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POLYNOMIALLY BOUNDED SOLUTIONS OF THE

LOEWNER DIFFERENTIAL EQUATION IN SEVERAL

COMPLEX VARIABLES
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(Communicated by Javad Mashreghi)

Abstract. We determine the form of polynomially bounded solutions to

the Loewner differential equation that is satisfied by univalent subordi-

nation chains of the form f(z, t) = e
∫ t
0 A(τ)dτ z + · · · , where A : [0,∞] →

L(Cn,Cn) is a locally Lebesgue integrable mapping and satisfying the
condition

sup
s≥0

∫ ∞

0

∥∥∥∥exp

{∫ t

s
[A(τ) − 2m(A(τ))In]dτ

}∥∥∥∥ dt < ∞,

and m(A(t)) > 0 for t ≥ 0, where m(A) = min{Re ⟨A(z), z⟩ : ∥z∥ = 1}.
We also give sufficient conditions for g(z, t) = M(f(z, t)) to be polynomi-
ally bounded, where f(z, t) is an A(t)-normalized polynomially bounded

Loewner chain solution to the Loewner differential equation and M is an
entire function. On the other hand, we show that all A(t)-normalized
polynomially bounded solutions to the Loewner differential equation are
Loewner chains.

Keywords: Biholomorphic mapping, Loewner differential equation, poly-
nomially bounded, subordination chain, parametric representation.
MSC(2010): Primary 32H02; Secondary 30C45.

1. Introduction and preliminaries

Subordination chains in several complex variables, the associated differential
equations and applications have been studied by various authors (see [1,4,8–10,
12,21] and the references therein). Initially it was assumed that the generator
of the subordination chains satisfies the normalization Dh(0, t) = In and hence
the chains satisfy Df(0, t) = etIn. Recently, there has been interest in working
a more general normalization ([9, 10]) or no normalization at all ([1, 4]).
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Becker ( [2, 3]) investigated the general form of solutions to the Loewner
differential equation in one complex variable

∂f

∂t
(z, t) = zf ′(z, t)p(z, t), t ≥ 0, |z| < 1,(1.1)

where p(·, t) for any fixed 0 ≤ t < ∞ is in the well-known Carathéodory class P
of the holomorphic functions q with q(0) = 1 and Re {q(z)} > 0 for |z| < 1, and
p(z, ·) is measurable on [0,∞) for |z| < 1. In one complex variable there exists
a unique univalent solution f(z, t) = etz + · · · of (1.1) (called the canonical
solution). Also, Becker proved that the any other solution g(z, t) of (1.1) that
is holomorphic on |z| < 1 and locally absolutely continuous on [0,∞) locally
uniformly with respect to |z| < 1, has the form g(z, t) = L(f(z, t)), where
f(z, t) is the canonical solution and L is an entire function (compare also [23]).
In particular, if g(·, t) is univalent on |z| < 1 and g(0, t) = g′(0, t)− et = 0 for
t ≥ 0, then g(z, t) ≡ f(z, t).

In recent years, the general form of solutions to the Loewner differential
equation

∂f

∂t
(z, t) = Df(z, t)h(z, t), a.e t ≥ 0, z ∈ Bn,(1.2)

which have the normalization h(z, t) = A(t)z + · · · , where A : [0,∞] →
L(Cn,Cn) is a measurable mapping such that m(A(t)) > 0 for t ≥ 0, has
been studied. The case in which A(t) ≡ A ∈ L(Cn,Cn) was studied by
Hamada [17] and the case in which A(t) ≡ A = In was considered by Gra-
ham, Kohr and Pfaltzgraff [14] and the case in which k+(A) < 2m(A) was
considered by Duren, Graham, Hamada and Kohr [6]. One of the results in [6]
is as follows. Any bounded solution g(z, t) to the Loewner differential equation
(1.2) has the form g(z, t) = M(f(z, t)), where M ∈ L(Cn,Cn) and f(z, t) is
the unique A-normalized bounded solution to the Loewner differential equation
(1.2). The proof of the above result requires a generalization to higher dimen-
sions of the well-known Carathéodory kernel convergence result for univalent
functions [6, 19].

On the other hand, Hamada [17] determines the form of arbitrary polynomi-
ally bounded univalent solution g(z, t) to the Loewner differential equation (1.2)
for any A ∈ L(Cn,Cn) with m(A) > 0. Also, Voda [31] finds an A-normalized
polynomially bounded solution to the Loewner differential equation (1.2) for
any A ∈ L(Cn,Cn) with m(A) > 0.

