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Abstract. Semilinear stochastic evolution equations with multiplicative
Lévy noise are considered. The drift term is assumed to be monotone

nonlinear and with linear growth. Unlike other similar works, we do not
impose coercivity conditions on coefficients. We establish the continuous
dependence of the mild solution with respect to initial conditions and also
on coefficients. As corollaries of the continuity result, we derive sufficient

conditions for asymptotic stability of the solutions, we show that Yosida
approximations converge to the solution and we prove that solutions have
Markov property. Examples on stochastic partial differential equations
and stochastic delay differential equations are provided to demonstrate

the theory developed. The main tool in our study is an inequality which
gives a pathwise bound for the norm of stochastic convolution integrals.
Keywords: Stochasic evolution equations, monotone nonlinearity, sto-
chastic convolution integrals, Lévy processes.
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1. Introduction

1.1. Motivation. Stochastic evolution equations in the simplest case are equa-
tions of the form

dXt = AXtdt+ f(Xt)dt+ g(Xt)dWt

in a Hilbert space where A is the infinitesimal generator of a C0 semigroup
of linear operators and Wt is a Wiener process or more generally a martin-
gale. The case that f and g are Lipschitz is classical and well studied (see [9]
and [20]). The extensions to non-Lipschitz coefficients, have been the subject
of many papers. There are two main approaches in the study of non-Lipschitz
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stochastic evolution equations. The first approach is the variational method
and assumes some monotonicity and coercivity assumption on f, g. For this
approach, see [22, 27] and [29] for Wiener noise, [11] for general martingales
and [4] for Lévy noise.

The second approach is the semigroup approach to semilinear stochastic
evolution equations with monotone drift and assumes that f is semimonotone
and g is Lipschitz, i.e. there exists a real constantM such that ⟨f(x)−f(y), x−
y⟩ ≤M∥x− y∥2.

This approach has first appeared in deterministic context in the works of
Browder [3] and Kato [18] and has been extended to stochastic evolution equa-
tions in [34] and [37].

This approach is a generalization of the Lipschitz case, and this general-
ization is useful since there are natural semimonotone functions which are not
Lipschitz; examples include decreasing real functions, such as − 3

√
x, or the sum

of a non differentiable decreasing function with a Lipschitz function. Figure 1
shows a semimonotone real function.

Figure 1. A semimonotone function

An advantage of the semigroup approach relative to the variational method
is that it does not require the coercivity. There are important examples, such
as stochastic partial differential equations of hyperbolic type with monotone
nonlinear terms, for which the generator does not satisfy the coercivity property
and hence the variational method is not directly applicable to these equations.
But as is shown in Examples 6.3 and 6.5, this problem can be treated directly
in semigroup setting.

There are other works with this approach, e.g the exponential asymptotic
stability of solutions in the case of Wiener noise has been studied in [14],
stochastic delay evolution equations has been studied in [15], generalizing the
previous results to stochastic functional evolution equations with coefficients
depending on the past path of the solution is done in [17], a stopped version
of (1.1) in case of Wiener noise has been studied in [13], the large deviation
principle for the case of Wiener noise is studied in [5]. A limiting problem of
such equations arising from random motion of highly elastic strings has been



177 Salavati and Zangeneh

considered in [33]. Finally, the stationarity of a mild solution to a stochastic
evolution equation with a monotone nonlinear drift and Wiener noise is studied
in [38].

In recent years some research has appeared on stochastic evolution equa-
tions with Lévy (jump) noise, see e.g. Peszat and Zabczyk [28], Albeverio,
Mandrekar and Rüdiger [1] and Marinelli, Prévôt and Röckner [24] for the case
of Lipschitz coefficients and Brzeźniak, Liu and Zhu [4] for coercive and mono-
tone coefficients with variational method. There are a number of works that
have considered monotone (dissipative) coefficients with additive Lévy noise,
see e.g Peszat and Zabczyk [28].

We should mention the article by Marinelli and Röckner [25] which considers
monotone nonlinear drift and multiplicative Poisson noise on certain function
spaces and proves the existence, uniqueness and regular dependence of the mild
solution on initial data. They don’t assume the linear growth condition on drift
coefficient, but instead they impose an additional positivity assumption on the
semigroup and the drift term is the Nemitsky operator associated with a real
monotone function. They use a completely different method.

The main contribution of this article is Theorem 3.1 in Section 3 which
shows the continuous dependence of the solution of (1.1) on initial conditions
and coefficients. We mention below other works in the literature about con-
tinuous dependence. In the context of Wiener noise, [8] considers the case
that the semigroup is analytic and f is locally Lipschitz, and shows that the
solution is a continuous function of the noise coefficients. [34] generalizes this
result to stochastic evolution equations with Wiener noise and monotone non-
linearity and shows that the solution depends continuously on initial condition
and coefficients (including A). In the context of Poisson noise, [1] proves the
continuous dependence on initial data and coeffincients for the case of Lip-
shcitz coefficients and [24] proves continuous dependence on initial data and
under additional assumptions proves Gâteaux and Fréchet differentiability of
the solution w.r.t initial data in the case of Lipschitz coefficients. We should
mention the recent article [23] in which is shown the continuous dependence of
the solution of (1.1) on all coefficients including A for the Lipschitz case. For
equations with monotone coefficients, [25] proves the continuous dependence of
the solution w.r.t initial condition. [16] proves the continuous dependence on
coefficients in the case of Wiener noise with monotone nonlinearity.

