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ABSTRACT. Higman has defined coset diagrams for PSL(2,Z). These
diagrams are composed of fragments, and the fragments are further com-
posed of two or more circuits. In 1983, Q. Mushtaq has proved that
existence of a certain fragment v of a coset diagram in a coset diagram
is a polynomial f in Z[z]. Higman has conjectured that, the polynomials
related to the fragments are monic and for a fixed degree, there are finite
number of such polynomials. In this paper, we consider a family F of
fragments such that each fragment in f contains one vertex v fixed by

Fo [(2y™)™ (2)°2 (ay™ 1), (ay)® (2y™ )™ (2y)®]
where 51, s2, 53,41, q2,93 € ZT, and prove this conjecture for the polyno-
mials obtained from the fragments in F .
Keywords: Modular group, coset diagrams, projective line over finite

field.
MSC(2010): Primary: 20G40; Secondary: 05C25.

1. Introduction

It is well known that the modular group PSL(2,Z) [2] has the finite pre-
sentation < z,y : 2 = y> = 1 > where x and y are the linear fractional
transformations defined by z — _71 and z — % respectively. By adjoining a
new element ¢ : z — % to x and y, we obtain a presentation

<zyt:al=y>=1>= (xt)2 = (yt)2 =1>

of the extended modular group PGL(2,7Z).

Let g be a power of a prime p. Then by the projective line over the finite
field Fy, denoted by PL (Fy), we mean Fy U {oo}.

The group PGL(2,q) has its customary meaning, as the group of all linear

fractional transformations z — ‘Cfis such that a,b,c,d are in F,; and ad — bc is
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non-zero, while PSL(2,q) is its subgroup consisting of all those where ad — be
is a quadratic residue in Fj,.

In 1978, Higman introduced a new type of graph called coset diagrams for
the modular group PSL(2,Z), and in 1983 Mushtaq [4] laid its foundation.
Since there are only two generators, namely = and y, it is possible to avoid
using colours as well as the orientation of edges associated with the involution
x. For y, which has order 3, there is a need to distinguish y from y2. The three
cycles of y are therefore represented by small triangles, with the convention
that y permutes its vertices counter-clockwise, while the fixed points of x and
y, if any, are denoted by heavy dots. Thus the geometry of the figure makes the
distinction between z-edges and y-edges obvious. For more on coset diagrams,
we suggest reading [1,2,6,7] and [9].

Two homomorphisms « and 5 from PGL(2,Z) to PGL(2, q) are called con-
jugate if 8 = ap for some inner automorphism p on PGL(2,q). We call «
to be non-degenerate if neither of z,y lies in the kernel of a. In [5] it has
been shown that there is a one to one correspondence between the conjugacy
classes of non-degenerate homomorphisms from PGL(2,Z) to PGL(2,q) and
the elements 6 # 0,3 of F, under the correspondence which maps each class
to its parameter 6. As in [5], the coset diagram corresponding to the action of
PGL(2,Z) on PL(F,) via a homomorphism « with parameter 6 is denoted by
D(0,q).

2. Occurrence of fragments in D (0, q)

By a circuit in a coset diagram for PGL(2,7Z), we shall mean a closed path of
triangles and edges. Let k > 1 and nq,na, ..., nar be a sequence of positive inte-
gers. The circuit which contains a vertex, xed by w = (zy)™ (zy~")"2.....(xy " ")"2*
€ PSL(2,Z), we mean the circuit in which n; triangles have one vertex inside
the circuit and no triangles have one vertex outside the circuit and so on.

For a given sequence of positive integers ni, na, ..., nog the circuit of the type
(N1,M2, ooy Mo s M1, Ny ey Mgp? 5 vey T, N2, ooy Ty ) WheTe k' divides k, is said to
have a period of length 2k". A circuit which is not of this type is called non-
periodic circuit. A circuit is called a simple circuit, if each vertex of the circuit
is fixed by a unique word w or its inverse w=!. Two circuits (ny, na, ..., nay) and
(m1, ma, ..., mgi) are connected, if they have at least one vertex in common.

