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Abstract. In this paper, we study the boundary-value problem of frac-
tional order dynamic equations on time scales,

c∆αu(t) = f(t, u(t)), t ∈ [0, 1]Tκ2 := J, 1 < α < 2,

u(0) + u∆(0) = 0, u(1) + u∆(1) = 0,

where T is a general time scale with 0, 1 ∈ T, c∆α is the Caputo ∆-
fractional derivative. We investigate the existence and uniqueness of so-
lution for the problem by Banach’s fixed point theorem and Schaefer’s
fixed point theorem. We also discuss the existence of positive solutions

of the problem by using the Krasnoselskii theorem.
Keywords: Fractional differential equation, time scales, boundary-value
problem, fixed-point theorem.
MSC(2010): Primary 34A08; Secondary: 34N05, 34B05.

1. Introduction

Fractional differential equations have been of increasing importance in the
past decades due to their diverse applications in science and engineering, such as
the memory of a variety of materials, signal identification and image processing,
optical systems, thermal system materials and mechanical systems, control
system, etc., see [18,20].

Many scholars paid much attention to it, and many interesting results on the
existence of solutions of various classes of fractional differential equations have
been obtained, see [15, 16, 21–24, 29–31, 33–37, 39], and the references therein.
Recently, much attention has been focused on the study of the existence and
multiplicity of solutions or positive solutions for boundary value problems of
fractional differential equations with various boundary conditions by the use of
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techniques of nonlinear analysis (fixed-point theorems, Leray–Schauder theory,
the upper and lower solution method, etc.), see [2,9,12,15,16,21–23,27,33–38].

Fractional calculus, the study of integration and differentiation of fractional
order, has recently been extended to include its discrete analogues of fractional
difference calculus and fractional quantum calculus. Due to the similarities of
the three theories there has been research on whether there exist a single theory
that encapsulates them [7,13,14,26,28].

A time scale is any nonempty closed subset of real numbers R. It is intro-
duced to unify and extend the theory of differential equation, difference equa-
tions and other differential systems defined. The theory of time scale calculus
is a fairly new area of research. Hilger proved the existence and uniqueness
of initial value problems including differential equations on time scales in [17].
Some applications of this kind of problems can be found in [1, 3, 5].

A time scale of the form of a union of disjoint closed real intervals constitutes
a good background for the study of population (of plants, insects, etc.) models.
Such models appear, for example, when a plant population exhibits exponential
growth during the months of Spring and Summer, and at the beginning of
Autumn all plants die while the seeds remain in the ground. A book on the
subject of time scale, by Bohner and Peterson [10] summarizes and organizes
much of the time scale calculus, we refer also the last book by Bohner and
Peterson [11] for advances in dynamic equations on time scales. For the notions
used below we refer to the next section that provides some basic facts on time
scales extracted from Bohner and Peterson [10].

In recent years, several attempts have been done to join the two subjects,
developing a fractional calculus on time scales by G. A. Anastassiou, N. Bastos,
D. Mozyrska, D. Torres, A. Ahmadkhanlu, M. Jahanshahi and P. A Williams
[4, 6, 8, 25, 28, 32]. It was expected to establish a general definition of frac-
tional derivative on an arbitrary time scale and unify the theories of fractional
differential equations and discrete fractional equations finally.

There have been extensive study and application of fractional differential
equation, but limited work has been done in the study of fractional differential
equations on time scales. To the best of our knowledge, no any results devoted
to the study of the boundary value problems for fractional differential equations
on a general time scale. To fill this gap, we initiate to do this work.

Zhang [33] studied positive solutions for boundary value problems of non-
linear fractional differential equations

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where 1 < α ≤ 2 is a real number, andDα
0+ is the Caputo’s fractional derivative,

and f : [0, 1]× [0,+∞] → [0,+∞] is continuous.
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Ahmadkhanlu [6] et al. studied the initial value problem for the fractional
differential equations on time scales

c∆αy(t) = −f(t, y(t)), t ∈ [t0, t0 + a] = J ⊆ T, 0 < α ≤ 1,

y(t0) = y0,

where c∆α is Caputo fractional derivative operator and the function f : J×T →
R is a right-dense continuous function.