1.2. The Main equation. Let H be a separable Hilbert space and S(t) a
C0-semigroup of linear operators on H with generator A. We are concerned
with this equation,

(1.1) dXt = AXtdt+ f(t,Xt)dt+ g(t,Xt−)dWt +

∫
E

k(t, ξ,Xt−)Ñ(dt, dξ),
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where Wt is a cylindrical Wiener process on another Hilbert space, Ñ(dt, dξ) is
a compensated Poisson random measure on a Banach space U and independent
ofWt. We assume f is semimonotone and g and k are Lipschitz and have linear
growth. In Section 2 the assumptions on coefficients are stated precisely.

The main results of this article are Theorem 3.1 and Corollary 3.2, proved in
Section 3 which states that the solutions of equation (1.1) depend continuously,
in an appropriate sense, on initial condition and also on coefficients. Several
consequences of these results are also provided. In Corollary 3.3 a sufficient
condition for exponential asymptotic stability of the solutions is derived. In
Section 4 we introduce the well known Yosida approximations of equation (1.1)
and show that the solutions of them converge to the solution of (1.1). In
Section 5 the Markov property of the mild solutions is proved. We will provide
some concrete examples to which our results apply. These examples consist
of semilinear stochastic partial differential equations and a stochastic delay
differential equation. Some of the statements have been presented previously
in [30].

1.3. Stochastic Convolution Integrals. Let Z(t) be a stochastic process.
Consider the equation dX(t) = AX(t)dt+dZ(t) with an initial condition X(0).
Since A is not defined on all of H this equation may have no solutions, for
example when X(0) /∈ Domain(A). In the case that Z(t) is an H-valued
semimartingale, a weaker notion of solution for this equation, i.e. mild solution

is defined as X(t) = S(t)X(0) +
∫ t

0
S(t − s)dZ(s), where the integral is a

stochastic integral. This is called a stochastic convolution integral (for the
definition and properties of semimartingales and stochastic integration with
respect to them the reader is referred to Metivier [26]).

Now we introduce the concept of mild solution for (1.1).

Definition 1.1. By a mild solution of equation (1.1) with initial condition X0

we mean an adapted càdlàg process Xt that satisfies

(1.2) Xt = StX0 +

∫ t

0

St−sf(s,Xs)ds+

∫ t

0

St−sg(s,Xs−)dWs

+

∫ t

0

∫
E

St−sk(s, ξ,Xs−)Ñ(ds, dξ).

Inequalities concerning upper bounds for the norm of stochastic convolution
integrals are useful in studying stochastic evolution equations. One of the first
such inequalities was that of Kotelenez [19] which is a maximal inequality for
stochastic convolution integrals. Kotelenez [19] uses this inequality to prove
the existence of a càdlàg version for stochastic convolution integrals. From
now on, we always assume that stochastic convolution integrals are càdlàg.
Later Kotelenez [20] proved a stronger inequality which was a stopped Doob
inequality.
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Theorem 1.2 (Kotelenez, [20]). Assume α ≥ 0. There exists a constant C
such that for any H-valued càdlàg locally square integrable martingale Mt we
have

E sup
0≤t≤T

∥
∫ t

0

St−sdMs∥2 ≤ Ce4αTE[M ]T .

Remark 1.3. Hamedani and Zangeneh [12] generalized this inequality to a
stopped maximal inequality for p-th moment (0 < p <∞) of stochastic convo-
lution integrals.

Usual inequalities such as Theorem 1.2 concern the expectation of the norm
of stochastic convolution integrals and because of the presence of monotone
nonlinearity in equation (1.1), they are not applicable to (1.1). For this rea-
son we will use the following pathwise inequality for the norm of stochastic
convolution integrals which has been proved in Zangeneh [37].

Theorem 1.4 (Itô type inequality, Zangeneh [37]). Let Zt be an H-valued
càdlàg locally square integrable semimartingale. If

Xt = StX0 +

∫ t

0

St−sdZs,

then, a.s.

∥Xt∥2 ≤ e2αt∥X0∥2 + 2

∫ t

0

e2α(t−s)⟨Xs−, dZs⟩+
∫ t

0

e2α(t−s)d[Z]s,

where [Z]t is the quadratic variation process of Zt.

2. The assumptions

Let H be a separable Hilbert space with inner product ⟨ , ⟩. Let St be a
C0 semigroup on H with infinitesimal generator A : D(A) → H. Furthermore
we assume the exponential growth condition on St holds, i.e. there exists a
constant α such that ∥St∥ ≤ eαt. If α = 0, St is called a contraction semigroup.
We denote by LHS(K,H) the space of Hilbert-Schmidt mappings from a Hilbert
space K to H.

Definition 2.1. f : H → H is called semi-monotone if there exists a real
constant M such that

∀x, y ∈ H : ⟨f(x)− f(y), x− y⟩ ≤M∥x− y∥2

and is called monotone if M = 0.

Note that semi-monotone condition is weaker than Lipschitz condition.

