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Abstract. This paper presents two main results that the singular values
of the Hadamard product of normal matrices Ai are weakly log-majorized

by the singular values of the Hadamard product of |Ai| and the singular
values of the sum of normal matrices Ai are weakly log-majorized by the
singular values of the sum of |Ai|. Some applications to these inequali-
ties are also given. In addition, several related and new inequalities are

obtained.
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1. Introduction

We first recall some notations and definitions. Let Mn denote the vector
space of all complex n × n matrices and let Hn be the set of all Hermitian
matrices of order n. We always denote the eigenvalues of A ∈ Hn in decreasing
order by λ1(A) ≥ · · · ≥ λn(A). The singular values of A ∈ Mn are defined to be
the nonnegative square roots of the eigenvalues of A∗A, where A∗ denotes the
conjugate transpose of a matrix A. The absolute value of A ∈ Mn is defined and
denoted by |A| = (A∗A)

1
2 . Thus the singular values of A are the eigenvalues

of |A|. We always denote the singular values of A ∈ Mn by s1(A) ≥ s2(A) ≥
· · · ≥ sn(A) and write s(A) = (s1(A), s2(A), . . . , sn(A)). We denote by ∥ · ∥∞
the spectral norm, and for A ∈ Mn, ∥A∥∞ = s1(A). We know that the spectral
norm ∥ · ∥∞ is submultiplicative. For 1 ≤ k ≤ n, the norm

∥A∥(k) :=
k∑

j=1

sj(A)
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Singular values inequalities of normal matrices 144

is called the Fan k-norm. Note that ∥ · ∥(1) = ∥ · ∥∞ is the spectral norm
and ∥ · ∥(n) is called the trace norm. For A,B ∈ Hn, we use the notation
A ≤ B or B ≥ A to mean that B − A is positive semidefinite. Clearly, “ ≤ ”
and “ ≥ ” define two partial orders on Hn, each of which is called a Löwner
partial order. In particular, B ≥ 0 means that B is positive semidefinite.
Given a real vector x = (x1, x2, . . . , xn) ∈ Rn, we rearrange its components as
x[1] ≥ x[2] ≥ · · · ≥ x[n]. For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn, if

k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n,

then we say that x is weakly majorized by y and write x ≺w y. If x ≺w y and∑n
i=1 xi =

∑n
i=1 yi, then we say that x is majorized by y and write x ≺ y. Let

the components of x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) be nonnegative. If

k∏
i=1

x[i] ≤
k∏

i=1

y[i], k = 1, 2, . . . , n,

then we say that x is weakly log-majorized by y and write x ≺wlog y. If
x ≺wlog y and

∏n
i=1 xi =

∏n
i=1 yi, then we say that x is log-majorized by y

and write x ≺log y.
Log-majorization is a powerful technique for matrix norm inequalities. See

[1, 8, 10, 14, 15] for the theory of log-majorziation and its applications. Let
us write {xi} for a vector (x1, x2, . . . , xn). The following two well known log-
majorization relations are called Weyl’s theorem and Horn’s theorem respec-
tively [9, 10,15].

Let λ1(A), . . . , λn(A) be the eigenvalues of a matrix A ∈ Mn with |λ1(A)| ≥
· · · ≥ |λn(A)|. Then

(1.1) {|λi(A)|} ≺log s(A).

Let A,B ∈ Mn. Then

(1.2) s(AB) ≺log {si(A)si(B)}.

In [7], Bourin and Uchiyama proved a triangle inequality for normal matrices.
Let A and B be normal matrices. Then for every unitarily invariant norm ∥ · ∥,

∥A+B∥ ≤ ∥|A|+ |B|∥,

which is equivalent to

s(A+B) ≺w s(|A|+ |B|).

Let A,B be positive semidefinite matrices. Bhatia and Kittaneh [5] showed
that

(1.3) s(A+ zB) ≺w s(A+ |z|B)
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for any complex number z. The stronger inequality

(1.4) s(A+ zB) ≺wlog s(A+ |z|B)

for any complex number z was proved by Zhan [13]. Recently, Zou and
Wu [17] proved that if A,B1, . . . , Bn are positive semidefinite matrices and
if z1, z2, . . . , zn are complex numbers, then for every unitarily invariant norm
∥ · ∥,
(1.5) ∥A+ z1B1 + · · ·+ znBn∥ ≤ ∥A+ | z1 | B1 + · · ·+ | zn | Bn∥.