Motivated by all the works above, in this paper we consider the existence
and uniqueness of solutions for the following boundary-value problem

(1.1) c∆αu(t) = f(t, u(t)), t ∈ [0, 1]Tκ2 := J, 1 < α < 2,

(1.2) u(0) + u∆(0) = 0, u(1) + u∆(1) = 0,

where T is a general time scale with 0, 1 ∈ T, c∆α is the Caputo ∆-fractional
derivative, f : J × [0,+∞) → [0,+∞) is a right-dense continuous function.
We present sufficient conditions for the existence and uniqueness of the prob-
lem (1.1)–(1.2) by some fixed point theorems. We claim that the results of
this paper are a basic and important contribution to the theory of fractional
differential equations on general time scales.

The rest of this paper is organized as follows. In Section 2, we shall introduce
some definitions and lemmas to prove our main results. In Section 3, we discuss
the existence and uniqueness of the problem. In Section 4, we get the existence
of positive solutions of the problem.

2. Preliminaries

In this section, we introduce notations and definitions of fractional calculus
on time scales, and we prove two lemmas before stating our main results.

A time scale is an arbitrary nonempty closed subset of R and is denoted by
T. Here we give some examples of sets that are time scales. The real numbers
R, the integers Z, the natural numbers N, the non-negative integers N0, the
h-numbers (hZ = {hk : k ∈ Z}, where h > 0 is a fixed real number), and the
q-numbers ( kq = qZ ∪ {0} = {qk : k ∈ Z} ∪ {0}, where q > 1 is a fixed real
number).

Definition 2.1. ([10]) The mapping σ : T → T, defined by σ(t) = inf{s ∈ T :
s > t} with inf ∅ = supT (i.e.,σ(M) = M if T has a maximum M) is called the
forward jump operator. Accordingly, we define the backward jump operator
ρ : T → T by ρ(t) = sup{s ∈ T : s < t} with sup ∅ = inf T (i.e.,ρ(m) = m if T
has a minimum m). The symbol ∅ denotes the empty set.

Obviously both σ(t) and ρ(t) are in T when t ∈ T. A point t ∈ T is called
right-dense, right-scattered, left-dense or left-scattered if σ(t) = t, σ(t) >
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t, ρ(t) = t, ρ(t) < t, respectively. Points that are right-scattered and left-
scattered at the same time are called isolated. And points that are right-dense
and left-dense at the same time are called dense.

Definition 2.2. (Delta Derivative) ( [10]) Let f : T → R be a function and
t ∈ T. Then the delta derivative (or ∆-derivative) of f at the point t is defined
to be the number f∆(t) (provided it exists) with the property that for each
ε > 0 there is a neighborhood U of t in T such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U.

Definition 2.3. (Delta Integral) ([10]) Let [a, b] be a closed bounded interval
in T. A function F : [a, b] → R is called a delta antiderivative of a function
f : [a, b) → R provided that F is continuous on [a, b] and delta differentiable on
[a, b), and F∆(t) = f(t) for all t ∈ [a, b). Then we define the ∆-integral from a
to b of f by ∫ b

a

f(t)∆t = F (b)− F (a).

Definition 2.4. ( [10]) A function f : T → R is right-dense continuous (or
rd-continuous) provided that it is continuous at all right-dense points of T and
its left-sided limits exist(finite) at left-dense points of T. The set of all right-
dense continuous functions on T is denoted by Crd(T). Similarly, a function
f : T → R is left-dense continuous provided that it is continuous at all left-
dense points of T and its right-sided limits exist (finite) at right-dense points
of T. The set of all left-dense continuous functions on T is denoted by Cld(T).

Definition 2.5. [6] Suppose T is a time scale, [a, b] ⊆ T and the function h(x)
is an integrable function on [a, b], then ∆−fractional integral of h is defined by
the following relation

∆Iαa+h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)∆s,

where Γ(α) is the Euler Gamma function.