Definition 2.2. f : H → H is called demicontinuous if whenever xn → x,
strongly in H then f(xn)⇀ f(x) weakly in H.
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Let (Ω,F ,Ft,P) be a filtered probability space. Let (E, E) be a measurable
space and N(dt, dξ) a Poisson random measure on R+ ×E with intensity mea-
sure dtν(dξ). Our goal is to study equation (1.1) in H, whereWt is a cylindrical

Wiener process on a Hilbert space K and Ñ(dt, dξ) = N(dt, dξ)−dtν(dξ) is the
compensated Poisson random measure corresponding to N . We assume that
N and Wt are independent. We also assume the following,

Hypothesis 2.3. (a): f(t, x, ω) : R+ ×H × Ω → H is measurable, Ft-
adapted, demicontinuous with respect to x and there exists a constant
M such that

⟨f(t, x, ω)− f(t, y, ω), x− y⟩ ≤M∥x− y∥2,

(b): g(t, x, ω) : R+ ×H × Ω → LHS(K,H) and k(t, ξ, x, ω) : R+ × E ×
H × Ω → H are predictable and there exists a constant C such that

∥g(t, x, ω)− g(t, y, ω)∥2LHS(K,H)+

∫
E

∥k(t, ξ, x)−k(t, ξ, y)∥2ν(dξ) ≤ C∥x− y∥2,

(c): There exists a constant D such that

∥f(t, x, ω)∥2 + ∥g(t, x, ω)∥2LHS(K,H) +

∫
E

∥k(t, ξ, x)∥2ν(dξ) ≤ D(1 + ∥x∥2),

(d): X0(ω) is F0 measurable and square integrable.

The following theorem states that equation (1.1) has a unique mild solution.
For the proof see [31].

Theorem 2.4 (Existence and Uniqueness of the Mild Solution). Under the
assumptions of Hypothesis 2.3, equation (1.1) has a unique square integrable
càdlàg mild solution with initial condition X0.

3. The main result

Theorem 3.1 (Continuity With Respect to Parameter I). Assume that for
n = 0, 1, fn(t, x, ω), gn(t, x, ω) and kn(t, ξ, x, ω) satisfy Hypothesis 2.3 with the
same constants. Let Xn

t be the unique mild solution of

dXn
t = AXn

t dt + fn(t,X
n
t )dt + gn(t,X

n
t−)dWt +

∫
E

kn(t, ξ,X
n
t−)Ñ(dt, dξ),
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with initial condition Xn
0 . Then,

E sup
0≤t≤T

e−2αt∥X1
t −X0

t ∥2(3.1)

≤ 2eC1TE∥X1
0 −X0

0∥2

+2eC1T

∫ T

0

e−2αtE∥f1(t,X0
t )− f0(t,X

0
t )∥2dt

+C2e
C1T

∫ T

0

e−2αtE∥(g1(t,X0
t )− g0(t,X

0
t ))∥2dt

+C2e
C1T

∫ T

0

∫
E

e−2αtE∥(k1(t, ξ,X0
t )− k0(t, ξ,X

0
t ))∥2ν(dξ)dt,

for C1 = 4M + 2 + C(8C2
1 + 4) and C2 = 8C2

1 + 4 where C1 is the universal
constant in Burkholder-Davies-Gundy inequality.

Proof. First we consider the case that α = 0. Subtract X1 and X0,

X1
t −X0

t = St(X
1
0 −X0

0 )

+

∫ t

0

St−s(f1(s,X
1
s )− f0(s,X

0
s ))ds+

∫ t

0

St−sdMs,

where

Mt =

∫ t

0

(g1(s,X
1
s−)− g0(s,X

0
s−))dWs +

∫
E

(k1(s, ξ,X
1
s−)− k0(s, ξ,X

0
s−))dÑ.

Applying Itô type inequality (Theorem 1.4), for α = 0, to X1 −X0 we find

(3.2) ∥X1
t −X0

t ∥2 ≤ ∥X1
0 −X0

0∥2 + 2

∫ t

0

⟨X1
s− −X0

s−, (f1(s,X
1
s )− f0(s,X

0
s ))⟩ds︸ ︷︷ ︸

At

+ 2

∫ t

0

⟨X1
s− −X0

s−, dMs⟩︸ ︷︷ ︸
Bt

+[M ]t.

We have

At =

∫ t

0

⟨X1
s− −X0

s−, f1(s,X
1
s )− f1(s,X

0
s )⟩ds

+

∫ t

0

⟨X1
s− −X0

s−, f1(s,X
0
s )− f0(s,X

0
s )⟩ds.

Using the monotonicity assumption and Cauchy-Schwartz inequality we have

(3.3) At ≤ M

∫ t

0

∥X1
s −X0

s∥2ds+
1

2

∫ t

0

∥X1
s −X0

s∥2ds

+
1

2

∫ t

0

∥f1(s,X0
s )− f0(s,X

0
s )∥2ds.
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Applying Burkholder-Davies-Gundy inequality for p = 1 to term Bt we find

E sup
0≤s≤t

|Bs| ≤ C1E
(

sup
0≤s≤t

∥X1
s −X0

s∥[M ]
1
2
t

)
,

Note that the constant C1 in the Burkholder-Davies-Gundy inequality, does not
depend on the coefficients or on the martingale. Now, by using the elementary
inequality ab ≤ 1

4a
2 + b2 we find,

(3.4) ≤ 1

4
E sup

0≤s≤t
∥X1

s −X0
s∥2 + C2

1E[M ]t.

