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Abstract. Let R be a commutative ring with non-zero identity. We
describe all C3- and C4-free intersection graphs of non-trivial ideals of R
as well as Cn-free intersection graph when R is a reduced ring. Also, we

shall describe all complete, regular and n-claw-free intersection graphs.
Finally, we shall prove that almost all Artin rings R have Hamiltonian
intersection graphs. We show that such graphs are indeed pancyclic.
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1. Introduction

If S = {S1, . . . , Sn} is a family of sets, then the intersection graph of S,
is the graph having S as its vertex set with Si adjacent to Sj if i ̸= j and
Si ∩Sj ̸= ∅. A well-know theorem due to Marczewski [9] states that all graphs
are intersection graph.

An interesting case of intersection graphs is when the members of S have
an algebraic structure. Bosak [2] was the first who studied graphs arising
from semigroups. Csákéany and Pollák [4] defined and studied the intersec-
tion graphs of nontrivial proper subgroups of groups. Zelinka [11] continued
the work of Csákéany and Pollák on intersection graphs of subgroups of finite
abelian groups, and later Shen [10] studies such graphs and classifies all fi-
nite groups whose intersection graphs of nontrivial subgroups are disconnected.
Herzog, Longobardi and Maj [5] study the intersection graphs of maximal sub-
groups of finite groups and among other results classify all finite groups with
disconnected graph. The same as for groups, the intersection graphs of ideals
of rings and subspaces of vector spaces have been discussed in [3, 6, 7].

Let R be a commutative ring with a non-zero identity. The intersection
graph of R, denoted by Γ(R), is a graph whose vertices are the nontrivial
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ideals of R and two distinct vertices are joined by an edge if the corresponding
ideals of R have a non-zero intersection.

In this paper, we study the cycle structure of intersection graphs. First we
classify all Artin rings with a regular (hence complete) intersection graph. Next
we shall investigate all rings R whose intersection graphs Γ(R) do not have an
induced cycle of length 3 or 4. Also, we show that if R is a reduce ring, then
Γ(R) is Cn-free (n ≥ 5) if and only if R has no ideal which is the direct sum
of n non-zero ideals. The same result is also established for n-claws instead
of n-cycles. In the last section, we shall prove that except few cases all other
Artin rings have Hamiltonian intersection graphs. Using simple modifications
of the given Hamiltonian cycle, we show that Γ(R) is pancyclic whenever it
is Hamiltonian. Recall that an n-claw (a claw) is the star graph K1,n (K1,3).
Also a graph is called pancyclic if it contains cycles of possible arbitrary sizes
≥ 3.

The following theorem will be used without further reference.

Theorem ( [8, Theorem VI.2]). Let R be an Artin commutative ring with a
non-zero identity. Then

R = R1 ⊕ · · · ⊕Rn,

where R1, . . . , Rn are local rings.

If R is a ring, then the ideals a1, . . . , an are called independent if

ai ∩ (a1 + · · ·+ ai−1 + ai+1 + · · ·+ an) = 0

for i = 1, . . . , n. In other words, (a1, . . . , an) = a1 ⊕ · · · ⊕ an is the direct sum
of a1, . . . , an. All rings in this paper are commutative rings with a non-zero
identity.

2. Cn-free intersection graphs

As a most simple property we may investigate on intersection graph Γ(R) of
ideals of a ring, is whether Γ(R) is a complete graph. We show that the class of
Artin rings with a complete intersection graph coincides with the class of Artin
rings with a regular intersection graph and then characterize all such rings.
The following theorem will state that the graph Γ(R) is complete whenever it is
regular and R is an Artin ring. You may also find the same result in [1, Theorem
10].

Theorem 2.1. Let R be an Artin ring, which is not a direct sum of two fields.
If Γ(R) is regular, then it is complete.

Proof. First we show that R has no direct factor, which is a field. If R = S⊕F ,
where F is a field and S is not a field, then NΓ(R)(F ) = {a ⊕ F : 0 ̸= a ◁ S}
and NΓ(R)(S) = {a, a⊕ F : 0 ̸= a ◁ S}. Hence, degΓ(R) S > degΓ(R) F , which
is a contradiction. Therefore, each maximal ideal of R is adjacent to all other
vertices of Γ(R), from which it follows that Γ(R) is a complete graph. □
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Theorem 2.2. If R is an Artin ring, then the graph Γ(R) is complete if and
only if there exists a sequence of rings R1, . . . , Rn, in which R = R1, (Ri, Ri+1)
is a local ring for all i = 1, . . . , n− 1 and Rn is a field.