Definition 2.6. [6] Let h : T → R. The Caputo ∆−fractional derivative of h
is defined by

(2.1) c∆α
a+h(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1h∆n

(s)∆s,

where n = [α] + 1, and [α] denotes the integer of α.

Lemma 2.7. Let 1 < α < 2, t ∈ J and f : J × [0,+∞) → [0,+∞) be a right-
dense continuous function. Then the function u(t) is a solution of problem
(1.1)-(1.2) if and only if this function is a solution of the following integral
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equation:

u(t) =
∫ 1

0
G(t, s)f(s, u(s))∆s+ (1−t)(µ(1))α−1

Γ(α) f(1, u(1))

− (2−t)(σ(0))α−1

Γ(α) f(0, u(0)),

where
(2.2)

G(t, s) =


(t−s)α−1+(1−t)(1−s)α−1+(1−t)

∫ 1
0
(α−1)(1−s+hµ(1))α−2dh

Γ(α) , s ≤ t,

(1−t)(1−s)α−1+(1−t)
∫ 1
0
(α−1)(1−s+hµ(1))α−2dh

Γ(α) , t ≤ s.

Proof. For u(t) from (2.1) we have

c∆αu(t) =
1

Γ(2− α)

∫ t

0

(t− s)1−αu∆2

(s)∆s =∆ I2−αu∆2

(t).

Then it is easy to see that

∆Iα c∆αu(t) =∆ I2u∆2

(t) = u(t) + c1 + c2t,

and

u(t) =∆ Iαf(t, u(t)) + c1 + c2t,

for some c1, c2 ∈ R. Considering

u∆(t) = 1
Γ(α) (

∫ t

0
(t− s)α−1f(s, u(s))∆s)∆ + c∆1 + (c2t)

∆

= 1
Γ(α)

∫ t

0
f(s, u(s))(

∫ 1

0
(α− 1)(t− s+ hµ(t))α−2dh)∆s

+ 1
Γ(α) (σ(t)− t)α−1f(t, u(t)) + c2,

and condition (1.2), we get

u(t) = 1
Γ(α)

∫ t

0
(t− s)α−1f(s, u(s))∆s+ 1−t

Γ(α)

∫ 1

0
(1− s)α−1f(s, u(s))∆s

+ 1−t
Γ(α)

∫ 1

0
f(s, u(s))(

∫ 1

0
(α− 1)(1− s+ hµ(1))α−2dh)∆s

+ 1−t
Γ(α) (σ(1)− 1)α−1f(1, u(1))− 2−t

Γ(α) (σ(0))
α−1f(0, u(0))

=
∫ 1

0
G(t, s)f(s, u(s))∆s+ (1−t)(µ(1))α−1

Γ(α) f(1, u(1))

− (2−t)(σ(0))α−1

Γ(α) f(0, u(0)).

The proof is completed.□
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Lemma 2.8. Let 1 < α < 2. Then function G(t, s) defined by (2.2) has the
following properties
(R1) G(t, s) ≥ 0 for t, s ∈ [0, 1] ∩ T.
(R2) There exists a positive function γ such that

min
τ≤t≤η

G(t, s) ≥ γ(s)M(s), s ∈ [0, 1] ∩ T, τ, η ∈ T,

max
t∈J

G(t, s) ≤ M(s),

where

M(s) =
2(1− s)α−1

Γ(α)
+

∫ 1

0
(α− 1)(1− s+ hµ(1))α−2dh

Γ(α)
, s ∈ [0, 1] ∩ T.