We have

E[M ]t =

∫ t

0

E∥(g1(s,X1
s )− g0(s,X

0
s ))∥2ds

+

∫ t

0

∫
E

E∥(k1(s, ξ,X1
s )− k0(s, ξ,X

0
s ))∥2ν(dξ)ds

≤ 2

∫ t

0

E∥(g1(s,X1
s )− g1(s,X

0
s ))∥2ds

+2

∫ t

0

E∥(g1(s,X0
s )− g0(s,X

0
s ))∥2ds

+2

∫ t

0

∫
E

E∥(k1(s, ξ,X1
s )− k1(s, ξ,X

0
s ))∥2ν(dξ)ds

+2

∫ t

0

∫
E

E∥(k1(s, ξ,X0
s )− k0(s, ξ,X

0
s ))∥2ν(dξ)ds.

Using the Lipschitz assumption on g and k we find

(3.5) E[M ]t ≤ 2C

∫ t

0

E∥X1
s −X0

s∥2ds

+ 2

∫ t

0

E∥(g1(s,X0
s )− g0(s,X

0
s ))∥2ds

+ 2

∫ t

0

∫
E

E∥(k1(s, ξ,X0
s )− k0(s, ξ,X

0
s ))∥2ν(dξ)ds.

Substituting (3.3), (3.4) and (3.5) in (3.2), after cancellation we find

E sup
0≤s≤t

∥X1
s −X0

s∥2 ≤ C1

∫ t

0

E∥X1
s −X0

s∥2ds+ 2E∥X1
0 −X0

0∥2

+2

∫ t

0

E∥f1(s,X0
s )− f0(s,X

0
s )∥2ds

+C2

∫ t

0

E∥(g1(s,X0
s )− g0(s,X

0
s ))∥2ds

+C2

∫ t

0

∫
E

E∥(k1(s, ξ,X0
s )− k0(s, ξ,X

0
s ))∥2ν(dξ)ds,

where C1 = 4M + 2 + C(8C2
1 + 4) and C2 = 8C2

1 + 4.
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Now applying Gronwall’s inequality the statement follows. Hence the proof
for the case α = 0 is complete. Now for the general case, we apply the following
change of variables,

S̃t = e−αtSt, f̃(t, x, ω) = e−αtf(t, eαtx, ω), g̃(t, x, ω) = e−αtg(t, eαtx, ω),

k̃(t, ξ, x, ω) = e−αtk(t, ξ, eαtx, ω).

Note that S̃t is a contraction semigroup. It is easy to see that Xt is a mild
solution of equation (1.1) if and only if X̃t = e−αtXt is a mild solution of

equation with coefficients S̃, f̃ , g̃, k̃.
□

As a consequence of Theorem 3.1 we prove that if the coefficients and initial
conditions of a sequence of equations converge, then their mild solutions also
converge to the mild solution of the limiting equation. The convergence that
we prove is in a sense stronger than similar result in [1].

Corollary 3.2 (Continuity With Respect to Parameter II). Assume that for
n = 0, 1, 2, . . ., fn, gn, kn and Xn

0 satisfy Hypothesis 2.3 with the same con-
stants and assume that for every t ∈ [0, T ] and x ∈ H we have almost surely

fn(t, x, ω) → f0(t, x, ω)

gn(t, x, ω) → g0(t, x, ω)∫
E
∥kn(t, ξ, x, ω)− k0(t, ξ, x, ω)∥2ν(dξ) → 0

E∥Xn
0 −X0

0∥2 → 0.

Then
E sup

0≤t≤T
∥Xn

t −X0
t ∥2 → 0.

Proof. Apply Theorem 3.1 to Xn and X0. Note that by Hypothesis 2.3-(c) the
integrands on the right hand side of (3.1) are dominated by a constant multiple
of (1+ ∥X0

t (ω)∥2), on the other hand by assumptions they tend to zero almost
everywhere on [0, T ] × Ω. Hence by the dominated convergence theorem, the
right hand side of (3.1) tends to 0 and therefore

E sup
0≤t≤T

e−2αt∥X1
t −X0

t ∥2 → 0

which implies the statement. □
As another consequence of Theorem 3.1 it follows that if the contraction

coefficient of the semigroup is sufficiently negative, then all the mild solutions
are exponentially stable.

Corollary 3.3 (Exponential Stability). Let Xt and Yt be mild solutions of (1.1)
with initial conditions X0 and Y0. Then

E∥Xt − Yt∥2 ≤ 2eγtE∥X0 − Y0∥2
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for γ = 2α+4M+2+C(8C2
1+4). In particular, if γ < 0 then all mild solutions

are exponentially stable.

4. Yosida approximations

As another application of Theorem 3.1 we construct Lipschitz approxima-
tions of equation (1.1) known as Yosida approximations and prove that their
solutions converge to the solution of (1.1). Since equations with Lipschitz co-
efficients can be solved numerically, this can be used as a scheme for numerical
solution of (1.1).

In this section we assume f : H → H satisfies a condition stronger than
monotonicity which is maximal monotonicity. This concept in its most gener-
ality is defined for subsets of X × X∗ in which X is a Banach space. For a
detailed treatment of this concept see [2].

Definition 4.1. A ⊂ X ×X∗ is called monotone, if for any (x1, y1), (x2, y2) ∈
A,

(y2 − y1, x2 − x1) ≤ 0

and is called maximal monotone if it is monotone and is not properly contained
in any monotone set.

Note that any operator f : X → X∗ can be viewed as a subset of X ×X∗

and hence the concept of maximal monotonicity is defined for it, especially
since H is a Hilbert space, maximal monotonicity makes sense for operators
f : H → H.

Maximal monotonicity is not very restrictive as the following theorem shows
that any monotone operator with a weak continuity assumption called hemi-
continuity is maximal monotone.