Proof. If R is not a local ring, then R = S ⊕ T for some non-zero rings S and
T . But then S ∩ T = 0, which is a contradiction. Thus R = (R,m) is a local
ring. Continuing this way for m instead of R the result follows. The converse
is obvious. □

In the following two theorems, we shall consider conditions under which the
intersection graph of a ring is a star graph, which also results in a characteriza-
tion of rings with a bipartite intersection graph. One may see the same results
by different proofs in [1, Theorem 17]

Theorem 2.3. Let R be a ring, which is neither a direct sum of two fields nor
a direct sum of a field with a local ring (S,m) such that m is a field. If Γ(R)
has a pendant, then Γ(R) is a star graph.

Proof. Let a ∈ V (Γ(R)) be a pendant. If a is a maximal ideal, then it is easy
to see that R = (R, a) is a local ring and a = (x) is a principal ideal. Let b be
the ideal of R adjacent to a. Then b = (x2) and (x3) = 0, hence Γ(R) is an
edge.

If a is not a maximal ideal, then there exists a unique maximal ideal m of
R containing a. Clearly, a = (x) is principal and (x2) = 0. If R is not a local
ring, then there exists a maximal ideal n such that a ∩ n = 0. Thus R = a⊕ n
and a is a field. Then m = a + b for some ideal b of n. But then (n, b) is a
local ring such that b is a field, which is a contradiction. Therefore (R,m) is a
local ring. Clearly, m = (x, y) for some y ∈ R. If m is principal, then we may
assume that m = (y). Thus (y2) = (x) and (y3) = 0, which implies that Γ(R)
is an edge. If m is not principal, then (x) ∩ (y) = 0 and consequently xy = 0.
Since (x) ⊆ (x) + (y2) ⊆ (x) + (y) = m, it follows that (y2) = 0. Hence m2 = 0
so that m is a vector space over the field F = R/m, where the multiplication
is defined by (r + m) · m = rm for all r ∈ R and m ∈ m. Clearly, there is a
one to one correspondence between ideals of R contained in m and subspaces
of (m, F ). Hence dimF m = 2 so that Γ(R) is a star graph. □
Theorem 2.4. If Γ(R) is triangle-free, then Γ(R) is star or two isolated ver-
tices.

Proof. If R is not a local ring, then there exist two distinct maximal ideals m1

and m2 in R. Since Γ(R) is triangle-free, we should have m1 ∩ m2 = 0. Hence
R = m1 ⊕ m2. Let F1 = R/m1 and F2 = R/m2. Then R ∼= F1 ⊕ F2 and Γ(R)
is the union of two isolated vertices.

Now, suppose that (R,m) is a local ring. We have two cases for m.
Case 1: m is not a principal ideal. First we show that m2 = 0. If x ∈ m and

y ∈ m \ xR, then xR ∩ yR = 0. Thus xy = 0 so that (m \ xR)x = 0. On the
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other hand, if r ∈ R, then xr = y + (xr − y) so that xrx = 0. Thus xRx = 0
and consequently mx = 0. Hence m2 = 0.

Let F = R/m. The same as in the proof of Theorem 2.3, (m, F ) is a vector
space. If dimF m ≥ 3 and {x, y, z} is an independent set in (m, F ), then
the set of ideals {(x), (x, y), (x, y, z)} induces a triangle in Γ(R), which is a
contradiction. Thus dimF m ≤ 2.

If dimF m = 2, then every two distinct non-trivial ideals of R different from
m are disjoint. Thus Γ(R) is a star graph with m at the center. If dimF m = 1,
then Γ(R) is a single vertex and we are done.

Case 2: m = xR is a principal ideal. Let a be a non-zero ideal of R. Then
a ⊆ m. If y ∈ a, then y = rx for some r ∈ R. If r is a unit, then x = yr−1 ∈ a
and hence a = m. If a ̸= m, then r is not unit and so r = sx, for some s ∈ R.
Thus y = sx2 and subsequently a ⊆ m2 ⊆ m. Since Γ(R) is triangle free, it
follows that a = m2. Therefore Γ(R) is either a single vertex when m = m2 or
it is an edge when m ̸= m2. □

The following corollary is a direct consequence of the preceding two theo-
rems.

