean on ℓ∞(G), thenM is an < F >-invariant mean
on G.
(2) if F1 ⊆ F2 are non-empty subsets of S(G), then F2-amenability of G implies
F1-amenability of G.

Lemma 1.3. Let F be a non-empty subset of S(G), not necessarily finite. The
following statements are equivalent.

(1) G is F -amenable.
(2) G is < φ1, . . . , φn >-amenable, for all finite subsets {φ1, . . . , φn} of F .
(3) G is {φ1, . . . , φn}-amenable, for all finite subsets {φ1, . . . , φn} of F .

Proof. Due to the Remark 1.2, it is sufficient to prove (3)⇒(1).
Let T be the family of all finite non-empty subsets of F . Then for every C ∈ T,
there exists a C-invariant mean MC on ℓ∞(G). If T is partially ordered by set
inclusion, then, every M ∈ w∗ − cl{MC} is an F -invariant mean on ℓ∞(G),
where w∗ − cl means the weak-∗ closure. □

In [6] it is proved that a finitely generated group G is amenable if and only if
each configuration equation associated to a configuration pair in Con(G) has a
normalized solution. The link between amenability and normalized solution is
seen in [2] and certain group properties which can be characterized by config-
urations is also studied. In [2] it is asked whether the normalized solution can
be replaced by a non-zero solution in the latter. In Section 2 we not only give
a positive answer to this question, but also we generalize it for F -amenability.

Definition 1.4. Let {A1, . . . , An;B1, . . . , Bm} be a partition of G such that
there exist two subsets {φ1, . . . , φn} and {ψ1, . . . , ψm} of F with the following
property:

G = A1 ∪A2 ∪ . . . ∪An ∪B1 ∪B2 ∪ . . . Bm

= φ1(A1) ∪ φ2(A2) ∪ . . . ∪ φn(An)

= ψ1(B1) ∪ ψ2(B2) ∪ . . . ∪ ψm(Bm).

Then we say that G has an F -paradoxical decomposition (φi, ψj ;Ai, Bj). In
this case, the F -Tarski number of a group G is the minimum of m+n, over all
possible F -paradoxical decompositions of G; this will be denoted by τF (G). If
G has no F -paradoxical decomposition, we put τF (G) = ∞.

In Section 3, we study the relation between non-F -amenability and having
an F -paradoxical decomposition for a group.
A dynamical system is a triple (G,X,α), where α : G → S(X) is an action
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of a group G on a set X and S(X) is the set of all bijection self-maps of X.
The dynamical system (G,X,α) is amenable if there exists a finitely additive
probability measure µ defined on the power set P (X) of the space X which is
α-invariant, i.e. µ(αg(A)) = µ(A), for all A ⊂ X and g ∈ G. We know that the
dynamical system (G,X,α) is amenable if and only if X has no paradoxical
decomposition (see [4]). Let F = {αg|g ∈ G} and X = G. Then the dynamical
system (G,X,α) is amenable if and only if G if F -amenable.

2. F -Amenability of Groups

Throughout this section G is a finitely generated group and F is a non-
empty subset of all bijective maps on G such that < F >=< φ1, . . . , φn >,
where φi ∈ F , for i = 1, 2, . . . , n.

Proposition 2.1. The following statements are equivalent.

(1) G is F -amenable.
(2) Each F -configuration equation EqF (φ, E) has a normalized solution.
(3) Each F -configuration equation EqF (φ, E) has a non-zero solution.

Proof. (1)⇒ (2) LetM be an F -invariant mean on ℓ∞(G). Then fC = M(χx0(C)),
for C ∈ ConF (φ, E), is a normalized solution of EqF (φ, E).
(2)⇒(1) Let (fC) be a normalized solution of EqF (φ, E).
Choose xC ∈ x0(C) and define:

f(φ,E)(x) =

{
fC if x = xC ,
0 otherwise .