Consider two non-periodic and simple circuits (ni,na, ..., nax) and
(my,ma,...,mar). Let v; be any vertex of (nj,na,...,nak) fixed by a word w;
and v; be any vertex of (mq,ms,...,max) fixed by a word w,. In order to
connect these two circuits at v; and v;, we choose, without loss of general-
ity (n1,ne,...,n9,) and apply w; on v; in such a way that w; ends at v;.
Consequently, we get a fragment, denoted by ~. As in [8], a pair of words
that fixes a vertex v = v; = v; in 7 is denoted by F, [w;, w;].
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The coset diagram D(6, q) is made of fragments. It is therefore necessary to
ask, when a fragment exists in D(0, ¢). In [3] this question is answered in the
following way.

Theorem 2.1. Given a fragment, there is a polynomial f in Z[z] such that
(2) if the fragment occurs in D(0,q), then f(8) =0,
(it) if f(0) = 0 then the fragment, or a homomorphic image of it occurs in
D(0,q) or in PL(Fy).

In [3], the method of calculating a polynomial from a fragment is given.
Here we describe this method briefly. Since a fragment is composed of two

non-periodic and connected circuits (n1, na, ..., nog) and (mq, ma, ..., max) with

. . l
a common fixed vertex say v, then there is a pair of words w; = (;1cy)l1 (wy‘l) 2

(J:y_l)l%l, wj = (zy)™ (acy_l)m2 (3r:y_1)m2k2 such that (v)w; = v and
(v)w; = v. Let X and Y be the matrices corresponding to x and y of PGL(2, q).
Then w; and w; can be expressed as

W = (XY)" (XY )" (xy )

W; = (XY)™ (XY™ . (Xy 1"

where k1,ky > 0. Since X and Y are the matrices with entries from F, and
satisfy

(2.1) X2 =Y3 =\l
We can take X, Y to be represented by

_fa ke _(d kf
X_(c —a)’ Y_(f —d—l)

where a, ¢, d, f, k are elements of F,;. We shall write
(2.2) a? +k?=-A#0

and require that

(2.3) P +d+kfP+1=0

This certainly gives elements satisfying the relations (2.1).

We note that the matrix M, representing zy, has the trace r = a(2d + 1) +
2kcf and the determinant A = —(a? + kc?), because det (Y') = 1. This means
that det (X) = A and trace (X) = 0; and so the characteristic equation of X
will be

(2.4) X2 4 AI=0.
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Similarly, since det (Y) = ¢ and trace (Y) = —¢q , the characteristic equation
of Y will be
(2.5) Y24Y +1=0.

Furthermore, det (XY) = A and trace (XY') = r imply that the characteristic
equation of the matrix XY will be

(2.6) (XY)? —r(XY)+ Al =0.

On recursion, Equation (2.6) yields

2.7  (XY)" = {(”gl)r"—l—(”I2>r"-3A+...}XY—

(2 )oa (T

After suitable manipulation, Equations (2.4), (2.5) and (2.6) give the following
equations

(2.8) XYX =rX + Al +AY.
(2.9) XYY =-X - XY
(2.10) YXY =rY + X.
(2.11) YX =rl—X—XY.

Thus, by making use of Equations (2.4) to (2.11) the matrices W; and W} can
be expressed linearly as

Wi =Xl + X + XY + A3 XY

Wj = ILLQI + ,UqX + ,UQY + ,U3XY
where A; and p;, for ¢ =0, 1,2, 3 are polynomials in r and A. Since (v) w; = v
and (v) w; = v the 2 x 2 matrices W; and W; have an eigenvector in common.
This by Lemma 3.1 of [3] means that the algebra generated by W; and W; has
dimension 3. The algebra contains I, W;, W;, W;W; and so these must be

linearly dependent. Using Equations (2.4) to (2.11) the matrix W;W; can be
expressed as

WZ‘WJ‘ =l + X + 1Y +13XY

where v;, for i = 0,1, 2,3 can be calculated in terms of the A; and p;, using (2.4)
to (2.11). The condition that I, W;, W; and W;W; are linearly dependent, can
be expressed as
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A1 A2 A3
(2. 12) MH1 M2 M3 | = 0.
vy vz V3

If we carry out the calculation of vy, v, v3 in terms of A; and u; and substitute,
in (2.12), we find that this is equivalent to

(2.13) (Aapiz — p2As)” + A (Napr — psha)” + (Aapia — pada)”
+r (Aapz — paAs) (Aspr — psA1) + (Aaps — poAs) (Arpz — piA2) = 0.
This gives a homogeneous equation in A and r. In [5], 6 is defined as %, SO we
can substitute Ag for 72 to get a polynomial in 4.
Higman has conjectured that, the polynomials related to the fragments are
monic and for a fixed degree, there are finite number of such polynomials. In

this paper, we consider a family F of fragments such that each fragment in f
contains one vertex v fixed by

Fy[(ay™)™ (o)™ (™)™ (o)™ (2y™)" (oy)®]

where s1, 82, 3,41, g2, 93 € Z*, and prove the Higman’s conjecture for the poly-
nomials obtained from f .