Definition 4.2. f : H → H is called hemicontinuous if for any x, y ∈ H,
f(x + ty) is continuous as a function of t ∈ R (in other words f is continuous
in each direction).

Theorem 4.3 ( [2], page 45, Theorem 1.3). Let f : H → H be monotone and
hemicontinuous, then it is maximal monotone.

Let f : H → H be a maximal monotone operator. Then we follow [2] to
define for λ > 0,

Iλ = (I − λf)−1

fλ = λ−1(Iλ − I).

Note that with our notation, −f is maximal monotone in the sense of [2]. Some
of the important properties of fλ are listed in the following proposition.

Proposition 4.4 ( [2], page 49, Proposition 1.3). Let f : H → H be maximal
monotone. Then

(i): fλ is monotone and Lipschitz on H.
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(ii): For any x ∈ H, ∥fλ(x)∥ ≤ ∥f(x)∥.
(iii): For any x ∈ H, limλ→0 fλ(x) = f(x) strongly in H.

Now we are ready to state and prove the main theorem of this section.

Theorem 4.5. Let f be maximal monotone and let Xλ be the mild solution of

(4.1) dXλ
t = AXλ

t dt+ fλ(X
λ
t )dt+ g(t,Xλ

t−)dWt +

∫
E

k(t, ξ,Xλ
t−)Ñ(dt, dξ),

then we have

lim
λ→0

E
(

sup
0≤s≤t

∥Xλ
s −Xs∥2

)
= 0

Proof. By Proposition 4.4-(i), fλ’s are monotone and continuous and by (ii)
they have linear growth condition with the same constant as f . Hence the
assumptions of Corollary 3.2 are satisfied and the statement follows. □

Remark 4.6. The hemicontinuity assumption holds for many monotone oper-
ators, especially for Nemitsky operators associated with decreasing continuous
real functions, since as will be mentioned in Section 6 these operators are in
fact continuous and hence hemicontinuous on L2(D) and therefore they are
maximal monotone by Theorem 4.3. Hence Theorem 4.5 could be applied to
examples of Section 6.

5. Markov property

In this section we assume that f , g and k are deterministic functions and
satisfy Hypothesis 2.3. Let 0 ≤ s ≤ t and η : Ω → H be Fs-measurable and
square integrable. We denote by X(s, η, t) the value at time t of the solution
of (1.1) starting at time s from η. Let Bb(H) be the space of real valued
bounded measurable functions on H. For φ ∈ Bb(H) and x ∈ H define

Ps,tφ(x) := Eφ(X(s, x, t)).

Ps,t is called the transition semigroup.

Theorem 5.1 (Markov Property). For 0 ≤ r ≤ s ≤ t and φ ∈ Bb(H) we have
almost surely

E (φ(X(r, x, t)|Fs) = Ps,tφ(X(r, x, s)) P− almost sure.

Proof. Let Cb(H) denote the set of real valued bounded continuous functions
on H. It suffices to prove the theorem for φ ∈ Cb(H) since every φ ∈ Bb(H)
is the pointwise limit of a uniformly bounded sequence in Cb(H). Fix r, s and
t. We claim that for any square integrable random variable η(ω) which is Fs

measurable, we have

(5.1) E (φ(X(s, η, t))|Fs) = Ps,tφ(η(ω)) P− almost sure.
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We first prove the claim for the case that η has a simple form η =
∑
ykχAk

,
where yk ∈ H and Ak ∈ Fs form a partition of Ω. We have

E (φ(X(s, η, t))|Fs) = E
(∑

φ(X(s, yk, t))χAk

∣∣Fs

)
=

∑
χAk

E (φ(X(s, yk, t))|Fs) .

Note that X(s, yk, t) is independent of Fs, hence

=
∑

χAk
E (φ(X(s, yk, t)))

=
∑

χAk
Ps,tφ(yk) = Ps,tφ(η(ω)).

Now for general η choose a sequence ηn of simple random variables such that
tend to η in L2(Ω) and almost surely. We then have

E (φ(X(s, ηn, t))|Fs) = Ps,tφ(ηn(ω)) P− almost sure.

Now let n → ∞. By continuity with respect to initial conditions, the left
hand side converges to E (φ(X(s, η, t))|Fs) and the right hand side converges to
Ps,tφ(η(ω)) and (5.1) follows. Now in (5.1) let η(ω) = X(r, x, s). By uniqueness
of solution we have X(r, x, t) = X(s,X(r, x, s), t) and the theorem follows. □

6. Some examples

In this section we provide some concrete examples of semilinear stochastic
evolution equations with monotone nonlinearity and Lévy noise which the re-
sults of previous sections could be applied. The examples consist of stochastic
partial differential equations of parabolic and hyperbolic type and a stochastic
delay differential equation.

Example 6.1 (Stochastic reaction-diffusion equations with multiplicative Pois-
son noise). In this example we consider a class of semilinear stochastic evolution
equations with multiplicative Poisson noise. Let D be a bounded domain with
a smooth boundary in Rd. Consider the equation,

(6.1)


du(t) = Au(t)dt+ f(u(t, x))dt+ ηu(t)dt

+
∫
E
k(t, ξ, u(t−, x))Ñ(dt, dξ)

u(0) = u0.

where A is the generator of a C0 semigroup on L2(D), f : R → R is a continuous
decreasing function with linear growth and k : [0, T ] × E × R × Ω → R is
measurable and satisfies the Lipschitz condition

E
∫
E

|k(s, ξ, u)− k(s, ξ, v)|2µ(dξ) ≤ C|u− v|2
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and the linear growth condition

E
∫
E

|k(s, ξ, u)|2µ(dξ) ≤ D(1 + |u|2)

and u0 ∈ L2(D). We prove that equation (6.1) has a unique mild solution in
L2(D).