Then each M ∈ w∗ − cl{f̂(φ,E)} satisfies M(f ◦ φ) = M(f), for all f ∈ ℓ∞(G)
and φ ∈ F .
(3)⇒(2) Let f ∈ ℓ1(G) be a non-zero solution of EqF (φ, E). Define Φ ∈
ℓ∞(G)∗ by Φ(h) =

∑
x∈G f(x)h(x), for h ∈ ℓ∞(G). There exist positive linear

functionals Φ+ and Φ− such that Φ = Φ+ − Φ− and ∥Φ∥ = ∥Φ+∥ + ∥Φ−∥.
Since ∥Φ∥ = ∥f∥1 ̸= 0, so we can assume Φ+ ̸= 0, say. By definition,

Φ+(g) = sup{Φ(h) : 0 ≤ h ≤ g},

for any non-negative function g. Furthermore,

Φ(χEioφj) = Φ(χφ−1
j (Ei)

) =
∑
C

{Φ(χx0(C)) : xj(C) ⊆ Ei}

=
∑
C

{fC : xj(C) ⊆ Ei}

=
∑
C

{fC : x0(C) ⊆ Ei} = Φ(χEi),
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for all i and j. Thus Φ(h ◦ φj) = Φ(h), for all h ≥ 0. Therefore:

Φ+(χφ−1
j (Ei)

) = sup{Φ(h ◦ φj) : 0 ≤ h ◦ φj ≤ χEi ◦ φj}

= sup{Φ(h) : 0 ≤ h ≤ χEi} = Φ+(χEi).

Let kC = Φ+(χx0(C))/∥Φ+∥, then (kC) is a normalized solution of EqF (φ, E).
(2)⇒(3) This is trivial. □

Corollary 2.2. Let G1 and G2 be finitely generated groups such that ConF1(G1)
= ConF2(G2). Then G1 is F1-amenable if and only if G2 is F2-amenable.

3. F -Paradoxical Decomposition of Groups

In this section, we generalize Tarski’s theorem on amenability for F -amenabil-
ity of groups. For the special case, set F = L(G).
Let F be a subgroup of S(G) under composition operation and A,B ⊆ G.
So A and B are F -equidecomposable if there exist partitions {A1, . . . , Am}
and {B1, . . . , Bm} of A and B, respectively, and elements φi ∈ F such that
φi(Ai) = Bi for all i = 1, . . . ,m. If A and B are F -equidecomposable, then
we write A ∼= B. We say that A ≤ B, if A ∼= C for some subset C of B. It is
routine to show that ”∼=” is an equivalence relation on power set P (G). Also
a standard Cantor-Bernstein argument shows that A ≤ B and B ≤ A implies
A ∼= B.
Let SN be the set of all bijective maps on N. Define (φ, p)(x, n) = (φ(x), p(n)),
for φ ∈ F and p ∈ SN. Let

N = {C ⊆ G× N : C ⊆ B × F for some B ⊆ G and finite set F ⊆ N}.
Then each N ∈ N can be written uniquely in the form N =

∪n
i=1 Ci × {ji},

where 1 ≤ j1 < j2 < . . . < jn and ∅ ≠ Ci ⊆ G.
Let N1 =

∪n
i=1 Ci × {ji} and N2 =

∪n
i=1Di × {ki} be elements of N . Then

N1
∼= N2 if and only if there exist φi ∈ F and pi ∈ SN such that φi(Ci) = Di

and pi(ji) = ki, for i ∈ {1, 2, . . . n}. Define
∑

= N
∼= = {N∼ : N ∈ N}, where

N∼ is the equivalence class of N . Choose h ∈ F × SN such that h(N1) ∩N2 =
∅. Then

∑
is an abelian semigroup under addition operation N∼

1 + N∼
2 :=

(h(N1) ∪N2)
∼.

Define α = (G× {1})∼, so 2α = α+ α = (G× {1} ∪G× {2})∼.
In the following, we show that, G is F -amenable if and only if α ̸= 2α. A finitely
additive probability measure µ of the power set P (G) is called F -invariant, if
µ(ϕ(A)) = µ(A) for all A ⊆ G and ϕ ∈ F .

Lemma 3.1. The following statements are equivalent.

(1) G is F -amenable.
(2) There exist an F×SN-invariant measure µ on N such that µ(G×{1}) =

1.
(3) There exist a homomorphism f :

∑
→ [0,∞) such that f(α) = 1.
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(4) α ̸= 2α.

Proof. (1)⇒(2) let ν be an F -invariant measure on P (G). Define µ(N) =∑n
i=1 ν(Ci), for each N = ∪n

i=1Ci × {ji} in N . Since ν(G) = 1, we have
µ(G× {1}) = 1 and

µ(φ× p(N)) = µ(

n∪
i=1

φ(Ci)× {p(ji)}) =
n∑

i=1

ν(φ(Ci)) =

n∑
i=1

ν(Ci) = µ(N).