3. Main results

The following three theorems have been proved in [8]. Since we use them in
this paper frequently, we therefore reproduce their statements here.

Theorem 3.1. Let the fragment v be constructed by joining a verter v; of
(n1,ne2, ...,nok) with the vertex v; of (M1, ma,...,max). Then v is obtainable
also, if the vertex (v;)w of (n1,ne,...,nak) is joined with the vertex (v;)w of
(ml, ma, ..., mgk).

If w=axymay™..xy™ (n=1or —1) is a word, then let
w = ay May 2.y
Theorem 3.2. If the fragment v has one vertex v fized by F, [w;, w;], then its

*

mirror image v* has one vertex fived by Fiy« [w;-*,wj].

Theorem 3.3. The polynomials obtained from the fragment v and its mirror
image v* are the same.

Consider two circuits (n1,n2) and (mq, ma).
F is constructed by joining

€3i, with U35, +1 and U3ja+15
f3i2 with U35, +1 and V3jy+1

U3j, with €3i1+1 and f3i2+17
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€1 €3 ey e €3n,—2 €3
ey és €3n,-1
i f3 fa  fs S3nr2 f3n,
)2 Ss Sanr
Ficure 1.

31 us Uy Ug U3sm—2 U3m,
Uy Us U3m,-1
Vi Vi V4 Ve Vimy—2 V3im,
Vo Vs V3m271

FIGURE 2.

U35, with €331+1 and f3i2+1
where
il = 1,2,...,n1 - 1, ig = 1,2,...,%2 -1
and
jl = 1,2, ey My — 1, jg = 1,2, ey Mo — 1.
Theorem 3.4. Number of triangles in any fragment v € F is
sit+s2t+ss+qrt+ag2t+g3—2.
Proof. Let v be any fragment in F. Then its one vertex say v, is a fixed point of
the circuits (:tcy_l)s1 (xy)*? (xy_l)s3 and (xy)? (xy_l)q2 (xy)® , where s1, 59,
53,41, q2,q3 € ZT. Diagrammatically, it means:

From the diagram it is clear that, v € F has sy +So+s3+q1 +q2+q3 — 2
triangles. O
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q trlangles e mangles '

(51— 1 triangles | s3 — 1 trlangles
s, triangles

— oY v 7

FIGURE 3.

Proposition 3.5. If w = (z y~1)% where qo € Z*. Then the corresponding
matriz can be expressed linearly as

(XY_1)q2 _ (_1)q2+1 {<q20_2>rq2_2A— <q21_3> r‘12_4A2—|—...}I—|—
(71)(12 {<Q2O_ 1>Tq21 - <q21_2>7.q23A+m}X+
(_1)q2 {<QQO— 1>Tq21 _ <q21_2)rq"’3A+...}XY.

The proof is obtained by using mathematical induction.
Total number of triangles in the circuit (z y)% (zy~1)%(z y)® are
@1 +q2+ g3, let 1 + g2 +¢3 =7 and

o = 1 ifgr <gs _ )3 g <gs
' 0 ifq>q3 * 7 1 ifq >gs

)

0 = {O ifqg—glzl a2:{0 ifq1:.(]3
1 otherwise ’ 1 otherwise
Since (z y)® (zy~1)%(z y)® can be expressed linearly as
(XY)H(XYH)2(XY)® = pol + X + paY + ps XY
where p;, for ¢ = 0,1,2,3 is polynomial in 7 and A, we use max (u;) for the

term containing the highest power of r, in y;.