Proof. From the expression of µ(1) and G(t, s), it is obvious that
∫ 1

0
(α −

1)(1− s+ hµ(1))α−2dh > 0, and G(t, s) ≥ 0 for t, s ∈ J . Next, we will prove
(R2). Let

g1(t) =
(t− s)α−1 + (1− t)((1− s)α−1 +

∫ 1

0
(α− 1)(1− s+ hµ(1))α−2dh)

Γ(α)
,

when s ≤ t, and

g2(t) =
(1− t)(1− s)α−1 + (1− t)

∫ 1

0
(α− 1)(1− s+ hµ(1))α−2dh

Γ(α)
, t ≤ s,

That is, g2(t) is decreasing with respect to t. Hence, we have

min
τ≤t≤η

g1(t) ≥
(1− η)((1− s)α−1 +

∫ 1

0
(α− 1)(1− s+ hµ(1))α−2dh)

Γ(α)
= m(s),

max
t∈J

g1(t) ≤
2(1− s)α−1

Γ(α)
+

∫ 1

0
(α− 1)(1− s+ hµ(1))α−2dh

Γ(α)
= M(s).

min
τ≤t≤η

g2(t) =
(1− η)(1− s)α−1 + (1− η)

∫ 1

0
(α− 1)(1− s+ hµ(1))α−2dh

Γ(α)
,

max
t∈J

g2(t) = g2(0) ≤
2(1− s)α−1

Γ(α)
+

∫ 1

0
(α− 1)(1− s+ hµ(1))α−2dh

Γ(α)
.

Thus, we have

min
τ≤t≤η

G(t, s) ≥ γ(s)M(s), s ∈ [0, 1] ∩ T, τ, η ∈ T,

max
t∈J

G(t, s) ≤ M(s),

where

γ(s) = m(s)
M(s) =

(1−η)(1−s)α−1+(1−η)
∫ 1
0
(α−1)(1−s+hµ(1))α−2dh

2(1−s)α−1+
∫ 1
0
(α−1)(1−s+hµ(1))α−2dh

≥ 1−η
2 , s ∈ [0, 1] ∩ T.
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The proof is completed.□
Lemma 2.9. [19] Let E be a Banach space and K be a cone in E. Assume
that Ω1 and Ω2 are bounded open subsets of E such that 0 ∈ Ω1,Ω1 ⊂ Ω2, and
let T : K

∩
(Ω2 \Ω1) → K be a completely continuous operator such that either

(1) ∥Tu∥ ≤ ∥u∥ for u ∈ K
∩
∂Ω1 and ∥Tu∥ ≥ ∥u∥ for u ∈ K

∩
∂Ω2, or

(2) ∥Tu∥ ≥ ∥u∥ for u ∈ K
∩
∂Ω1 and ∥Tu∥ ≤ ∥u∥ for u ∈ K

∩
∂Ω2.

Then T has a fixed point in K
∩
(Ω2 \ Ω1).

3. Existence and uniqueness

Now we are in the position to establish the main results. We begin with the
existence and uniqueness of solution for the problem (1.1)-(1.2).

Theorem 3.1. Assume that
(H1) f(t, u) is a right-dense continuous bounded function such that there exists
K > 0, |f(t, u)| < K on J × [0,+∞).
(H2) There exists a constant L > 0 such that |f(t, x)− f(t, y)| ≤ L|x− y|, for
each t ∈ J , and x, y ∈ [0,+∞).

(H3) L(
∫ 1

0
M(s)∆s+ (µ(1))α−1

Γ(α) + 2(σ(0))α−1

Γ(α) ) < 1.

Then the boundary value problem (1.1)-(1.2) has a unique solution.

Proof. Let S be the set of rd-continuous functions. For u ∈ S define

∥u∥ = sup
t∈J

|u(t)|.

It is easy to see that S is a Banach space with this norm. The subset of S(ϱ)
and the operator T are defined by

S(ϱ) = {u ∈ S : ∥u∥ ≤ ϱ}
and

Tu(t) =
∫ 1

0
G(t, s)f(s, u(s))∆s+ (1−t)(µ(1))α−1

Γ(α) f(1, u(1))

− (2−t)(σ(0))α−1

Γ(α) f(0, u(0)).