We show that equation (6.1) satisfies the assumptions of Theorem 2.4. Let
H = L2(D). We denote the Nemitsky operator associated with a function
f : R → R by the same symbol. Since f and k are continuous and have
linear growth, by Theorem (2.1) of Krasnosel’skĭı [21], the associated Nemitsky
operators define continuous operators from L2(D) to L2(D) and have linear
growth. Verifying the other assumptions is straightforward. Hence applying
Theorem 2.4 we conclude that equation (6.1) has a unique mild solution in
L2(D) and Theorem 3.1 implies that the solution map u0 7→ u is Lipschitz in
the sense that

E sup
t≤T

∥u(t)− v(t)∥2L2(D) ≤ C∥u0 − v0∥2L2(D).

We also can use Thoerem 4.5 to build Lipschitz approximations of equation (6.1)
and solve them numerically to approximate the solution of (6.1).

Remark 6.2. (1) Equation (6.1) is the same as the main equation studied
in [25] but the assumptions on coefficients are different.

(2) As important examples for the operator A, one can denote any second
order elliptic operator on D.

(3) The same results hold if we add a Wiener noise term with Lipschitz
coefficient.

(4) It is straightforward to generalise this example to the case that f and k
depend also on x and in that case it suffices to assume that f(x, u) and
k(x, u) satisfy Caratheodory condition, i.e they are continuous with
respect to u for almost all x ∈ D and are measurable with respect to x
for all values of u.

Example 6.3 (Second Order Stochastic Hyperbolic Equations with Lévy noise).
In this example we consider a hyperbolic SPDE with Lévy noise. Let D be a
bounded domain with a smooth boundary in Rd, Consider the initial boundary
value problem,

(6.2)


∂2u
∂t2 = ∆u− 3

√
∂u
∂t +u(t−, x)∂Z∂t on [0,∞)×D

u = 0 on [0,∞)× ∂D
u(0, x) = u0(x) on D
∂u
∂t (0, x) = 0 on D,

where Z(t) is a real valued square integrable Lévy process and u0(x) ∈ L2(D)
is the initial condition. We apply the results of previous sections and conclude



Continuous dependence on coefficients for stochastic evolution equations 188

that this equation has a unique mild solution inH1(D) (Sobolev space of weakly
differentiable functions on D with derivative in L2(D)). One can replace − 3

√
x

by any continuous decreasing real function with linear growth. We generalize
this equation as follows:

(6.3)
∂2

∂t2u(t, x) = ∆u+ f(u, ∂u∂t ) + gi(u(t
−, x))∂Wi

∂t

+kj(u(t
−, x))

∂Zj

∂t on [0,∞)×D
u = 0 on [0,∞)× ∂D
u(0, x) = u0(x) on D
∂u
∂t (0, x) = 0 on D,

where Wi(t), i = 1, . . . ,m are standard Wiener processes in R and Zj(t), j =
1, . . . , n are pure jump Lévy martingales in R with intensity measures νj(dξ)
and u0(x) ∈ L2(D).

Moreover assume that,

Hypothesis 6.4. (a): f : R×R → R is measurable and continuous and
is Lipschitz w.r.t first variable and semimonotone w.r.t second variable,
i.e there exist constants M and C such that for any a, a1, a2, b, b1, b2 ∈
R,

∥f(a1, b)− f(a2, b)∥ ≤ C∥a1 − a2∥.
f(a, b1)− f(a, b2) ≤M(b1 − b2),

(b): There exists a constant C > 0 such that for any x ∈ D and a, b ∈ R,
m∑
i=1

|gi(x, a)− gi(x, b)|2 +
n∑

j=1

|kj(x, a)− kj(x, b)|2 ≤ C|a− b|2.

(c): There exists a constant D > 0 such that for any a, b ∈ R,

|f(a, b)|+
m∑
i=1

|gi(a)|+
n∑

j=1

|kj(a)| ≤ D(1 + |a|+ |b|).

Note that ∆ is self-adjoint and negative definite on L2. Moreover, we have

D((−∆)
1
2 ) = H1(D).

Hence by Lemma B.3 of [28], the operator

A =

(
0 I
∆ 0

)
generates a C0 semigroup of contractions on H.

Let K = E = R. We also define for (u, v) ∈ H and ϕ ∈ K and ξ ∈ E,

f̄(u, v) =

(
0

f(u(x), v(x))

)
, ḡ(u, v)(ϕ) =

(
0

g(u(x))ϕ

)
,
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k̄(ξ, u, v) =

(
0

k(u(x))ξ

)
.

We claim that f̄ , ḡ and k̄ satisfy Hypothesis 2.3. The continuity of f̄ , ḡ and
k̄ follows as in example 6.1 (note that the values of these functions are essen-
tially in L2(D) and that H1(D) embeds continuously in L2(D)). We show the
semimonotonicity condition, the other conditions are straightforward.