Any solution f(z, t) to the Loewner differential equation (1.2) that is lo-
cally absolutely continuous on [0,∞) locally uniformly with respect to z ∈ Bn

is a subordination chain (see Proposition 3.1). In one complex variable, if
a : [0,∞) → Cn is a function such that a(t) ̸= 0 for t ≥ 0 and |a(t)| is strictly
increasing on [0,∞) and if f(z, t) = a(t)z + . . . is a non-normalized univalent
subordination chain on the unit disk |z| < 1, then f∗(z, t

∗) = f(e−iθ(t)z, t)/a(0)
is a normalized univalent subordination chain, where t∗ = log(|a(t)/a(0)|) and
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θ(t) = arg(a(t)/a(0)). That is, there exists a normalized univalent subordi-
nation chain with essentially the same geometric properties as a original one.
But, the situation is different in higher dimension (in dimension n ≥ 2). There

exists non-normalized subordination chain f(z, t) = e
∫ t
0
A(τ)dτz+ · · · which can

not be normalized by an analogous change of variable. On the other hand,
there exists biholomorphic mappings f which have useful embedding in non-
normalized subordination chain. For example, if A : [0,∞) → L(Cn,Cn) be
a locally Lebesgue integrable mapping which satisfies the condition (2.4) and
the assumptions of Definition 2.3 and f is generalized spirallike mapping with

respect to A, then f(z, t) = e
∫ t
0
A(τ)dτf(z) is a univalent subordination chain.

In connection with this observation, S. Rahrovi, A. Ebadian and S. Shams [28]
introduced the class S0

A(t)(B
n) of mappings which have A(t)-parametric repre-

sentation, i.e. the subclass of S(Bn) which consists of those mappings f that

can be embedded in univalent subordination chains f(z, t) = e
∫ t
0
A(τ)dτz + · · ·

such that {e−
∫ t
0
A(τ)dτf(z, t)}t≥0 is a normal family on Bn. Therefore, it is of

interest and important to consider subordination chains which do not have the
standard normalization in the study of univalent mappings on Bn.

For several results on subordination chains in several complex variables, the
readers may consult [1, 4, 8, 10–13,21,22,24–27] and the references therein.

Theorem 3.2 and Corollary 3.3 will show that a polynomial bounded solu-
tion of (1.2) can be recovered from its first n0 coefficients and the solution of
(2.5). These results generalize Poreda ([27] Theorem 4.1). Also, we determine
the form of arbitrary polynomially bounded univalent solutions g(z, t) to the
Loewner differential equation (1.2) for any A : [0,∞) → L(Cn,Cn) which is
a locally Lebesgue integrable mapping and satisfies in the condition (2.4) and
the assumptions of Definition 2.3. The proof is elementary and we do not need
the Carathéodory kernel convergence result for univalent mappings. We also
give sufficient conditions for g(z, t) = M(f(z, t)) to be polynomially bounded,
where f(z, t) is an A(t)-normalized polynomially bounded Loewner chain so-
lution to the Loewner differential equation (1.2). On the other hand, we show
that all A(t)-normalized polynomially bounded solutions of (1.2) are Loewner
chains.

2. Preliminaries

Let Cn denote the space of n complex variables z = (z1, . . . , zn) with the Eu-

clidean inner product ⟨z, w⟩ =
∑∞

j=1 zjw̄j and Euclidean norm ∥z∥ = ⟨z, z⟩1/2
.

The open ball {z ∈ Cn : ∥z∥ < r} is denoted by Bn
r and the unit ball Bn

1 by
Bn. The closed ball {z ∈ Cn : ∥z∥ ≤ r} is denoted by B̄n

r . In the case of one
complex variable, B1 is denoted by |z| < 1.

Let L(Cn,Cm) be the space of linear and continuous operators from Cn to
Cm with the standard operator norm and let In be the identity in L(Cn,Cn).
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If Ω is a domain in Cn, let H(Ω) be the set of holomorphic mappings from Ω
into Cn. Let Ω be a domain in Cn which contains the origin and f ∈ H(Ω), we
say that f is normalized if f(0) = 0 and Df(0) = In.

If f ∈ H(Bn), we say that f is locally biholomorphic on Bn if Jf (z) ̸= 0, z ∈
Bn, where Jf (z) = detDf(z) and Df(z) is the complex Jacobian matrix of
f at z. Let S(Bn) be the set of normalized biholomorphic mappings on Bn,
the set S(B1) is denoted by S. Also, let LSn be the set of normalized locally
biholomorphic mappings on Bn. In the case of one variable, the set LS1 is
denoted by LS.