Hence µ is an F × SN-invariant measure on N .
(ii)⇒(i) Let µ be an F ×SN-invariant measure on N . Then ν(A) = µ(A×{1})
is an F -invariant measure on P (G). Thus G is F -amenable.
(3)⇒(2) Let ν(A) = f(A× {1})∼, for A ⊆ G. Then

ν(G) = f(G× {1})∼ = f(α) = 1,

and
ν(A1 ∪A2) = f((A1 × {1}) ∪ (A2 × {1}))∼ = ν(A1) + ν(A2),

for A1, A2 ⊆ G such that A1 ∩A2 = ∅.
(4)⇒(3) Let T = {nα : n ∈ N} and F : T → [0,∞) defined by F (nα) = n.
Then by a similar argument as in [5], p. 119, α ̸= 2α if and only if kα ̸= lα
whenever k ̸= l. T is a sub-semigroup of the abelian semigroup

∑
and F (α) =

1; also s ≤ t in T (i.e. s = t or there exists w ∈ T such that s+w = t) implies
F (s) ≤ F (t); thus F can be extended to a homomorphism f :

∑
→ [0,∞) so

that f(α) = 1 by [5], p. 117.
(1)⇒(3) Let ν be an F -invariant measure in G. Define f(N∼) =

∑n
i=1 ν(Ci),

for N = ∪n
i=1Ci × {ji}. Let N1 = ∪n

i=1Ci × {ji} and N2 = ∪n
i=1Di × {ki} and

N∼
1 = N∼

2 . Then N∼
1

∼= N∼
2 , so there exist φi ∈ F and pi ∈ SN such that

φi(Ci) = Di and pi(ji) = ki. Hence f(N∼
1 ) =

∑n
i=1 ν(Ci) =

∑n
i=1 ν(φ(Ci)) =

f(N∼
2 ), so f is well-defined.

Let h = φ× p ∈ F × SN, such that h(N1) ∩N2 = ∅. Then:

f(N∼
1 +N∼

2 ) = f(

n∪
i=1

φ(Ci)× {p(ji)} ∪Di × {ki})

=
n∑

i=1

ν(φ(Ci)) +
n∑

i=1

ν(Di) =
n∑

i=1

ν(Ci) +
n∑

i=1

ν(Di)

= f(N∼
1 ) + f(N∼

2 ).

So f is a homomorphism. Clearly, f(α) = f((G× {1})∼) = ν(G) = 1.
(3)⇒(4) Since f(α) = 1, so f(2α) = 2. Thus α ̸= 2α. Hence the proof is
complete. □

We now state the main result of this section.

Theorem 3.2. The following statements are equivalent.

(1) G is F -amenable.
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(2) There exist no F -paradoxical decomposition for G.

Proof. (1)⇒(2) Suppose not! Let ν be an F -invariant measure for G and
(φi, ψj ;Ai, Bj) be an F -paradoxical decomposition for G. Then:

1 = ν(G) = ν(
n∪

i=1

φi(Ai)) =
n∑

i=1

ν(φi(Ai)) =
n∑

i=1

ν(Ai).

Similarly,
∑m

j=1 ν(Bj) = 1. Hence,

1 = ν(G) = ν(

n∪
i=1

Ai) + ν(

m∪
j=1

Bj) = 1 + 1 = 2,

which is a contradiction.
(2)⇒(1) Suppose not! so by Lemma 3.1, α = 2α. Then G × {1} ∼= (G ×
{1}) ∪ (G × {2}). Thus there exist a partition {A1 × {1}, . . . , An × {1};B1 ×
{1}, . . . , Bm×{1}} of G×{1} and (φi, pi), (ψj , qj) ∈ F×SN such that pi(1) = 1
and qj(1) = 2 for all i and j, so that:

G× {1}
∪
G× {2} = (

n∪
i=1

φi × pi(Ai × {1}))
∪

(
m∪
j=1

ψj × qj(Bj × {1})).

Thus G × {1} = ∪n
i=1φi(Ai) × {1} and G × {2} = ∪m

j=1ψj(Bj) × {2}. Hence
G = ∪φi(Ai) = ∪ψj(Bj). So G has an F -paradoxical decomposition, which is
a contradiction. □

Similar to [7], we are interested to construct an F -paradoxical decomposition
for non-F -amenable groups by using F -configuration equations.
Let (φi, ψj ;Ai, Bj) be an F -paradoxical decomposition of G and f ∈ ℓ+1 (G).
Then:

∥f∥1 =
∑
C

{fC : C ∈ ConF (φ, E)}

=
∑
C

n∑
i=1

{fC : x0(C) ⊆ Ai}+
∑
C

m∑
j=1

{fC : x0(C) ⊆ Bj}

=
∑
C

n∑
i=1

{fC : xi(C) ⊆ Ai}+
∑
C

m∑
j=1

{fC : xj(C) ⊆ Bj}

= 2
∑
C

{fC : C ∈ ConF (φ, E)} = 2∥f∥1,

where φ = (φ1, . . . , φn;ψ1, . . . , ψm) and E = {A1, . . . , An;B1, . . . , Bm}. There-
fore EqF (φ, E) has no non-zero solution.
Suppose EqF (φ, E) has no non-zero solution. Suppose ConF (φ, E) = {D1, . . . ,
Ds} such that E1 = ∪r1

i=1x0(Di), E2 = ∪r1+r2
i=r1+1x0(Di) and so on. Define

E ′ = {E′
i : i = 1, . . . , s} where E′

i = x0(Di) for each i. Then EqF (φ, E ′)
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has a non-zero solution. Similarly, if EqF (φ, E ′) has a non-zero solution then
EqF (φ, E) has a non-zero solution.

Question 3.3. Let EqF (φ, E) be a system of equations having no non-zero
solution for some configuration pair (φ, E). How can we ”explicitly” construct
an F -paradoxical decomposition from EqF (φ, E)?

It is to be noted that G =< g1, g2, . . . , gl > is non-amenable if and only
if the equation |g−1

i Ej ∩ X| = |Ei ∩ X|, for 1 ≤ i ≤ l, 1 ≤ j ≤ m, has no
non-empty finite solution X in G, for some partition E = {E1, . . . , Em}.

Example 3.4. [6]. Let G =< g1, g2 > be the free group eith two (free)
generators g1, g2 and Ei be the set of all reduced words starting gi, for i = 1, 2,
and E3 = G−(E1∪E2). Then Eq(φ, E) has no non-zero solution. In comparison
to the above notations, let

(φi) = (1, λg1 , λg1), (ψj) = (1, 1, 1, λg2 , λg2)

and
(Ai) = (E′

1, E
′
2, E

′
5), (Bj) = (E′

2, E
′
3, A,E

′
7, B),

for some A ⊆ E′
6 and B = E′

6 − A. Then (φi, ψj ;Ai, Bj) is a paradoxical
decomposition of G.

4. F -Amenability of Semigroups

In this section, a new type of amenability for semigroups is introduced. Also
the notion of an F -paradoxical decomposition for semigroups which was asked
by Paterson in special case in [5] p. 120, is defined. We find the relation be-
tween the existence of F -paradoxical decompositions and non-F -amenability
for semigroups. The definition is almost similar to that of groups, we bring it
for completeness.

Let S be a discrete semigroup and A ⊆ S. For any map f : S → S
(not necessarily invertible), recall that f−1(A) = {t ∈ S : f(t) ∈ A}. Let
φ = (φ1, . . . , φn) be an n-tuple of the functions (not necessarily invertible) on
S and E0 = {E1, . . . , Em} be a partition of S. An (n+1)-tuple C = (c0, . . . , cn),
where ci ∈ {1, . . . ,m} for each i ∈ {0, 1, . . . , n}, is called a configuration cor-
responding to the configuration pair (φ, E0), if there exists an element x ∈ S
with x ∈ Ec0 such that φi(x) ∈ Eci , for each i ∈ {1, . . . , n}. The set of all
configurations corresponding to the configuration pair (φ, E0) will be denoted
by Con(φ, E0). Let Ei = {φ−1

i (Ej) : j ∈ {1, . . . ,m}}, for each i ∈ {1, . . . , n}.
Then Ei is a partition of S for each i = 1, 2, . . . , n. (We remove empty elements
from these collections.)
Let x0(C) = Ec0 ∩ φ−1

1 (Ec1) ∩ . . . ∩ φ−1
n (Ecn) and xj(C) = φj(x0(C)).

Let F be a non-empty subset of the set of all maps SS on S. Also for an n-tuples
φ = (φ1, . . . , φn) in F , let the semigroup < F > is equal to < φ1, . . . , φn >. We
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denote a configuration corresponding to the pair (φ, E) by ConF (φ, E). Then
the F -configuration equations corresponding to the configuration pair (φ, E)
are defined similarly to the previous case. (equations (1.1))
A semigroup S is called F -amenable, if there exists an F -invariant mean M on
ℓ∞(S), that is M(f ◦ φ) = M(f), for all f ∈ ℓ∞(S) and φ ∈ F , where ℓ∞(S)
denotes the set of all real valued bounded functions on S.