The main purpose of this paper is to prove the following weak log-majorization
of singular values related to normal matrices and its applications. We prove
that if Ai are normal matrices, i = 1, . . . ,m, then

s

(
m∑
i=1

Ai

)
≺wlog s

(
m∑
i=1

|Ai|

)
and

s (◦mi=1Ai) ≺wlog s (◦mi=1|Ai|) .
An application of the above result is the following. Let Pi ∈ Mn be pos-
itive semidefinite matrices, i = 1, 2, . . . ,m. Then for any complex numbers
z1, . . . , zm,

s

(
m∑
i=1

ziPi

)
≺wlog s

(
m∑
i=1

|zi|Pi

)
,

which sharpens the result due to Zou and Wu. In addition, several related and
new inequalities are also given.

2. Main results

We first need several lemmas. Most of these are either well known or easy
to prove.

Lemma 2.1. [15, p.67] Let the components of x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn) be nonnegative. Then

x ≺wlog y implies x ≺w y.

This lemma shows that weak log-majorization is stronger than weak ma-
jorization.

For A ∈ Mn, the k-th compound matrix of A is denoted by Ck(A). We list
some useful properties that we need in our proofs. For the topic of compound
matrices see [15, Section 2.4].

Lemma 2.2. Let A,B ∈ Mn, 1 ≤ k ≤ n. Then

(1) Ck(A)
T = Ck(A

T ), Ck(A)
∗ = Ck(A

∗), Ck(AB) = Ck(A)Ck(B);
(2) if s(A) = (s1(A), . . . , sn(A)), then

s(Ck(A)) = {si1(A)si2(A) · · · sik(A) | 1 ≤ i1 < i2 < · · · < ik ≤ n}.
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Lemma 2.3. [15, p.13] Let A,B ∈ Mn. If A,B are positive semidefinite, then
so is A ◦B.

Denote the block diagonal matrix

(
A 0
0 B

)
by A⊕B.

Lemma 2.4. Let A,B ∈ Mn be contraction matrices. Then so is Ck(A⊕B).

Proof. Recall that C is a contraction if ||C||∞ ≤ 1. It is clear that A ⊕ B is
also a contraction, if A and B are contraction matrices. Note that

||Ck(A⊕B)||∞ =

k∏
i=1

si(A⊕B) ≤ 1.

This completes the proof. □

The following lemma is well-known. For the reader’s convenience, we provide
a short proof.

Lemma 2.5. If T has the polar decomposition T = U |T | with U unitary, then

T = |T ∗| 12U |T | 12 .

Proof. Since T = U |T | with U unitary, we have |T | = U∗T = T ∗U. Hence

|T |2 = U∗TT ∗U = U∗|T ∗|2U.

The uniqueness of square roots of positive semidefinite matrices yields |T | =
U∗|T ∗|U and so U |T | = |T ∗|U. Then

U p(|T |) = p(|T ∗|) U

for every polynomial p(t). By Stone-Weierstrass Theorem, we have

U |T | 12 = |T ∗| 12U.

Therefore T = |T ∗| 12U |T | 12 . This completes the proof. □

Now, we prove a very useful lemma.

Lemma 2.6. Let Pi, Qi ∈ Mn be positive semidefinite matrices, and let Ci ∈
Mn be contraction matrices, i = 1, 2, . . . ,m. Then

(2.1) s

(
m∑
i=1

PiCiQi

)
≺wlog

si

( m∑
i=1

P 2
i

) 1
2

 si

( m∑
i=1

Q2
i

) 1
2

 .

Proof. Write

A =


P1 P2 · · · Pm

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , B =


Q1 0 · · · 0
Q2 0 · · · 0
...

...
. . .

...
Qm 0 · · · 0

 ,



147 Chen and Zhang

and X = diag(C1, C2, . . . , Cm). Then X is a contraction and

AXB =

(
m∑
i=1

PiCiQi

)
⊕ 0.

Then for any positive integer k with 1 ≤ k ≤ n, we have

k∏
i=1

si(

m∑
i=1

PiCiQi) = ||Ck(

m∑
i=1

PiCiQi)||∞

= ||Ck(

(
m∑
i=1

PiCiQi

)
⊕ 0)||∞

= ||Ck(AXB)||∞.