⟨f̄(u1, v1)− f̄(u2, v2),

(
u1
v1

)
−
(
u2
v2

)
⟩

= ⟨f(u1, v1)− f(u2, v2), v1 − v2⟩
= ⟨f(u1, v1)− f(u1, v2), v1 − v2⟩+ ⟨f(u1, v2)− f(u2, v2), v1 − v2⟩

where by Hypothesis 6.9-(a) and Shwartz inequality

≤M∥v1 − v2∥2 + C∥u1 − u2∥∥v1 − v2∥
≤ (M + C)

(
∥u1 − u2∥2 + ∥v1 − v2∥2

)
.

Hence Hypothesis 2.3-(a) holds with constant M + C. Now, if we let

X(t) =

(
u(t)
∂u
∂t (t)

)
then equation (6.5) can be written as

dX(t) = AX(t)dt+ f̄(X(t))dt+ ḡ(X(t−))dWt +

∫
E

k̄(ξ,X(t−))Ñ(dt, dξ)

and hence by Theorem 2.4 has a mild solution u(t, x, ω) with values in H and
with càdlàg trajectories.

Example 6.5 (SPDE with Space-Time Noise). In this example we would like
to consider a SPDE with infinite dimensional noise. A natural candidate for
infinite dimensional noise is space-time white noise, but it can be shown that
in dimensions greater than one, even the equation

∂u

∂t
(t, x) = ∆u(t, x) + Ẇ (t, x)

does not have a function valued solution ( [28], Remark 12.2). In order to
guarantee the existence of solution we assume that coefficients are operators
on certain function spaces.

Let D be as in Example 6.1. Consider the initial boundary value problem
on D,

(6.4)


∂u
∂t = ∆u+ f(u(t)) + g(u(t−))∂W∂t

+k(u(t−))∂Z∂t on [0,∞)×D
u = 0 on [0,∞)× ∂D
u(0, x) = 0 on D
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where Wt is a cylindrical Wiener process on L2(D) and Zt is a pure jump Lévy
martingale on L2(D), and by u(t) we mean u(t, .).

Let n be an integer. We wish to solve this equation in the function space
Hn introduced in Walsh [32]. Let {ϕj} be the complete orthonormal basis for
L2(D) consisting of eigenfunctions of ∆ with Dirichlet boundary condition and
−λj < 0 be the corresponding eigenvalues. Let Hn be the Hilbert space that
has as a complete orthonormal basis the set {ej = (1 + λj)

−n
2 ϕj}. Obviously

H0 = L2(D) and the spaces Hn can be continuously embedded in each other
as

· · · ⊂ Hn ⊂ · · · ⊂ H1 ⊂ L2(D) ⊂ H−1 ⊂ · · · ⊂ H−n ⊂ · · · .
Assume moreover,

Hypothesis 6.6. (a): f : Hn → Hn is measurable, demicontinuous and
there exists a constant M such that for any u, v ∈ Hn,

⟨f(u)− f(v), u− v⟩ ≤M∥u− v∥2,
(b): g : Hn → LHS(L

2(D),Hn) and k : Hn → L(L2(D),Hn) are Lips-
chitz.

(c): There exists a constant D such that for u ∈ Hn,

∥f(u)∥2 + ∥g(u)∥2 + ∥k(u)∥2 ≤ D(1 + ∥u∥2),

A generates a C0 semigroup St on H where Stej = e−tλjej . Let K = E =

L2(D) and let Ñ(dt, dξ) be the compensated Poisson random measure on E
corresponding to the Lévy process Zt with intensity measure ν(dξ), and define

k̄(ξ, u) := k(u)(ξ).

Now, it is easy to verify that f , g and k̄ satisfy Hypothesis 2.3 and therefore
equation (6.4) can be written in the form of equation (1.1) with initial condition
0 and hence (6.4) has a mild solution u(t, x, ω) with values in Hn and with
càdlàg trajectories.

Remark 6.7. In Hypothesis 6.6-(b) one can replace the condition on g by

g : Hn → L(W−p,2(D),Hn)

where p > d
2 is a real number, since the embedding L2(D) ↪→ W−p,2(D) is

Hilbert-Schmidt (see Walsh [32] page 334).

Remark 6.8. One can use the same arguments as above and the technique
used in Example 6.3 to study the second order hyperbolic equation,

(6.5)


∂2

∂t2u(t, x) = ∆u+ f(u(t), ∂u∂t ) + g(u(t−))∂W∂t
+k(u(t−))∂Z∂t on [0,∞)×D

u = 0 on [0,∞)× ∂D
u(0, x) = 0 on D
∂u
∂t (0, x) = 0 on D,
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where

Hypothesis 6.9. (a): f : Hn+1 ×Hn → Hn is measurable, demicontin-
uous and there exists constants M and C such that for any u, u1, u2 ∈
Hn+1, v, v1, v2 ∈ Hn,

⟨f(u, v1)− f(u, v2), v1 − v2⟩ ≤M∥v1 − v2∥2,

∥f(u1, v)− f(u2, v)∥ ≤ C∥u1 − u2∥.
(b): g : Hn+1 → LHS(L

2(D),Hn) and k : Hn+1 → L(L2(D),Hn) are
Lipschitz.

(c): There exists a constant D such that for u ∈ Hn+1, and v ∈ Hn

∥f(u, v)∥2 + ∥g(u)∥2 + ∥k(u)∥2 ≤ D(1 + ∥u∥2 + ∥v∥2).

It follows that under Hypothesis 6.9, the equation (6.5) has a mild solution
u(t, x, ω) with values in Hn+1 and with càdlàg trajectories.