Adler and Hamilton, [3], showed that S is left amenable if and only if S
satisfies the following left invariant condition:
for any sequence (s1, . . . , sn) in S and for all sequences (A1, . . . , An) of subsets
in S there exists a non-empty finite set X ⊆ S such that |s−1

i Ai∩X| = |Ai∩X|
for all i ∈ {1, 2, . . . , n}.
We prove that S is F -amenable if and only if S satisfies the F -invariant condi-
tion.

Definition 4.1. Let {A1, . . . , An;B1, . . . , Bm} be a partition of semigroup S
and there exist two subsets {φ1, . . . , φn} and {ψ1, . . . , ψm} of F such that
the sets {φ−1

1 (A1), . . . , φ
−1
n (An)} and {ψ−1

1 (B1), . . . , ψ
−1
m (Bm)} are two par-

titions of S. Then we say that S admits an F -paradoxical decomposition
(φi, ψj ;Ai, Bj). In this case, the F -Tarski number of a semigroup S is the
minimum of m+ n, over all possible F -paradoxical decompositions of S.

We show that the F -Tarski number for semigroups can be 2; however the
corresponding number for groups is at least 4. At first, by a similar argument
as in Proposition 2.1, the following proposition is immediate.

Proposition 4.2. The following statements are equivalent.

(1) S is F -amenable.

(2) Each F -configuration equation EqF (φ, E) has a normalized solution.

(3) Each F -configuration equation EqF (φ, E) has a non-zero solution.

Lemma 4.3. The following statements are equivalent.

(1) S is F -amenable.

(2) For any sequence (φ1, . . . , φk) in F and for all sequences (A1, . . . , Ak)
of subsets in S, there exist a finite non-empty subset X ⊆ S such that

|φ−1
i (Ai) ∩X| = |Ai ∩X|, for all i = 1, . . . , k.

(3) For any sequence (φ1, . . . , φn) in F and for each partition {E1, . . . , Em}
of S, there exist a non-empty finite subset X ⊆ S such that,

|φ−1
i (Ej) ∩X| = |Ej ∩X|, for all i, j.
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Proof. (2)⇒(3) Let (φ1, . . . , φn) be a sequence in F and {E1, . . . , Em} be a
partition of S. Put

Aj = Ej , Am+j = Ej , . . . , A(n−1)m+j = Ej for all j = 1, . . . ,m.

Put also,

φ′
j = φ1, φ

′
m+j = φ2, . . . , φ

′
(n−1)m+j = φn for all j = 1, . . . ,m.

Then for (φ′
1, . . . , φ

′
mn) and (A1, . . . , Amn), there exists a non-empty subset

X ⊆ S such that,
|φ−1

i (Ej) ∩X| = |Ej ∩X|,
for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}.
(3)⇒(2) Let (φ1, . . . , φk) be a sequence in F and (A1, . . . , Ak) be a sequence
of subsets in S. Let Ei = {Ai, A

c
i}, for i = 1, . . . , k and E be the family of

all n-tuple intersections on Ei. Clearly, the cardinality of E is 2n and it is a
partition of S. By (3), There exists a finite, non-empty subset X ⊆ S such
that |φ−1

i (E) ∩ X| = |E ∩ X| for all i = 1, . . . , k and E ∈ E . Then one can

show easily that |φ−1
i (Ai) ∩X| = |Ai ∩X|, for all i = 1, . . . , k.

For example, if k = 1, then E = {A1, A
c
1} and there exists a finite, non-empty

subset X ⊆ S such that |φ−1
1 (A1) ∩ X| = |A1 ∩ X|. Also, if k = 2, then

E = {A1 ∩ A2, A1 ∩ Ac
2, A

c
1 ∩ A2, A

c
1 ∩ Ac

2}. Hence, there exists a finite non-
empty subset X ⊆ S such that

|φ−1
i (E) ∩X| = |E ∩X|

for all i ∈ {1, 2} and E ∈ E . Now we have:

|φ−1
1 (A1) ∩X| = |φ−1

1 (A1 ∩A2) ∩X|+ |φ−1
1 (A1 ∩Ac

2) ∩X|
= |(A1 ∩A2) ∩X|+ |(A1 ∩Ac

2) ∩X| = |A1 ∩X|.
Similarly, |φ−1

2 (A2) ∩X| = |A2 ∩X|.
This completes the proof of (2).
(3)⇒(1) Suppose E = {E1, . . . , Em} is a partition of S and φ = (φ1, . . . , φn) is
a sequence in F . Then there exists a non-empty finite subset X ⊆ S such that

|φ−1
i (Ej) ∩X| = |Ej ∩X|, for all i, j.