If f ∈ H(Bn), then f can be expanded in a power series of homogenous
polynomials

f(z) =
∞∑
k=0

Ak(z
k), z ∈ Bn,

where Ak(z
k) = 1

k!D
kf(0)(zk). Here, for h ∈ Cn, D0f(0)(h0) = f(0) and for

k ≥ 1, Dkf(0)(hk) = Dkf(0)(h, . . . , h︸ ︷︷ ︸)
k−times

.

Several notation from operator theory play a role in studying special classes
of holomorphic mappings onBn or in proving estimates or existing the theorems
for the general Loewner differential equation. These notions involve properties
of the numerical radius or the spectrum or a linear operator.

If A ∈ L(Cn,Cn), let

m(A) = min{Re {⟨A(z), z⟩} : ∥z∥ = 1}
and

k(A) = max{Re {⟨A(z), z⟩} : ∥z∥ = 1}.
Also, let

|V (A)| = max
∥z∥=1

| ⟨A(z), z⟩ |,

be the numerical radius of operator A. Then ∥A∥ ≤ 2|V (A)| by ( [16], Theorem
1.3.1). The upper exponential index of A is defined by

k+(A) = max{Reλ : λ ∈ σ(A)},

where σ(A) is the spectrum of A. It is known that k+(A) = limt→∞
ln ∥etA∥

t
and for each w > k+(A), there exists a positive number δ = δ(w) such that

∥etA∥ ≤ δewt, t ≥ 0.(2.1)

by [5], see also [29, p. 311] .
The following classes of mappings in H(Bn) play a key role in our discussion

(see [8, 12,13,21,22]):

N = {h ∈ H(Bn) : h(0) = 0,Re {⟨h(z), z⟩} > 0, z ∈ H(Bn)\{0}},
and

M = {h ∈ N : Dh(0) = In}.
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In one complex variable, we have f ∈ M if and only if f(z)/z ∈ P, where

P = {p ∈ H(|z| < 1) : p(0) = 1,Re {p(z)} > 0, |z| < 1},

is the Carathéodory class.
We need the following result, whose proof is similar to in ([8] Theorem 1.2).

The proof uses the fact that if h ∈ N has the homogeneous expansion

h(z) = A(z) +

∞∑
m=2

Pm(z), z ∈ Bn,

then ∥Pm∥ ≤ 4mk(A) for m ≥ 2.

Lemma 2.1. Let h : Bn → Cn be a mapping such that h ∈ N , Dh(0) = A
and m(A) > 0 for t ≥ 0. Then ∥h(z)∥ ≤ 4r

(1−r)2 |V (A)| for all ∥z∥ ≤ r < 1.

We next consider the notation of subordination and subordination chains on
Bn. If f, g ∈ H(Bn), we say that f is subordinate to g (f ≺ g) if there exists
a Schwarz mapping υ (i.e., υ ∈ H(Bn) and ∥υ(z)∥ ≤ ∥z∥, z ∈ Bn) such that
f = goυ.

Definition 2.2. A mapping f : Bn × [0,∞] → Cn is called a subordination
chain if f(·, t) is holomorphic on Bn, f(0, t) = 0 for t ≥ 0, and f(·, s) ≺
f(·, t), 0 ≤ s ≤ t < ∞. In addition, if f(·, t) is biholomorphic on Bn for
t ≥ 0, we say that f(z, t) is a Loewner chain. Also, if f(z, t) is a subordination

(Loewner) chain such that Df(0, t) = e
∫ t
0
A(τ)dτ for t ≥ 0, we say that f(z, t)

is an A(t)-normalized subordination (Loewner) chain.

The above subordination implies the existence of the transition mapping
υ(z, s, t) associated with f(z, t), such that f(z, t) = f(υ(z, s, t), t) for z ∈ Bn

and t ≥ s ≥ 0.
In this paper, we use liner operators which depended measurably on t and

which satisfy the assumptions of Definition 2.3. We remark that condition (2.2)
is satisfied if A(t) is constant or if A(t) is diagonal (for details, see [9]).