Theorem 3.6. If w = (z y)© (xy~ 1) (z y)®, where q1,q2,q3 € ZT, then the

corresponding matriz can be expressed linearly as W = pol+pr X+p2Y +usz XY,
such that

maz (o) = (~1)%=+ 71724,
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T1—-2min(q1,93)—e2 Amin(q1,93)+e1
b

(_1)qz+61+2 T

maz (p1) =

— i -2 i 1
max (/Lz) _ (_1)q2+€1+2 aor™ 2min(q1,93) Amm(q1,q3)+ 7

mazx (uz) = (—1)2T2r 71

Proof. By Proposition 3.5

(XY71)¢12 _ (71)q2+1 {(Q2()—2)qu2A <Q21—3>Tq24A2+”}[+
B (S I
0 1
(-1)* { (qzo_ 1)7’(12_1 — (q2 1_ 2>rq2_3A—|— ...}XY.
XY (xy H)* Xy
aotl [ (92— 2 —2 g2 —3 —4 A2 2
= (-1 0 ri27CA — 1 r7A%+ L (XY)T +
(71)% {(CDO 1)Tq21 i <QZ12)7~Q23A+...}XYXXY+

(—1)® { <q20— 1) re=l (Q2 N 2) re=3A 4 } (XY)?.

By making use of Equations (2.4) to (2.11), we get
XY (Xy H)” Xy

Now

q2—2 Tq272A_
= o O TR b eare )+

(1) { <q20_ 1) ri Tt — <q2 L 2) r270A 4 } (AX + AXY) +

(—1)% { q{ng:gfqz Al+ }(fmu(r%mxy)

(
= q2+1{ (% )rez A }1+(—1)‘12{ (qzoil)’ffflA_ }X+

(—1)92 { (qQO_ 1) pa2tl } XY.

Hence the result is true for XY (XY*I)q2 XY.
Let it be true for (XY)" (XY ~1)* (XY)", that is

(XY)" (XY ) (XY)" =
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O T e R G A D
0 + (—1)®+2 {pktath-l _ 1 Xy,

Now
(Xy)k+1 (nyl)(IQ (Xy)k+1

= (—1)®T {pRratho2A o Y (XY)?
(—1)2F2 fphtaath=2k—IAk A XY XXV +
0V + (—1)=*2 [pktaath=l 1 (xy)3,
By making use of Equations (2.4) to (2.11), we obtain
(XY)E! (Xy—1)® (XY)F+!

(_1)qz+1 {Tk+qz+k—2A _ } (—AI + 7aXY) +

(_1)‘12+2 {r‘H_lAk — } (AX + AXY) +

(_1)QQ+2 {Tk+42+k—1 _ } (—’I“AI‘F (’r2 — A)XY)

(—1)%t! {M’@“HW(HU*QA - } I+

(_1)QQ+2 {’rq2—1Ak+1 _ }X +

(_1)(12-‘,—2 {T(k+1)+q2+(k+1)*1 — } XY.

This shows that the result is true for (XY)? (XY_l)q2 (XY)*, where q1 =
q3,q2 € 7. So, for k1 = k3

(XYM (xy—H)® (XY)*

= (—nBPH PRtttz T4 (—)BT2 pesIAk X 4
(=1 F2 fphtaetha—l A ¥y,
Therefore
(XY)" T (Xy—H)® (xvy)*
= (—n)EF phtatha2A A XY T 4
(—1)=F2 fre2mIARs A XVX +
(—1)®+2 {phitetha—l A XY XY.
By making use of Equations (2.4) to (2.11), we have
(XY)" T (Xy—H)® (xv)k
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(- 1)(12“{ Mitaatha=2A 1 XV 4

(—1)®=*2 Lpa—IAk (P X + AY) +

(—1)=F2 fphitaatha=l A (AT 41 XY)

( 1)q2+1 {Tk1+q2+k3 IA — .}I—i— (_1)q2+2 {quAkg _ }X—i—
(—1)= 2 e AR Y (- et XY

Hence the result is true for (XY)? (XY ~1)* (XY)% such that ¢ — g3 = 1.
Let it be true for (XY)® (XY ~1)® (XY)% such that ¢ — g3 = n, that is

(Xy)kg-‘rn (XY_l)Q2 (Xy)kg

1)‘12+1 {rk3+n+Q2+k3 2A }I+
1)Q2+2{ n+qa— 1Ak3 _ }X—l—
l)q {,rnJrqz 2Ak3+1 _ }Y +
1)‘12+2{ ka+n+qa+kz—1 _ }XY

(=
(=
(=
(=

Now
(XYt (xy 1% (xy)hs

(—1)@H! [phatntaatha=2 A A XYT 4
(—1)=F2 fpnta—Iaks A XYVX 4
(—1)2=F2 fynta—2 Akt A XYY 4
(—1)%+2 [phatntaatha=l 1 XY XY
By making use of Equations (2.4) to (2.11), we have