Corollary 2.5. Let R be a ring, which is neither a direct sum of two fields nor
a direct sum of a field with a local ring (S,m) such that m is a field. Then the
following conditions are equivalent:

(1) Γ(R) is triangle-free,
(2) Γ(R) has a pendant,
(3) Γ(R) is bipartite.
(4) Γ(R) is star.

In what follows, we shall concentrate on cycle structure of intersection graphs
and give a characterization of almost all intersection graphs under investigation
that do not have an induced cycle of length greater than 3. Let us remain that
a graph is called Cn-free if it has no induced subgraph isomorphic to Cn.

Theorem 2.6. The graph Γ(R) is C4-free if and only if R has no set of four
non-zero independent ideals.

Proof. First suppose that R has an ideal which is a direct sum of four non-zero
ideals, namely a1, a2, a3 and a4. Then a1 ⊕ a2, a2 ⊕ a3, a3 ⊕ a4, a4 ⊕ a1 induces
a cycle of length 4 in Γ(R).

Conversely, suppose that R has an induced 4-cycle with vertices a1, a2, a3
and a4. Then a1 ∩ a3 = a2 ∩ a4 = 0. Since a2 ∩ a3 + a3 ∩ a4 ⊆ a3, we have

(a1 ∩ a2) ∩ (a2 ∩ a3 + a3 ∩ a4 + a4 ∩ a1) ⊆ (a1 ∩ a2) ∩ (a3 + (a4 ∩ a1))

= (a1 ∩ a2) ∩ (a3 ⊕ a4 ∩ a1).
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If a+ b ∈ (a1 ∩ a2) ∩ (a3 ⊕ a4 ∩ a1), where a ∈ a3 and b ∈ a4 ∩ a1, then a ∈ a1,
which implies that a = 0. Then b ∈ a2 and similarly b = 0. Hence

(a1 ∩ a2) ∩ (a2 ∩ a3 + a3 ∩ a4 + a4 ∩ a1) = 0.

Similar arguments show that (a1 ∩ a2), (a2 ∩ a3), (a3 ∩ a4) and (a4 ∩ a1) are
non-zero independent ideals and the proof is complete. □

Recall that a ring is reduced if it has no non-zero nilpotent element.

Theorem 2.7. Let R be a reduced ring. Then Γ(R) is Cn-free (n ≥ 5) if and
only if R has no set of n independent of ideals.

Proof. First suppose Γ(R) is Cn-free. If R has n non-zero independent ideals
a1, . . . an, then a1 ⊕ a2, a2 ⊕ a3, . . . , an ⊕ a1 induces a cycle of length n in Γ(R),
which is a contradiction.

Now, suppose that R has no set of n non-zero independent ideals and the
ideals a1, . . . , an induce a cycle of length n. Let bn = an∩a1 and bi = ai∩ai+1

for all i = 1, . . . , n−1. Then for all distinct 1 ≤ i, j ≤ n, we have bibj = 0. Let
b∗i = b1+· · ·+bi−1+bi+1+· · ·+bn. Then bib

∗
i = 0. Thus (bi∩b∗i )2 ⊆ bib

∗
i = 0,

for all i = 1, . . . , n. Since R is reduced, it follows that bi ∩ b∗i = 0, from which
it follows that {b1, . . . , bn} is a set of non-zero independent ideals of R, which
is a contradiction. □

In the sequel, we give another approaches to induced cycles in intersection
graphs. The following lemma is straightforward.

Lemma 2.8. Suppose that the induced subgraph, induced by a1, . . . , an is a
cycle of length n in Γ(R). Then there exist t independent ideals ai1 , . . . , ait
such that 2 ≤ t ≤ ⌊n

2 ⌋ and ai1 ⊕ · · · ⊕ ait is adjacent to ai for all i = 1, . . . , n.

Theorem 2.9. Suppose that the induced subgraph, induced by a1, . . . , an is a
cycle of length n in Γ(R) and the number t introduced in the previous lemma
takes it maximum value ⌊n

2 ⌋. Then R has a set of n non-zero independent
ideals if n is even and it has a set of n− 1 non-zero independent ideals if n is
odd.