Definition 2.3. Let A : [0,∞] → L(Cn,Cn) be a measurable mapping such
that m(A(t)) > 0 for t ≥ 0 and

∫∞
o

m(A(t))dt = ∞. Moreover, assume that
∥A(·)∥ is uniformly bounded on [0,∞] and∫ t

s

A(τ)dτ o

∫ s

r

A(τ)dτ =

∫ s

r

A(τ)dτ o

∫ t

s

A(τ)dτ, t ≥ s ≥ r ≥ 0.(2.2)

Definition 2.4. Let A : [0,∞] → L(Cn,Cn) be a locally Lebesgue integrable
mapping such that m(A(t)) > 0 for t ≥ 0 . Also let Ω be a domain in Cn which
contains the origin, we say that Cn is generalized spirallike with respect to A

if e−
∫ t
s
A(τ)dτ (w) ∈ Ω for all w ∈ Ω and t ≥ s ≥ 0.
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A mapping f ∈ S(Bn) is called generalized spirallike with respect to A if
f(Bn) is a generalized spirallike domain with respect to A. This condition is
characterized by [Df(z)]−1A(t)f(z) ∈ N .

Remark 2.5. A mapping f is called spirallike of type α ∈ (−π
2 , π

2 ) if f is

spirallike with respect to A(t) ≡ A = e−iαIn ( see [18];cf. [22]) Hence f ∈
S∗(Bn) if and only if f is spirallike of type zero.

We remark that if A(t) is a constant linear operator in Cn, then Definition
2.4 reduce to the usual definition of spirallikeness (see [30]. Also, if A(t) = In
we obtain the usual notion of spirallikeness (see [12, 15, 30]). Various results
concerning spirallike mapping with respect to constant linear operators may be
found in [7, 15,18,27,29,30].

Example 2.6. Let n = 2 and f : B2 → C2 be given by f(z) = (z1, z2 + αz2
1)

for z = (z1, z2) ∈ B2, where α ∈ C2\{0}. Also, let b > 0 and a : [0,∞) → C
be a measurable function such that Rea(t) > 0, |a(t)| ≤ b for t ≥ 0. Suppose
that A : [0,∞) → L(C2,C2) be defined by A(t) = diag(a(t), 2a(t)) for t ≥ 0.

Also, let f(z, t) = e
∫ t
0
A(τ)dτf(z). On the other hand, since |a(t)| ≤ b for t ≥ 0,

it follows that ∥A(·)∥ is uniformly bounded on [0,∞). Since

Re
{⟨

[Df(z)]−1A(t)f(z), z
⟩}

= Re a(t)(|z1|2 + 2|z2|2) > 0, z ∈ B2\{0},
it follows that f is a generalized spirallike mapping with respect to A. then

f(·, t) is biholomorphic on B2, f(0, t) = 0, Df(0, t) = e
∫ t
0
A(τ)dτ for t ≥ 0

and f(z, ·) is differential on [0,∞) for z ∈ B2. Hence f(z, t) is a univalent
subordination chain.

Definition 2.7. Let A : [0,∞) → L(Cn,Cn) be a measurable mapping which
satisfies the conditions in Definition 2.3 and let f ∈ H(Bn) be a normalized
mapping. We say that f has A(t)-parametric representation if there exists
a mapping h : Bn × [0,∞] → Cn such that h(·, t) ∈ N , Dh(0, t) = A(t)
for a.e. t ≥ 0 and h(·, t) is measurable function on [0,∞) for z ∈ Bn and

f(z) = limt→∞ e
∫ t
0
A(τ)dτυ(z, t) locally uniformly on Bn, where υ = υ(z, t) is

the unique locally absolutely continuous solution of the initial value problem

∂υ

∂t
= −h(υ, t) a.e. t ≥ 0, υ(z, 0) = z,(2.3)

for all z ∈ Bn.

Note that if A(t) = A is a constant operator, then Definition 2.7 reduce to
([10] Definition 1.5). If A(t) = In and f has In-parametric representation, then
f has parametric representation in the usual sense (see [8,12]; cf. [24]). Denote
by S0(Bn) the class of mappings which have parametric representation and
by S0

A(t)(B
n) the class of mapping which have A(t)-parametric representation,

also we write S0
In
(Bn) = S0(Bn). If n = 1, S0(U) = S (see [23]), but S0(Bn) ⫋

S(Bn) for n ≥ 2 (see [8] and [12]). However, important subclasses of S(Bn) are
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also subclasses of S0(Bn). For example S∗(Bn) ⫋ S0(Bn) and any spirallike
mapping of type α ∈ (−π

2 ,
π
2 ) belongs to S0(Bn), too (see [18]).

We next introduce the notion of asymptotic spirallikeness, a natural gener-
alization of spirallikeness.