(X)) (xy—1)% (xy)ks

(— 1)¢Z2+1 {rk3+n+42+ks 2A .}XY+
(—1)=F2 fprtaiaks L (rX + AY) +
(—1)=+2 fpnta=2 Akl (X — XV) +
( )Q2+2 {rk3+n+q2+k3 1 _ ) }(—AI—‘F’I’XY)

_ ( 1)qz+1{ kz+n+1+q2+kz— 2A _ .}I—|—

( 1)‘124—2 {rn+1+q2 1Ak3 _ }X +
(-1)
(=1)

1 q2+2 {rn+1+qz 2Ak3+1 }YJr

1 q2+2 {,,,,kg-‘rn-i—l-‘rqg-‘rkg 1 .}XY.
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Hence the result is true for (XY)? (XY )% (XY)% such that ¢, > gs.
Again for k; = k3, we have

(XY)" (xy—H)® (XY)*

_ (_1)q2+1 {’I“k1+q2+k3_2A _ -.-}I+ (_1)(12+2 {Tq2_1Ak1 _ }X +
(71)%4-2 {Tk1+qz+k3*1 _ } XY,

Therefore
(XY)" (XY —1H)* (Xy)k*!

= (-~ phtethm2A A TXY +
(—1)=F2 fpe—iAh A XXY +
(—1)F2 fphitaath—l A XY XY
By making use of Equations (2.4) to (2.11), we have

(XY)" (xy—H)® (Xy)rt!

(—1) = fphtaatha =2 L XY 4
(—1)@F2 relAR ) (—AY) +
(—1)®+2 fphtaatha=l V(AT 41 XY)

= (D)=t phtaethoIA AT 40X +
(_1)qz+1 {rq2_1Ak1+1 _ } Y +
(—1)%F2 fphtaaths Y Xy,

Hence the result is true for (XY)? (XY ~1)* (XY)% such that g3 — 1 = 1.
Let it be true for (XY)" (XY ~1)* (XY)® such that g3 — g = n, that is

(XY)* (Xy—H)® (xy)=+"

(—1)@H! fphtaathitn=2A AT 4
(—1)F? fptn=SARHL Vx4

(_1>q2+3 {TqQ+n—2Ak1+1 . } Y +
(=1)

1 q2+2 {Tk1+q2+k1+n71 _ } XY.

Now
(Xy)kl (Xy—l)q2 (Xy)k1+(n+1)
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(—1)eF fphtaathitn =2 A TXY

(71)q2+1+2 {Tk1+q2+k3+n72k173Ak1+1 o } XXY +
(—1)@ 3 fpatn=2 ARt Ay XY +

(—1) B2 pRtethin-l 4 XY XY

By making use of Equations (2.4) to (2.11), we have

(XY)F (XY —1)® (Xy)k D)

(—1)@H fphtaathitn=2 A A XY 4
(—1)=F3 fraetn=S AR+l 1V (CAY)
(_1>qz+3 {7,.(12+7L—2Akl+1 _ } (X + TY) +
(—1)2F2 fphtaathitn=l A (AT 4 rXY)

(—1)%F {phtaathitnoin ATy
(71)(12+3 {rq2+n72Ak1+1 o } X +
(—1)2F3 fpaetnlpltl Ly g
(—1)%F2 {phtaathitn A Xy

Hence the result is true for (XY)? (XY )% (XY)% such that ¢ < g3. O

Total number of triangles in the circuit (z y)® (zy~1)*2(z y)® are
0 if S1 = S3
1 otherwise
Since (zy~1)% (zy)®2 (xy~1)** can be expressed linearly as
(XY H(XY)*2 (XY )% = Aol + M X + XY + A\3XY
where \;, for i = 0,1,2,3 is polynomial in 7 and A, we use maz (A;) for the

term containing the highest power of r, in A;.
By using mathematical induction, we have the following Theorem.