According to (H1) and Lemma 2.2 we have

|Tu(t)| ≤
∫ 1

0
|G(t, s)||f(s, u(s))|∆s+ (µ(1))α−1

Γ(α) |f(1, u(1))|

+2(σ(0))α−1

Γ(α) |f(0, u(0))|

≤ K(
∫ 1

0
M(s)∆s+ (µ(1))α−1

Γ(α) + 2(σ(0))α−1

Γ(α) ).

Since
∫ 1

0
M(s)∆s is a constant, let

ϱ = K(

∫ 1

0

M(s)∆s+
(µ(1))α−1

Γ(α)
+

2(σ(0))α−1

Γ(α)
).
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We conclude that T is an operator from S(ϱ) to S(ϱ). Moreover, considering
(H2), for x, y ∈ S(ϱ), any t ∈ J , we have

|Tx(t)− Ty(t)|

≤
∫ 1

0
|G(t, s)||f(s, x)− f(s, y)|∆s+ (1−t)(µ(1))α−1

Γ(α) |f(1, x(1))− f(1, y(1))|

+ (2−t)(σ(0))α−1

Γ(α) |f(0, x(0))− f(0, y(0))|

≤ L
∫ 1

0
M(s)∥x− y∥∆s+ (µ(1))α−1

Γ(α) L∥x− y∥+ 2(σ(0))α−1

Γ(α) L∥x− y∥

≤ L∥x− y∥(
∫ 1

0
M(s)∆s+ (µ(1))α−1

Γ(α) + 2(σ(0))α−1

Γ(α) ).

Thus

∥Tx− Ty∥ ≤ L(

∫ 1

0

M(s)∆s+
(µ(1))α−1

Γ(α)
+

2(σ(0))α−1

Γ(α)
)∥x− y∥.

Consequently T is a contraction by condition (H3). As a consequence of Banach
fixed-point theorem, we deduce that T has a fixed point which is a unique
solution of the problem (1.1)-(1.2). The proof is completed.□

Next, we present a sufficient condition for the existence of solutions to the
problem (1.1)-(1.2).

Theorem 3.2. Suppose f(t, u) : J × [0,+∞) → [0,+∞) is rd-continuous with
respect to t and continuous with respect to u. And there exists K > 0 such that
|f(t, u)| ≤ K on J × [0,+∞). Then the BVP(1.1)-(1.2) has a solution on J .

Proof. We shall use Schaefer fixed-point theorem to prove this result. We
divide the proof into four steps.

First, we prove that T is continuous. Let un be a sequence such that un → u
in C(J, [0,+∞)). Then, for each t ∈ J ,

|Tun(t)− Tu(t)|

≤
∣∣∣∫ 1

0
G(t, s)[f(s, un(s))− f(s, u(s))]∆s

∣∣∣
+ (µ(1))α−1

Γ(α) |f(1, un(1))− f(1, u(1))|+ 2(σ(0))α−1

Γ(α) |f(0, un(0))− f(0, u(0))|

≤
∣∣∣∫ 1

0
M(s)[f(s, un(s))− f(s, u(s))]∆s

∣∣∣
+ (µ(1))α−1

Γ(α) |f(1, un(1))− f(1, u(1))|+ 2(σ(0))α−1

Γ(α) |f(0, un(0))− f(0, u(0))|.
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Since f(t, u) is continuous function with respect to u, we conclude from the
Lebesgue dominated convergence theorem that

lim
n→∞

∫ 1

0

M(s)[f(s, un(s))− f(s, u(s))]∆s = 0.

Again, it’s easy to see that

lim
n→∞

[f(1, un(1))− f(1, u(1))] = lim
n→∞

[f(0, un(0))− f(0, u(0))] = 0.

Thus, we deduce

∥Tun − Tu∥ → 0 as n → ∞,

which means that T is continuous.
In what follows we verify T is bounded. For each t ∈ J ,

(3.1) |Tu(t)| ≤ K(

∫ 1

0

M(s)∆s+
(µ(1))α−1

Γ(α)
+

2(σ(0))α−1

Γ(α)
).