Definition 2.8. Let Ω ⊆ Cn be a domain which contains the origin, and
A : [0,∞) → L(Cn,Cn) satisfy the condition in Definition 2.3. We say that
Ω is A(t)-asymptotically spirallike if there exists a mapping Q = Q(z, t) :
Ω× [0,∞) → Cn which satisfies the following conditions

(i) Q(·, t) is a holomorphic mapping on Ω, Q(0, t) = 0,
DQ(0, t) = A(t), t ≥ 0 and the family {Q(·, t)}t≥0 is locally
uniformly bounded on Ω;

(ii) Q(z, ·) is measurable on [0,∞) for all z ∈ Ω;

(iii) the initial value problem

∂ω

∂t
= −Q(ω, t) a.e. t ≥ s, ω(z, s, s) = z,

has a unique solution ω = ω(z, s, t) for each z ∈ Ω and s ≥ 0,
such that ω(., s, t) is a holomorphic mapping of Ω in to Ω for
t ≥ s, ω(z, s, t) is locally absolutely continuous on [0,∞) locally

uniformly with respect to z ∈ Ω for s ≥ 0, and limt→∞ e
∫ t
0
A(τ)dτ

ω(z, 0, t) = z locally uniformly on Ω.

A domain Ω ⊆ Cn which contains the origin is called asymptotically spi-
rallike if there exists the mapping A : [0,∞) → L(Cn,Cn) which satisfies the
conditions in Definition 2.3 and m(A(t)) > 0 for t ≥ 0 such that Ω is A(t)-
asymptotically spirallike.

Note that if A = In in Definition 2.8, then is asymptotically starlike ( [11]
Definition 2.1 and [25] Definition 3) in the case of the maximum norm).

Definition 2.9. Let f : Bn → Cn be a normalized holomorphic mapping,
and let A : [0,∞) → L(Cn,Cn) satisfies the condition Definition 2.3, we say
that f is A(t)-asymptotically spirallike (asymptotically spirallike) if f is biholo-
morphic on Bn and f(Bn) is an A(t)-asymptotically spirallike (asymptotically
spirallike) domain. In particular, we say that f is asymptotically starlike if f
is biholomorphic on Bn and f(Bn) is an asymptotically starlike domain.

We need the following existence result for the initial value problem (2.5)
([28] Theorem 2.1, [10] Theorem 2.1; cf. [12] Theorem 8.1.3).

Lemma 2.10. Let A : [0,∞) → L(Cn,Cn) satisfy the conditions in Definition
2.3. Assume that

sup
s≥o

∫ ∞

s

∥e
∫ t
s

[A(τ)−2m(A(τ))In]dτ∥dt < ∞,(2.4)
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Also let h = h(z, t) : Bn × [0,∞) → Cn be a mapping which satisfies the
following conditions:

(i) h(·, t) ∈ N and Dh(0, t) = A(t) for t ≥ 0;

(ii) h(z, ·) is measurable on [0,∞) for z ∈ Bn.

Then for each s ≥ 0 and z ∈ Bn, the initial value problem

∂υ

∂t
= −h(υ, t) a.e. t ≥ s, υ(z, s, s) = z,(2.5)

has a unique locally absolutely continuous solution υs,t(z) = υ(z, s, t). Further-
more, for fixed s and t, 0 ≤ s ≤ t < ∞, υs,t(z) = υ(z, s, t) is a univalent
Schwarz mapping and for fixed s ≥ 0 and z ∈ B, it is a Lipschitz function on

[s,∞) locally uniformly with respect to z ∈ Bn, Dυ(0, s, t) = exp(−
∫ t

s
A(τ)dτ)

for t ≥ s ≥ 0.

Definition 2.11. A mapping h = h(z, t) : Bn × [0,∞) → Cn which satisfies
the assumptions (i) and (ii) of Lemma 2.10 will be called a generating vector
field.

We next mention the following growth result that is satisfied by the solution
υ(z, s, t) of the initial value problem (2.5) (see [28] Theorem 2.1, [10] Theorem
2.1).