1+ 82 + s3, let 81 + 89+ 53 =7 and B =

Theorem 3.7. If w = (xy~ 1)t (xy)*2(xy~1)* where s1,52,53 € ZT and s1 >
s3, then the corresponding matrixz can be expressed linearly as W = Mgl + 1 X +
XY + A3 XY, such that

maz (Ag) = (—1)5 st pr2=2 A
mag (A1) = (~1)"* % r 1,
mazx ()\2) _ (_1)81+83+1 517“7—2_233_2A33+17
mazx (\3) = (=1)%F%8 pr2—1,

Theorem 3.8. Let v € F such that sy > s3. Then degree of the polynomial
f(6) obtained from ~ is s1+ s2+ 83+ q1 + g2 + g3 — 2. Moreover f (0) is monic.
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Proof. Since v € F and s; > s3, therefore its one vertex v, is a fixed point
of the circuits (zy~!)™ (zy)* (zy~1)™ and (zy)* (vy~!)™ (vy)® . The ma-
trices corresponding to (zy 1)t (zy)** (zy~)™ and (zy)” (zy=)* (zy)® are
(XY~1* (XY)* (XY1)™ and (XY)" (XY1)® (XY)® respectively, and
these can be written as a linear combination of I, X, Y and XY, that is

(XY H* (XY)*2 (XY D) = Aol + M X + MY + A3 XY

and
(XY)™ (XY ™) (XY)® = pol + 1 X + paY + pz XY

where \; and p; for i = 0,1,2,3 are polynomials in » and A. By Theorems 3.6
and 3.7, we have

T1—2min(q1,93) —€2 A min(q1,q3)+e1

2
q2+e1+ apr

max (p1) = (=1)
max (IU'Q) = (71)QQ+€1+2 0127”‘“72 min(q1,q3)72Amin(q1,q3)+1'

maz (ug) = (~1)+2rm 0,

maz (\) = (1) pr271,

maz (Ag) = (—1)"1 58 F g pra=2s3=2 Asatl
mazx (\3) = (1) %8 pr2—1,
Now
maz (Aafiz) = (_1)51+33+q2+3 By TitT2—253=3 Asa+
and
max (Aspe) = (—1)31"“(”?’4"12“1‘*‘2 Qo™ T2 2min(g1,q35) =3 Amin(q1,q3)+1

Let p = { s1+s3+qg+3 if s3 = min(qy, g3, $3) and

s1+s3+¢+e +1 if min(qr,q3) = min(qr, g3, s3)
g = min(q, g3, $3). Then

(3.1) mazx (Aapiz — Aapig) = (—1)F Brr7tt272973 A9F1
shows that
(32) mazx ()‘2,“3 o >\3/1'2)2 _ 61T2(T1+7272973)A2(g+1)'
Now
(3.3)
max ()\3u1) — (_I)QQ+31+SS+61+2 0117’71+7272 min(ql,%)fegflAmin(ql,q3)+el
and
(3.4 maz (i) = (~1)° 0 e

together imply that

35 ma (gps — Aups) = (—1)" 1
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or
(3.6) max (A (Asp1 — )\1M3)2) — P2t A

Now

(37) max ()‘1M2) = (_1)51+83+Q2+e1+2 a27,,7'1+7'272 min(q1,q3)73Amin(q1,q3)+1

and
(3.8) max ()\2/“) — (_1)S1+83+QQ+61+1 04151
T7—1+7—2—2 min(q1,q3)—2s3—2—e€s A33+min(q1,q3)+51+1.
So
(3.9)

9 o B .
max ()‘IMQ _ )\Q,U/l) — (_1)51+83+Q2+61+ Oé27"7—1+7—2 2min(q1,93) 3Amln(q1,q3)+1'

and

(3.10) maz (A fig — /\2H1)2 = qupr2(T1HT2—2min(q1,q5)—3) A 2(min(q1,qs)+1)

By using Equations (3.1) and (3.5), we obtain

(3.11)  maz (r (Maps — Aspa) (Aspur — Arps)) = (=1) p2(mtm2=2=9) A9+l
Also by using Equations (3.1) and (3.9), we get

(_1)31+33+q2+51+2+p asf

maz ((A2pz — Aspiz) (Mp2 — Agp1)) =

7,2(7'1 +72—min(q1,93)—g—3)

(3.12) Amin(g1,as)+9+2

The term containing the highest power of #, in the polynomial equation 2.13
yields degree and leading coefficient of the polynomial obtained from . By
using Equations 3.2 to 3.12, we have

max ( (apts — p2s)” + A (Nspr — padn)? + Mgz — pada) + ) -
r(Aopz — p2A3) (Azpn — p3A1) + (Aaps — p2As) (Apz — p1Az2)