Thus T is bounded.
Next we show that T maps uniformly bounded sets into equicontinuous ones

of C(J, [0,+∞)). Letting t1, t2 ∈ J, t1 < t2, we have

|Tu(t2)− Tu(t1)|

= |
∫ 1

0
G(t2, s)f(s, u(s))∆s−

∫ 1

0
G(t1, s)f(s, u(s))∆s

+ (t1−t2)(µ(1))
α−1

Γ(α) f(1, u(1)) + (t2−t1)(σ(0))
α−1

Γ(α) f(0, u(0))|

≤ |
∫ t2
0

(t2−s)α−1

Γ(α) f(s, u(s))∆s−
∫ t1
0

(t1−s)α−1

Γ(α) f(s, u(s))∆s|

+
∫ 1

0

(t2−t1)((1−s)α−1+
∫ 1
0
(α−1)(1−s+hµ(1))α−2dh)

Γ(α) |f(s, u(s))|∆s

+ (t2−t1)(µ(1))
α−1

Γ(α) |f(1, u(1))|+ (t2−t1)(σ(0))
α−1

Γ(α) |f(0, u(0))|,

that is

|Tu(t2)− Tu(t1)|

≤ K
Γ(α) (

∫ t1
0
((t2 − s)α−1 − (t1 − s)α−1)∆s+

∫ t2
t1
(t2 − s)α−1∆s)

+K(t2−t1)
Γ(α)

∫ 1

0
((1− s)α−1 +

∫ 1

0
(α− 1)(1− s+ hµ(1))α−2dh)∆s

+ K
Γ(α) (t2 − t1)(µ(1))

α−1 + K
Γ(α) (t2 − t1)(σ(0))

α−1.

Since (t− s)α−1 is continuous, it is easy to see the right-hand side of the above
inequality tends to zero as t1 → t2. As a consequence of the first three steps
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above, together with the Arzela-Ascoli theorem, we get that T is completely
continuous.

Now it remains to show that the set Ω = {u ∈ C(J, [0,+∞)) : u =
λT (u), 0 < λ < 1} is a bounded set. Let u ∈ Ω. Then u = λT (u), 0 < λ < 1.
Thus, for each t ∈ J ,

u = λTu(t) = λ(
∫ 1

0
G(t, s)f(s, u(s))∆s+ (1−t)(µ(1))α−1

Γ(α) f(1, u(1))

− (2−t)(σ(0))α−1

Γ(α) f(0, u(0))).

This implies by (3.1) that Ω is bounded.
As a consequence of Schaefer’s fixed point theorem, we deduce that T has

a fixed point which is a solution of the problem (1.1)-(1.2). The proof is
completed.□

4. Existence of positive solutions

In this section, we will use Krasnoselskii’s fixed point theorem to investigate
the existence of positive solutions to the problem (1.1)-(1.2).

Let σ(0) = 0. Then

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))∆s+
(1− t)(µ(1))α−1

Γ(α)
f(1, u(1)).

Define cone E ⊂ S

E = {u ∈ S | u(t) ≥ 0, min
τ≤t≤η, t∈J

u(t) ≥ 1− η

2
∥u∥}.

Lemma 4.1. Assume that f(t, u) : J × [0,+∞) → [0,+∞) is rd-continuous
with respect to t and continuous with respect to u. Assume also that f is
bounded on J × [0,∞). If σ(0) = 0. Then T : E → E.

Proof. According to Lemma 2.2, we can get Tu(t) ≥ 0, and

min
τ≤t≤η, t∈J

Tu(t)

= min
τ≤t≤η, t∈J

∫ 1

0
G(t, s)f(s, u(s))∆s+ min

τ≤t≤η, t∈J

(1−t)(µ(1))α−1

Γ(α) f(1, u(1))

≥ 1−η
2

∫ 1

0
M(s)f(s, u(s))∆s+ (1−η)(µ(1))α−1

Γ(α) f(1, u(1)).