Example 6.10 (Stochastic Delay Equations). Consider the following delay
differential equation in R,

(6.6)

{
dx(t) =

(∫ 0

−1
x(t+ θ)

)
dt− 3

√
x(t)dt+ x(t)dZt

x(θ) = sin(πθ), θ ∈ (−1, 0],

where Zt is a real valued square integrable Lévy process. We apply the results
of previous sections and show that this equation has a unique cadlag mild
solution. Moreover, − 3

√
x can be replaced by any continuous decreasing real

function with linear growth. We generalize the above equation as follows:

(6.7)


dx(t) =

(∫ 0

−h
µ(dθ)x(t+ θ)

)
dt+ f(x(t))dt

+g(x(t))dWt + k(x(t))dZt

x(θ) = ψ(θ), θ ∈ (−h, 0].

where h > 0, µ is a measure on (−h, 0] with finite variation, Wt is a standard
Wiener process in R, Zt is a pure jump Lévy martingale in R and ψ(θ) ∈
L2((−h, 0]). Moreover assume that,

Hypothesis 6.11. (a): f : R → R is continuous and there exists a con-
stant M such that for any a < b,

f(a)− f(b) ≤M(a− b),

(b): g : R → R and k : R → R are Lipschitz.
(c): There exists a constant D such that for a ∈ R,

|f(a)|2 + |g(a)|2 + |k(a)|2 ≤ D(1 + a2).
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Remark 6.12. Peszat and Zabczyk [28] have studied this delay differential
equation with Lipschitz coefficients. We have replaced Lipschitzness of f by
the weaker assumption of semimonotonicity.

Let H = R× L2((−h, 0]) and define the operator A on H by

A

(
u
v

)
=

( ∫ 0

−h
v(θ)µ(dθ)

∂v
∂θ

)
.

According to Da Prato and Zabczyk [9], Proposition A.25, the operator A with
domain

D(A) =

{(
u
v

)
∈ H : v ∈W 1,2(−h, 0), v(0) = u

}
generates a C0 semigroup St on H. Let K = E = R and let Ñ be the compen-

sated Poisson random measure associated with Zt. Define for

(
u
v

)
∈ H and

ξ ∈ R,

f̄(u, v) =

(
f(u)
0

)
, ḡ(u, v) =

(
g(u)
0

)
, k̄(ξ, u, v) =

(
ξk(u)
0

)
.

It is easy to verify that f̄ , ḡ and k̄ satisfy Hypothesis 2.3. Now, if we let

X(t) =

(
x(t)
xt

)
where xt(θ) = x(t+ θ) for θ ∈ (−h, 0], then equation (6.7) can be written as

dX(t) = AX(t)dt+ f̄(X(t))dt+ ḡ(X(t−))dWt +

∫
E

k̄(ξ,X(t−))Ñ(dt, dξ)

with initial condition

X(0) =

(
ψ(0)
ψ

)
and hence by Theorem 2.4 has a unique mild solution x(t, ω) with càdlàg tra-
jectories and the solution depends continuously on initial condition.
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[25] C. Marinelli and M. Röckner, Well-posedness and asymptotic behavior for stochastic
reaction-diffusion equations with multiplicative Poisson noise, Electron. J. Probab. 15
(2010), no. 49, 1528–1555.



Continuous dependence on coefficients for stochastic evolution equations 194

[26] M. Métivier, Semimartingales: A Course on Stochastic Processes, de Gruyter, Berlin,

1982.
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Noise and Monotone Nonlinearity, arXiv:1304.2122 [math.PR].

[32] J. B. Walsh, An introduction to stochastic partial differential equations, E’cole d’E’te de
Probabilites de Saint Flour XIV-1984, 265–439, Lecture Notes in Math., 1180, Springer,
Berlin, 1986.

[33] S. Zamani and B. Z. Zangeneh, Random motion of strings and related stochastic evo-

lution equations with monotone nonlinearities, Stoch. Anal. Appl. 23 (2005), no. 5,
903–920.

[34] B. Z. Zangeneh, Semilinear stochastic evolution equations, Ph.D Thesis, University of

British Columbia, Vancouver, B.C. Canada, 1990.
[35] B. Z. Zangeneh, Measurability of the solution of a semilinear evolution equation, Seminar

on Stochastic Processes, 1990, Progress in Probability, 24, Birkhäuser Boston, Boston,
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Boston, 1993.

[37] B. Z. Zangeneh, Semilinear stochastic evolution equations with monotone nonlinearities,

Stochastics Stochastics Reports 53 (1995), no. 1-2, 129–174.
[38] B. Z. Zangeneh, Stationarity of the Solution for the Semilinear Stochastic Integral

Equation on the Whole Real Line, Malliavin calculus and stochastic analysis, 315–331,
Springer Proc. Math. Stat., 34, Springer, New York, 2013.

(Erfan Salavati)Department of Mathematical Sciences, Sharif University of Tech-

nology, P.O. Box 11365-11155, Tehran, Iran.
E-mail address: salavati@mehr.sharif.ir

(Bijan Z. Zangeneh) Department of Mathematical Sciences, Sharif University of
Technology, P.O. Box 11365-11155, Tehran, Iran.

E-mail address: zangeneh@sharif.ir


	1. Introduction
	1.1. Motivation
	1.2. The Main equation
	1.3. Stochastic Convolution Integrals

	2. The assumptions
	3. The main result
	4. Yosida approximations
	5. Markov property
	6. Some examples
	Acknowledgments
	References