7,2(7'1+7'272)A.
Since 72 = A#, therefore

mazx ( (Naiz — 2Xs)” + A (Aapr — pshn)” + (M2 — pade)” + > -
r (Aaus — poAs) (Aap1 — p3A1) + (Ao — pads) (Aipa — p1Aa)
971+72—2A7'1+7'2—1.
We can omit AstTsztsstaitatas—1 59 if is square in F,. Hence degree of the

polynomial obtained from = is s1 + s2+$3+q1 +q2+ g3 — 2. Also this polynomial
is monic. g
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Lemma 3.9. Corresponding to each fragment § containing a vertex fived by
Fy[(ay™)™ ()™ (™)™ (o)™ (2y™)" (oy)”]

where s1,52,583,q1,q2,q3 € Z1 and sy < s3, there is a fragment §* containing
a vertex fixed by

e [(ay™)™ (a9) (oy ™)™ (a9)® (2y™)" (e)®
such that § and §* have the same polynomial.

Proof. Let the fragment § contains a vertex fixed by
Fy (™)™ (@y)™ (2y™)™ (o)™ (ay71)™ (a9)”

where 51, 82,53,¢1,¢2,q3 € ZT and s; < s3. Clearly § is created by joining a
vertex v fixed by (zy~')™ (zy)™ (zy~')* of (n1,n2) with the vertex v fixed
by (zy)" (arsy_l)q2 (xy)® of (m1,mz). By Theorem 3.1, § is obtainable also, if

we join the vertex (v)z with the vertex (v/) x. This implies that, § has also a

vertex u = (v)x = (v/> z fixed by

Fu[(@y)™ (2y71) (@)™ 2y ™)™ (a9)® (ay ™))" ]
By Theorem 3.2, mirror image of § has a vertex fixed by
Fue [(2y™) (29) (wy™)™  (w)® (2y™)" (2" ]

By Theorem 3.3, the polynomials obtained from § and its mirror image §*
are the same. O

Theorem 3.10. Let § € F such that s; < s3. Then degree of the polynomial
g (0) obtained from § is s1+ s2+ s3+q1 + g2 + g3 — 2. Moreover g (0) is monic.

Proof. Since ¢ is a fragment in F such that s; < s3. Therefore its one vertex
is fixed by

Fy[(ay™)™ ey (™)™ (o)™ (2y™)" (oy)”]

where s1, 59, 83,41, q2,q93 € ZT and s; < s3. Consider a fragment 1 containing
a vertex fixed by

Fue [(oy™)™ @)™ (™)™ (29)® (ay7)" (a)®]

Let g (0) and h (6) be the polynomials obtained from § and 7. Since s3 > s1,
therefore by Theorem 3.8, degree of the polynomial h (6) is s1 4+ s2 +s3+¢1 +
g2 + g3 — 2, and h (#) is monic. By Lemma 3.9, the polynomials i (6) and g ()
are the same. ]
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Theorem 3.11. Degree of the polynomial f (0) obtained from any fragment
YyEF iss1+S2+ 83+ q1+qa+ g3 —2, and f(0) is monic.

The proof is an immediate consequence of Theorems 3.8 and 3.10.

Theorem 3.12. Lety € F and T () and Deg(f) denote the number of trian-
gles in v and the degree of the polynomial obtained from ~ respectively. Then

Deg(f) =T ().
The proof is an immediate consequence of Theorems 3.4 and 3.11.

Theorem 3.13. No polynomial of degree n such that n < 3, is obtained from
the fragments in F .

Proof. Let f (0) be any polynomial of degree 3, obtained from the fragment of
F . Since the degree of all the polynomials obtained from F is ¢; + q2 + g3 +
51 + 89 + s3 — 2, where s, S2, 83,41, ¢2,q3 € Z+, therefore q1 + ¢2 + g3 + 51 +
s9 + 83 — 2 = 3 for some s1, 59, 83,41, q2,q3 € ZT. As there is no possibility for
51,52,583,q1,42,q3 € Z* such that q1 + g2 + g3 + s1 + 52 + s3 = 5, therefore,
there is no polynomial of degree 3, obtained from the fragments in f .
Similarly, the same result is obtained for n = 2 and n = 1. O

Theorem 3.14. There are finite number of polynomials of a fized degree n,
obtained from the fragments in F .

Proof. By Theorem 3.11, degree of all the polynomials obtained from f is
q1 + q2 + q3 + s1 + s2 + s3 — 2. Since there are a finite number of possibilities
for s1, 52, 53,41, q2,q3 € Z1 such that ¢; + g2 + g3 + 51 + 52 + 53 — 2 = n, there
are only a finite number of polynomials of a fixed degree n, obtained from the
fragments in F . 0
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