On the other hand

∥Tu∥ = sup
t∈J

∫ 1

0
G(t, s)f(s, u(s))∆s+ sup

t∈J

(1−t)(µ(1))α−1

Γ(α) f(1, u(1))

≤
∫ 1

0
M(s)f(s, u(s))∆s+ (µ(1))α−1

Γ(α) f(1, u(1)).
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Thus, we obtain

min
τ≤t≤η, t∈J

Tu(t) ≥ 1− η

2
∥Tu∥,

which implies T : E → E. The proof is completed.□
Denote

A =

(∫ 1

0

M(s)∆s+
(µ(1))α−1

Γ(α)

)−1

, B =

(∫ η

τ

M(s)∆s

)−1

.

Theorem 4.2. Assume that f(t, u) : J × [0,+∞) → [0,+∞) is rd-continuous
with respect to t and continuous with respect to u. Assume also that f is
bounded on J × [0,∞) and satisfies one of following conditions:
(H4) There exist 0 < a1, b1 ≤ 1 such that

lim
u→∞

f(t, u)

ua1
= 0, lim

u→0+

f(t, u)

ub1
= ∞, for all t ∈ J.

(H5)There exist a2, b2 ≥ 1 such that

lim
u→∞

f(t, u)

ua2
= ∞, lim

u→0+

f(t, u)

ub2
= 0, for all t ∈ J.

If σ(0) = 0, then the BVP(1.1)-(1.2) has one positive solution.

Proof. According to Lemma 4.1, we have T : E → E is a completely
continuous operator. Assume that (H4) holds, then for given ϵ and η satisfying
0 < ϵ < A

2 and ξ > ( 2
1−η )

b1+1B > 0, there exist N1 > 0, N2 > 0 such that

f(t, u) ≤ ϵua1 for t ∈ J, u ≥ N1,

f(t, u) > ξub1 for t ∈ J, 0 < u ≤ N2.

So we have
f(t, u) ≤ ϵua1 + c for t ∈ J, u ∈ [0,+∞),

where
c = max

t∈J, 0≤u≤N1

|f(t, u)|+ 1.

Let
Ω1 = {u ∈ E : ∥u∥ ≤ R1},

where R1 > {1, 2cA−1}. For u ∈ ∂Ω1, from Lemma 2.2 we have

|Tu(t)| =
∫ 1

0
G(t, s)f(s, u(s))∆s+ (1−t)(µ(1))α−1

Γ(α) f(1, u(1))

≤
∫ 1

0
M(s)(ϵ||u||a1 + c)∆s+ (µ(1))α−1

Γ(α) (ϵ||u||a1 + c)

≤ ϵRa1
1 (

∫ 1

0
M(s)∆s+ (µ(1))α−1

Γ(α) ) + c(
∫ 1

0
M(s)∆s+ (µ(1))α−1

Γ(α) )

≤ R1

2 + R1

2 = R1,
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∥Tu∥ ≤ R1 = ∥u∥. Let

Ω2 = {u ∈ E : ∥u∥ ≤ R2},

where 0 < R2 < {1, N2}, for u ∈ ∂Ω2, we obtain

|Tu(t)| =
∫ 1

0
G(t, s)f(s, u(s))∆s+ (1−t)(µ(1))α−1

Γ(α) f(1, u(1))

≥
∫ η

τ
G(t, s)f(s, u(s))∆s

≥ 1−η
2

∫ η

τ
M(s)f(s, u(s))∆s

≥ 1−η
2 ξ

∫ η

τ
M(s)ub1∆s

≥ ( 1−η
2 )b1+1ξRb1

2

∫ η

τ
M(s)∆s

≥ Rb1
2 = R2 ·Rb1−1

2 > R2 = ∥u∥,

so ∥Tu∥ ≥ R2 = ∥u∥. Hence the operator T has one fixed point u∗(t) ∈ Ω1\Ω2,
and consequently u∗(t) is one positive solution of the BVP(1.1)-(1.2).

For condition (H5), we can obtain the result in a similar way. Here we give
a brief description. Assume that (H5) holds, then for given 0 < ϵ < A and
ξ > ( 2

1−η )
a2+1B > 0, there exist M1 and M2, such that

f(t, u) > ξua2 for t ∈ J, u ≥ M1,

f(t, u) < ϵub2 for t ∈ J, 0 ≤ u ≤ M2.