On the other hand, since the spectral norm ∥ · ∥∞ is submultiplicative, it
follows from Lemma 2.4 that k with 1 ≤ k ≤ n,

||Ck(AXB)||∞ ≤ ||Ck(A)||∞ ||Ck(X)||∞ ||Ck(B)||∞
≤ ||Ck(A)||∞ ||Ck(B)||∞

= ||Ck(A)Ck(A)∗||
1
2
∞ ||Ck(B)∗Ck(B)||

1
2
∞

= ||Ck(AA∗)||
1
2
∞ ||Ck(B

∗B)||
1
2
∞

=

∥∥∥∥∥Ck

((
m∑
i=1

P 2
i

)
⊕ 0

)∥∥∥∥∥
1
2

∞

∥∥∥∥∥Ck

((
m∑
i=1

Q2
i

)
⊕ 0

)∥∥∥∥∥
1
2

∞

=

∥∥∥∥∥∥Ck

( m∑
i=1

P 2
i

) 1
2

⊕ 0

∥∥∥∥∥∥
∞

∥∥∥∥∥∥Ck

( m∑
i=1

Q2
i

) 1
2

⊕ 0

∥∥∥∥∥∥
∞

=

k∏
i=1

si

( m∑
i=1

P 2
i

) 1
2

 si

( m∑
i=1

Q2
i

) 1
2

 .

In the first four equalities above we have used the fact that for any square
matrix F , ∥FF ∗∥∞ = ∥F ∗F∥∞ = ∥F∥2∞ = ∥F ∗∥2∞. This completes the proof.

□

Applying Lemma 2.6 yields the following weak log-majorization for normal
matrices:

Theorem 2.7. Let Ai ∈ Mn be normal matrices, i = 1, 2, . . . ,m. Then

(2.2) s

(
m∑
i=1

Ai

)
≺wlog s

(
m∑
i=1

|Ai|

)
.

Proof. It is well known that X is a normal matrix if and only if |X| = |X∗|. Let
Ai = Ui|Ai| be the polar decompositions of Ai with Ui unitary, i = 1, 2, . . . ,m.
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By Lemma 2.5, we have Ai = |A∗
i |

1
2U |Ai|

1
2 = |Ai|

1
2U |Ai|

1
2 . Then

m∑
i=1

Ai =

m∑
i=1

|A∗
i |

1
2Ui|Ai|

1
2 =

m∑
i=1

|Ai|
1
2Ui|Ai|

1
2 ,

where Ai = |Ai|
1
2Ui|Ai|

1
2 with Ui unitary. Note that Ui are also contraction

matrices. By Lemma 2.6,

s

(
m∑
i=1

Ai

)
≺wlog

si

( m∑
i=1

|Ai|

) 1
2

 si

( m∑
i=1

|Ai|

) 1
2


n

i=1

= s

(
m∑
i=1

|Ai|

)
.

This completes the proof. □

Remark 2.8. Recall the Fan Dominance Principle [15]: Let A,B ∈ Mn. If
∥A∥(k) ≤ ∥B∥(k) for all Fan k-norms with 1 ≤ k ≤ n, then ∥A∥ ≤ ∥B∥ for every
unitarily invariant norm ∥·∥. It can be equivalently stated as: ∥A∥ ≤ ∥B∥ holds
for all unitarily invariant norms if and only if s(A) ≺w s(B). In [7], Bourin
and Uchiyama proved a triangle inequality for normal matrices. Let A and B
be normal matrices. Then for every unitarily invariant norm ∥ · ∥,

(2.3) ∥A+B∥ ≤ ∥|A|+ |B|∥,

which is equivalent to

s(A+B) ≺w s(|A|+ |B|).

Using Theorem 2.7 and Lemma 2.1, we have the following more general
triangle inequality of unitarily invariant norms for normal matrices:

Corollary 2.9. Let Ai ∈ Mn be normal matrices, for i = 1, 2, . . . ,m. Then

(2.4)

∥∥∥∥∥
m∑
i=1

Ai

∥∥∥∥∥ ≤

∥∥∥∥∥
m∑
i=1

|Ai|

∥∥∥∥∥ ,
for every unitarily invariant norm ∥ · ∥.

Let A and B be positive semidefinite matrices. In [5], Bhatia and Kittaneh
showed that

(2.5) s(A+ zB) ≺w s(A+ |z|B)

for any complex number z. The stronger inequality

(2.6) s(A+ zB) ≺wlog s(A+ |z|B)

for any complex number z was proved by Zhan [13]. An application of Theo-
rem 2.7 can be seen in the following result. This result generalizes the inequal-
ity (1.5) and sharpens the result due to Zou and Wu.
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Theorem 2.10. Let Pi ∈ Mn be positive semidefinite matrices, i = 1, 2, . . . ,m.
Then for any complex numbers z1, . . . , zm,

(2.7) s

(
m∑
i=1

ziPi

)
≺wlog s

(
m∑
i=1

|zi|Pi

)
.

Proof. Note that each ziPi is a normal matrix and |ziPi| = |zi|Pi. Applying
Theorem 2.7 completes the proof. □

Using Lemma 2.6, we have the following interesting inequality.