Let

fC =
1

|X|
|X ∩ x0(C)|, for all C ∈ ConF (φ, E).

Therefore, [fC ] is a normalized solution. In fact:∑
{fC : xi(C) ⊆ Ej} =

1

|X|
|φ−1

i (Ej) ∩X|

=
1

|X|
|Ej ∩X| =

∑
{fC : x0(C) ⊆ Ej}.

Hence, S is F -amenable.
(1)⇒(2) See [3]. □
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The condition (ii) of Lemma 4.3, is called F -invariant condition of semigroup
S. In the following, we extend F -paradoxical decomposition for semigroups
which was asked in [5] p. 120.
Now, suppose that the identity function I : S → S belongs to F and A,B ⊆ S;
then we call A and B are F -equidecomposable and write A ∼= B, if there exist
partitions {A1, . . . , An} of A and {B1, . . . , Bn} of B, and elements φi, ψi in F
such that φ−1

i (Ai) = Bi and ψ
−1
i (Bi) = Ai for all i ∈ {1, 2, . . . , n}. It is clear

that the relation ”∼=” is an equivalence relation on the power set P (S).
We say also that a finitely additive probability measure µ of the power set P (S)
is an F -invariant measure if µ(φ−1(E)) = µ(E) for all φ ∈ F and E ⊆ S. By
an argument as in Lemma 3.1, one can show that S is F -amenable if and only
if α ̸= 2α, where α = (S × {1})∼.

Lemma 4.4. The following statements are equivalent.

(1) S is not F -amenable.

(2) S admits an F -paradoxical decomposition.

Proof. (2)⇒(1) Let (φi, ψj ;Ai, Bj) be an F -paradoxical decomposition of S
and suppose that M is an F -invariant mean on ℓ∞(S). Then

1 =M(1) =
n∑

i=1

M(χAi ◦ φi) =
n∑

i=1

M(χAi).

Similarly,
∑m

j=1M(χBj ) = 1. Since {A1, . . . , An;B1, . . . , Bm} is a partition

of S, we deduce that 1 =
∑n

i=1M(χAi) +
∑m

j=1M(χBj ) = 2, which is a
contradiction.
(1)⇒(2) Use a similar argument as in theorem 3.2. □

Remark 4.5. Let (si, tj ;Ai, Bj) be an F -paradoxical decomposition of semi-

group S so that |s−1
i Ai ∩ X| = |Ai ∩ X| and |t−1

j Bj ∩ X| = |Bj ∩ X|, for all
i, j, for some non-empty subset X ⊆ S. Then:

|X| =
∑
i

|Ai ∩X|+
∑
j

|Bj ∩X| =
∑
i

|s−1
i Ai ∩X|+

∑
j

|t−1
j Bj ∩X| = 2|X|,

hence, X is empty.

Since the existence of F -invariant mean is independent of generating se-
quence of F , the following statement is immediate.

Corollary 4.6. Let F =< φ1, . . . , φn >; the following statements are equiva-
lent.

(1) S is F -amenable.
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(2) For any partition {E1, . . . , Em}, there exist a non-empty finite subset
X ⊆ S such that,

|φ−1
i (Ej) ∩X| = |Ej ∩X|, for all i, j.

(3) For any partition E = {E1, . . . , Em} of S, there exist a non-empty finite
subset X ⊆ S such that

|φ−1
i (x0(C)) ∩X| = |x0(C) ∩X|

for all i ∈ {1, . . . , n} and C ∈ ConF (φ, E), where φ = (φ1, . . . , φn).

Example 4.7. (1) Let S = (N, ·) and x · y = x for x, y ∈ S. Then xf = f(x)1
for f ∈ ℓ∞(S). So S is not left-amenable and S = E1 ∪ E2 = g−1

1 E1 = g−1
2 E2,

where E1 = 2N, E2 = 2N + 1, g1 = 2 and g2 = 3. Hence S has a paradoxical
decomposition of Tarski number 2, see [4].
(2) Let S = (N, ◦) and x ◦ y = y, for x, y ∈ S. Then xf = f , for f ∈ ℓ∞(S).
Then S is left-amenable and g−1E = E, for all g ∈ S and E ⊆ S. Hence S has
no paradoxical decompositions.
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