Let

Ω1 = {u ∈ E : ∥u∥ < R1}, Ω2 = {u ∈ E : ∥u∥ < R2},

where R1 > {1, 2
1−ηM1}, 0 < R2 < {1,M2}. Then for u ∈ ∂Ω1, for τ ≤ t ≤ η,

one has u(t) ≥ min
τ≤t≤η

u(t) ≥ 1−η
2 ∥u∥ = 1−η

2 R1 > M1. Thus, from Lemma 2.2,

we have

|Tu(t)| ≥
∫ η

τ
G(t, s)f(s, u(s))∆s

≥ 1−η
2 ξ

∫ η

τ
M(s)(u(s))a2∆s

≥ ( 1−η
2 )a2+1ξRa2

1

∫ η

τ
M(s)∆s

≥ Ra2
1 ≥ R1 = ∥u∥.
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For u ∈ ∂Ω2, we obtain

|Tu(t)| ≤
∫ 1

0
M(s)ϵ∥u∥b2∆s+ (µ(1))α−1

Γ(α) ϵ∥u∥b2

= ϵRb2
2 (

∫ 1

0
M(s)∆s+ (µ(1))α−1

Γ(α) )

≤ Rb2
2 ≤ R2 = ∥u∥.

Hence, the operator T has one fixed point u∗(t) ∈ Ω1\Ω2. Then u∗(t) is one
positive solution of the BVP(1.1)-(1.2).□

Remark 4.3. If T = R, then σ(0) = 0. Hence Theorem 4.1 is true.

5. Examples

In this section, we will give some examples to illustrate our main results.

Example 5.1. Consider T = R,

(5.1) D1.5
0+u(t) =

t

10

u

1 + u
,

(5.2) u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where f(t, u) = t
10

u
1+u , α = 1.5, t ∈ [0, 1]. Then f(t, u) is a continuous

function, and |f(t, u)| < 1
10 = K.

Let t ∈ [0.1] = J and x, y ∈ T. Then

|f(t, x)− f(t, y)| ≤ 1

10

∣∣x− y
∣∣.

Moreover, it is easy to verify that

L

∫ 1

0

M(s)∆s <
1

10
·
∫ 1

0

(2(1− s)0.5

Γ(1.5)
+

0.5(1− s)−0.5

Γ(1.5)

)
ds < 0.34 < 1.

Therefore, all the conditions of Theorem 3.1 are satisfied and consequently the
BVP(5.1)–(5.2) has a unique solution.

Example 5.2. Consider

(5.3) D1.5
0+u(t) = t sinu,

(5.4) u(0) + u∆(0) = 0, u(1) + u∆(1) = 0,

where f(t, u) = t sinu, α = 1.5, t ∈ [0, 1]Tκ2 = J . Then f(t, u)is rd-continuous
with respect to t and continuous with respect to u. Clearly, |f(t, u)| < 1.
Hence, by Theorem 3.2, the BVP(5.3)–(5.4) has at least one solution.
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Example 5.3. Consider T = R
(5.5) D1.5

0+u(t) = t+ sinu,

(5.6) u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where f(t, u) = t+ sinu, α = 1.5, t ∈ [0, 1] = J . Then f(t, u)is rd-continuous
with respect to t and continuous with respect to u. Clearly, |f(t, u)| < 2.

Moreover,

lim
u→∞

f(t, u)

u
= 0, lim

u→0

f(t, u)

u
= ∞.

Hence, by Theorem 4.2, the BVP(5.5)–(5.6) has at least one positive solution.

Conclusion

This paper studies the existence and uniqueness of solution of boundary
value problem for fractional differential equations on time scales. We also
discuss the existence of positive solutions. We provide some sufficient conditions
to get our results. When T = R, we can find the corresponding results in [33].
At the foundation of this paper, one can make further research on fractional
differential equations on time scales.
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