Corollary 2.11. Let A ∈ Mn. Then

(2.8) s(A+A∗) ≺wlog s((|A|+ |A∗|).

Proof. Suppose that A = U |A| is the polar decomposition of A with U unitary.
By Lemma 2.5, we have

A+A∗ = |A∗| 12U |A| 12 + |A| 12U∗|A∗| 12 .
For each i = 1, . . . , n,

si((|A∗|+ |A|) 1
2 )si((|A|+ |A∗|) 1

2 ) = si(|A|+ |A∗|).
Applying Lemma 2.6 completes the proof. □
Corollary 2.12. Let A ∈ Mn. Then

(2.9) ∥A+A∗∥ ≤ ∥ |A|+ |A∗| ∥,
for every unitary invariant norm ∥ · ∥.

Proof. Combining Corollary 2.11 and Lemma 2.1 completes the proof. □
An application of Lemma 2.6 gives an inequality involving a partitioned

matrix.

Theorem 2.13. If A,B,C and D are normal matrices of the same order, then
(2.10)

s

(
A B
C D

)
≺wlog{si

(
(|A|+ |B|)

1
2⊕(|C|+ |D|)

1
2

)
si
(
(|A|+ |C|)

1
2 ⊕ (|B|+ |D|)

1
2

)
}.

Proof. Since A,B,C and D are normal matrices, we have∣∣∣∣( A 0
0 D

)∣∣∣∣ = ∣∣∣∣( A 0
0 D

)∗∣∣∣∣ = ( |A| 0
0 |D|

)
,∣∣∣∣( 0 B

C 0

)∗∣∣∣∣ = ( |B| 0
0 |C|

)
and ∣∣∣∣( 0 B

C 0

)∣∣∣∣ = ( |C| 0
0 |B|

)
.

Then (
A 0
0 D

)
= (|A| 12 ⊕ |D| 12 )U1(|A|

1
2 ⊕ |D| 12 )
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and (
0 B
C 0

)
= (|B| 12 ⊕ |C| 12 )U2(|C| 12 ⊕ |B| 12 )

with U1, U2 unitary. Using Lemma 2.6 completes the proof. □
Applying Theorem 2.13 yields the inequality for the spectral norm due to

Bouring and Uchiyama in [7].

Corollary 2.14. If A,B,C and D are normal matrices of the same order,
then
(2.11)∥∥∥∥( A B

C D

)∥∥∥∥
∞
≤max{∥|A|+|B|∥∞, ∥|C|+|D|∥∞, ∥|A|+|C|∥∞, ∥|B|+|D|∥∞}.

Proof. Write

L := max{∥|A|+ |B|∥∞, ∥|C|+ |D|∥∞, ∥|A|+ |C|∥∞, ∥|B|+ |D|∥∞}.
Since s1(X) = ∥X∥∞ for any X ∈ Mn, we have

s1

(
(|A|+ |B|) 1

2 ⊕ (|C|+ |D|) 1
2

)
= max{∥|A|+ |B|∥

1
2∞, ∥|C|+ |D|∥

1
2∞} ≤ L

1
2

and

s1

(
(|A|+ |C|) 1

2 ⊕ (|B|+ |D|) 1
2

)
= max{∥|A|+ |C|∥

1
2∞, ∥|B|+ |D|∥

1
2∞}} ≤ L

1
2 .

Applying the case i = 1 of Theorem 2.13 completes the proof. □
An inequality in Bhatia’s book [4, p.271] is the following:
Let A,B ∈ Mn. Then

(2.12) |det(A+B)|2 ≤ det( (|A|+ |B| ) det( (|A∗|+ |B∗| ).
The following corollary generalizes this determinant inequality, which is pretty
well known, as determinant functional is Liebian [12, p. 70-71].

Corollary 2.15. Let Ai ∈ Mn, for i = 1, . . . ,m. Then

(2.13)

∣∣∣∣∣det
(

m∑
i=1

Ai

)∣∣∣∣∣
2

≤ det

(
m∑
i=1

|Ai|

)
det

(
m∑
i=1

|A∗
i |

)
.

Proof. Let Ai = Ui|Ai| be the polar decompositions of Ai with Ui unitary,
i = 1, 2, . . . ,m. By Lemma 2.5, for any positive integer i = 1, . . . ,m, Ai =

|A∗
i |

1
2Ui|Ai|

1
2 with Ui unitary and so

m∑
i=1

Ai =

m∑
i=1

|A∗
i |

1
2Ui|Ai|

1
2 .