Proof. Without loss of generality we may assume that a1, a3, . . . , a2⌊n
2 ⌋−1 are

independent. A simple verification shows that

{a1 ∩ a2, a2 ∩ a3, . . . , an−1 ∩ an, an ∩ a1}
when n is even,

{a1 ∩ a2, a2 ∩ a3, . . . , a2⌊n
2 ⌋−1 ∩ an−1, an ∩ a1}

when n is odd are sets of non-zero independent ideas of R, as required. □
Theorem 2.10. Suppose a1, . . . , an (n ≥ 3) are independent ideals of R. Let
bi = ai1 ⊕ · · · ⊕ aini

, for i = 1, . . . , n. Then b1, . . . , bn induce a cycle of length
n if and only if there exist a permutation π ∈ Sn such that bi = aπ(i)⊕ aπ(i+1).
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Proof. If n = 3 then the result is obvious. If there exist π ∈ Sn such that
bi = aπ(i) ⊕ aπ(i+1), for all i = 1, . . . , n, then there is nothing to prove. Hence
we may assume that b1, . . . , bn are vertices of an induced cycle with length
n ≥ 4. Then ni ≥ 2, for all i = 1, . . . , n, otherwise bj = aj1 for some j.
But then aj1 is adjacent to bj−1 and bj+1, which implies that bj−1 and bj+1

are adjacent, a contradiction. Hence 2n ≤
∑n

i=1 ni. On the other hand, the
number of bj containing ai is at most two for all i = 1, . . . , n, which implies that∑n

i=1 ni ≤ 2n. Therefore
∑n

i=1 ni = 2n and hence ni = 2, for all i = 1, . . . , n.
Now the result is straightforward. □

Utilizing the same method used before, we may prove the following result
for n-claws instead of n-cycles.

Theorem 2.11. Let R be a reduced ring. Then the ideals a1, . . . , an of R are
independent and a1 ⊕ · · · ⊕ an is a proper ideal of R if and only if there exist
an induced n-claw in Γ(R).

Proof. If a1, . . . , an are independent ideals of R such that a1 ⊕ · · · ⊕ an is a
proper ideal of R, then clearly {a1, . . . , an, a1 ⊕ · · · ⊕ an} induces an n-claw in
Γ(R).

Now, suppose that the ideals a1, . . . , an and a are pendants and the center
of an induced n-claw, respectively. Let

a∗i = a1 + · · ·+ ai−1 + ai+1 + · · ·+ an,

for all i = 1, . . . , n. Then

(ai ∩ a∗i )
2 ⊆ aia

∗
i =

∑
j ̸=i

aiaj ⊆
∑
j ̸=i

ai ∩ aj = 0,

for all i = 1, . . . , n, which implies that a1, . . . , an are independent. If R ̸=
a1 ⊕ · · · ⊕ an, then we are done. Now, suppose that R = a1 ⊕ · · · ⊕ an. If ai
is not a field for some 1 ≤ i ≤ n, then by replacing ai by one of its non-zero
proper ideals, we may assume that R ̸= a1 ⊕ · · · ⊕ an, as required. Otherwise
a1, . . . , an are all fields. But then ai ⊆ a, for all i = 1, . . . , n, which implies that
a = R, a contradiction. □

3. Hamilton cycles

The aim of this section is to show that except few cases all intersection
graphs are Hamiltonian. Indeed, we shall prove the stronger result that such
graphs are pancyclic.

A simple verification shows that if R = S ⊕ F , where F is a field and Γ(S)
has a Hamiltonian path, then Γ(R) has a Hamiltonian cycle. This fact enables
us to prove the following result. In what follows, the set of all ideals of a ring
R is denoted by I(R).
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Theorem 3.1. Let R be an Artin ring. Then Γ(R) is Hamiltonian if and only
if R is not isomorphic to the following rings:

(1) F or E ⊕ F ,
(2) S or E ⊕ S such that (S, F ) is a local ring,
(3) S such that (S, T ) is a local ring and (T, F ) is a local ring,

where E and F are fields.

Proof. If R is isomorphic to one of the rings in parts (1), (2) or (3), then clearly
Γ(R) is not Hamiltonian. Now, suppose that R is a ring such that Γ(R) is not
Hamiltonian. We proceed in some steps:

Case 1: R = R1 ⊕R2 such that |I(R1)|, |I(R2)| ≥ 4. Let

I(R1) = {0 = a0, a1, . . . , am = R1}
and

I(R2) = {0 = b0, b1, . . . , bn = R2}.
Clearly an arbitrary ideal of R can be expressed as ai ⊕ bj for some 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Consider an (m × n)-grid and put ai ⊕ bj on the (i, j)-th
coordinate. By Figures 1, 2 and 3, the subgraph induced by ideals ai ⊕ bj
in which ai, bj ̸= 0 is Hamiltonian with a Hamiltonian cycle in which there
exists at least one edge on every row as well as one edge on every column. If
{ai ⊕ bj , ai+1 ⊕ bj} is an edge such that i, j > 0, then by removing this edge
and adding two edges {ai ⊕ bj , bj} and {bj , ai+1 ⊕ bj} we reach to a new cycle
including the vertex bj . Similarly, we may enlarge the resulting cycle in which
the new cyclic contains an arbitrary ai ̸= 0. Continuing this way, we reach to
a Hamiltonian cycle for Γ(R), a contradiction.

Case 2: R = R1 ⊕R2 such that I(R1) ≥ 3 and |I(R2)| = 3. The same as in
case 1, we may present ideals of R on the grids as it is shown in Figures 4 and 5,
which gives rise to a Hamiltonian cycle for Γ(R). Hence Γ(R) is Hamiltonian,
which is a contradiction.

Case 3: R = S ⊕ F , where F is a field. If S = S1 ⊕ S2, where either S1

or S2, say S1 is not a field, then R = S1 ⊕ (S2 ⊕ F ) and by case 1, Γ(R) is
Hamiltonian. Now, suppose that S1 and S2 are both fields. Then

S1 ∼ S1 ⊕ S2 ∼ S2 ∼ S2 ⊕ F ∼ F ∼ S1 ⊕ F ∼ S1

is a Hamiltonian cycle for Γ(R). Hence Γ(R) is Hamiltonian, a contradiction.
Case 4: If R is a field or it is a direct sum of two fields, then we are done. If

not, by cases 1, 2 and 3, there exists a sequence {(Si, Ri)}ni=1 of local rings and
a sequence {Fi}ni=1 of fields such that R = R0 = S1 or S1 ⊕ F1 and Ri = Si+1

or Si+1 ⊕ Fi+1 for all 1 ≤ i < n. Moreover, Rn is a field. If n = 1, then
either Γ(R) is a single vertex or it is a path of length three. If n = 2, then
R = S1, R1 = S2 and Γ(R) is an edge. If n ≥ 3, then since Γ(Rn−2) is a path,
Γ(Rn−3) and hence Γ(R) is Hamiltonian, which is a contradiction. The proof
is complete. □
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.
Figure 1. (|I(R1)|, |I(R2)|) = (odd > 3, even > 3)

.
Figure 2. (|I(R1)|, |I(R2)|) = (odd > 3, odd > 3)

.
Figure 3. (|I(R1)|, |I(R2)|) = (even > 3, even > 3)
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.
Figure 4. (|I(R1)|, |I(R2)|) = (3, even ≥ 3)

.
Figure 5. (|I(R1)|, |I(R2)|) = (3, odd ≥ 3)

Theorem 3.2. Let R be an Artin ring. Then Γ(R) is Hamiltonian if and only
if it is pancyclic.

Proof. If Γ(R) is pancyclic, then clearly Γ(R) is Hamiltonian. Now, we show
that the converse is also true. Suppose on the contrary that there is an Artin
ring R such that Γ(R) is a non-pancyclic Hamiltonian graph and that R is
minimal with this property. If R is neither a local ring nor a direct sum of a
local ring with a field, then by applying the following transformations on the
Hamiltonian cycles constructed in cases 1 and 2 of Theorem 3.1, along with
replacing horizontal or vertical paths of length two to a path of length one, by
joining its end vertices, we would reach to cycles with possible arbitrary length
≥ 4.

.

On the other hand, by Theorem 2.4, the graphs under consideration contain
triangles, which implies that Γ(R) is pancyclic, a contradiction. Hence either
R = S or R = S × F , where (S,m) is a local ring and F is a field. If Γ(m) is
Hamiltonian, then either Γ(m) is pancyclic, which implies that Γ(R) is pancyclic
too, contradicting the hypothesis, or Γ(m) is not pancyclic which contradicts
the minimality of R. Thus Γ(m) is not Hamiltonian and m is isomorphic to
one of the five rings given in Theorem 3.1. Now, a simple verification shows
that in each case either Γ(m) is not Hamiltonian or it is pancyclic, which is a
contradiction. The proof is complete. □
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