By Lemma 2.6, we have

s

(
m∑
i=1

Ai

)
≺wlog

si

(
m∑
i=1

|A∗
i |

) 1
2

si

(
m∑
i=1

|Ai|

) 1
2

 .
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Note that |detX| =
∏n

i=1 si(X) for any X ∈ Mn. Using the case i = n of the
above inequality yields∣∣∣∣∣det

(
m∑
i=1

Ai

)∣∣∣∣∣ ≤

[
det

(
m∑
i=1

|Ai|

)] 1
2
[
det

(
m∑
i=1

|A∗
i |

)] 1
2

.

This completes the proof. □

Let A,B ∈ Mn be positive semidefinite. Bhatia and Kittaneh [6] stated that
“ The formulation 2si(AB) ≤ si(A

2 + B2) (1 ≤ i ≤ n) is somewhat delicate.
For example, another possible formulation could be

si(AB +BA) ≤ si(A
2 +B2).

But this is not always true.” However, Zou and He pointed out the following
inequality is true:

∥AB +BA∥ ≤ ∥A2 +B2∥.
Using Lemma 2.6, the next corollary sharpens the corresponding result:

Corollary 2.16. Let A, B ∈ Mn be positive semidefinite matrices. Then

(2.14) s(AB +BA) ≺wlog s(A2 +B2)

Proof. Using Lemma 2.6 completes the proof. □

At last, we prove some inequalities involving Hadamard products of matrices.

Lemma 2.17. Let Ai ∈ Mn, i = 1, 2, . . . ,m. Then

(2.15) s (◦mi=1Ai) ≺wlog

{
si

(
(◦mi=1|Ai|)

1
2

)
si

(
(◦mi=1|A∗

i |)
1
2

)}
.

Proof. Note that for any X ∈ Mn, we have(
|X| X∗

X |X∗|

)
≥ 0.

Then for each i = 1, . . . ,m, (
|Ai| A∗

i

Ai |A∗
i |

)
≥ 0.

By Lemma 2.3, we have

0 ≤ ◦mi=1

(
|Ai| A∗

i

Ai |A∗
i |

)
=

(
◦mi=1|Ai| ◦mi=1A

∗
i

◦mi=1Ai ◦mi=1|A∗
i |

)
.

Then there exists a contraction W [15, Th. 3.34] such that

◦mi=1A
∗
i = (◦mi=1|Ai|)

1
2 W (◦mi=1|A∗

i |)
1
2 .

Note that for any A ∈ Mn, s(A) = s(A∗). Using Lemma 2.6 completes the
proof. □
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Theorem 2.18. Let Ai ∈ Mn be normal matrices, i = 1, 2, . . . ,m. Then

s (◦mi=1Ai) ≺wlog s (◦mi=1|Ai|) .

Proof. Note that |Ai| = |A∗
i |, for each i. Applying Lemma 2.17 completes the

proof. □
Remark 2.19. Combining Lemma 2.17 with Lemma 2.1, we can obtain the
following inequalities:

Let A ∈ Mn.

(2.16) s(A ◦A∗) ≺wlog s(|A| ◦ |A∗|)
and so for every unitarily invariant norm

(2.17) ||A ◦A∗|| ≤ |||A| ◦ |A∗|||.
Let Ai ∈ Mn, i = 1, 2, . . . ,m.

(2.18) |det (◦mi=1Ai)|2 ≤ det (◦mi=1|Ai| ) det (◦mi=1|A∗
i | ) .

Moreover, for all normal matrices Aj ,

(2.19)
∣∣tr(◦mj=1Aj)

∣∣ ≤ tr(◦mj=1|Aj |)
and

(2.20) || ◦mj=1 Aj || ≤ || ◦mj=1 |Aj | ||
for every unitarily invariant norm.

Theorem 2.20. Let A, B ∈ Mn be positive semidefinite matrices. Then

(2.21) s(AB ◦BA) ≺wlog s(A2 ◦B2).

Proof. Since A and B are positive semidefinite, so are

(
A2 AB
BA B2

)
and(

B2 BA
AB A2

)
. By Lemma 2.3,

(
A2 ◦B2 AB ◦BA
BA ◦AB B2 ◦A2

)
is positive semidefi-

nite. Then there exists a contraction W [15, Th. 3.34] such that

AB ◦BA = (A2 ◦B2)
1
2W (B2 ◦A2)

1
2 .

Note that A2 ◦B2 = B2 ◦A2. Using Lemma 2.6 completes the proof. □
Using Theorem 2.20 and Lemma 2.1 we have

Corollary 2.21. Let A, B ∈ Mn be positive semidefinite matrices. Then

(2.22) ∥AB ◦BA∥ ≤ ∥A2 ◦B2∥
for every unitarily invariant norm.
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