Lemma 2.12. Suppose that h(z, t) satisfies the hypotheses of Theorem 2.10,
and let υ(z, s, t) be the solution of the initial value problem (2.5). Then

∥υ(z, s, t)∥
(1− ∥υ(z, s, t)∥)2

≤ e−
∫ t
s
m(A(τ))dτ ∥z∥

(1− ∥z∥)2
, z ∈ Bn, t ≥ s ≥ 0,(2.6)

e−
∫ t
s
k(A(τ))dτ ∥z∥

(1 + ∥z∥)2
≤ ∥υ(z, s, t)∥

(1 + ∥υ(z, s, t)∥)2
, z ∈ Bn, t ≥ s ≥ 0.(2.7)

Definition 2.13. (i) A standard solution f : Bn × [0,∞) → Cn to (1.2) is

said to be polynomial bounded (bounded) if {e−
∫ t
0
A(τ)dτf(z, t)}t≥0 is locally

polynomially bounded (locally bounded), i.e. for any compact set K ⊂ Bn,
there exists a constant Ck and a polynomial (constant polynomial) P such that

∥e−
∫ t
0
A(τ)dτf(z, t)∥ ≤ CkP (t), z ∈ K, t ≥ 0;

(ii) A function Fk : [0,∞) → Pk(Cn), where Pk(Cn) denote the Banach space
of homogenous polynomial mappings of degree k from Cn to Cn, is said to be
polynomial bounded (bounded) if there exists a polynomial (constant polyno-
mial) P such that ∥Fk(t)∥ ≤ P (t), for t ≥ 0.

If k+(A(t)) ≤ 2m(A(t)), then we obtain the existence and uniqueness of
A(t)-normalized bounded solution to the Loewner differential equations (1.2) [6]
Corollary 4.4 (cf. [10] Theorem 2.3).
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Lemma 2.14. Let A : [0,∞) → L(Cn,Cn) be a locally Lebesgue integrable
mapping which satisfies the condition (2.4) and the assumptions of Definition
2.3, also let h be as in Theorem 2.10, and let υ(t) = υ(z, s, t) be the unique
Lipschitz continuous solution on [s,∞) of the initial value problem (2.5). If
k+(A(t)) ≤ 2m(A(t)), then the limit

lim
t→∞

e
∫ t
0
A(τ)dτυ(z, s, t) = f(z, s), s ≥ 0,

exists locally uniformly on Bn. Moreover, f(z, t) is the unique A(t)-normalized
bounded Loewner chain solution to the Loewner differential equations (1.2).

3. Main results

We begin this section with the following proposition.

Proposition 3.1. Let g(z, t) be a standard solution to the Loewner differential
equations (1.2). Then g(z, s) = g(υ(z, s, t), t) holds for z ∈ Bn and t ≥ s ≥ 0,
where υ(t) = υ(z, s, t) is the unique solution of the initial value problem (2.5).

Moreover, Dg(0, t) = Dg(0, 0)e
∫ t
0
A(τ)dτ holds.

Proof. Let g(z, s, t) = g(υ(z, s, t), t) for z ∈ Bn and t ≥ s ≥ 0. We show that
g(z, s, t) = g(z, s, s), i.e. g(υ(z, s, t), t) = g(z, s) for z ∈ Bn and t ≥ s ≥ 0. Fix
ρ ∈ (0, 1) and T > 0. Since g(z, ·) is locally absolutely continuous on [0,∞)
locally uniformly with respect to z ∈ Bn, we deduce that g(z, t) is continuous
on Bn × [0,∞). Then there exists a constant L(ρ, T ) > 0 (similar to [28]
Theorem 2.9) such that

∥g(z, t)∥ ≤ L(ρ, T ), ∥z∥ ≤ ρ, t ∈ [0, T ].

In view of the Cauchy integral formula for holomorphic mappings in several
complex variables, we deduce that there exists a constant L∗(ρ, T ) > 0 such
that

∥g(z, t)∥ ≤ L∗(ρ, T ), ∥z∥ ≤ ρ, t ∈ [0, T ].(3.1)

On the other hand, letting b = |V (A(t))| and taking into account the rela-
tions (1.2) and (3.1) and Lemma 2.1, we deduce that there exists a constant
M(ρ, T, b) > 0 such that

∥∂g
∂t

(z, t)∥ ≤ M(ρ, T, b), ∥z∥ ≤ ρ, a.e. t ∈ [0, T ].

Therefore, in view of the local absolute continuous g(z, ·) locally uniformly with
respect to z ∈ Bn, we deduce that

∥g(z, t1)− g(z, t2)∥ = ∥
∫ t2

t1

∂g

∂t
(z, t)dt∥ ≤ M(ρ, T, b)(t2 − t1),

for ∥z∥ ≤ ρ and 0 ≤ t1 ≤ t2 ≤ T . Hence, g(z, t) is locally Lipschitz continuous
on [0,∞) locally uniformly with respect to z ∈ Bn. Since, υ(z, s, ·) is Lipschitz
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continuous on [s,∞) locally uniformly with respect to z ∈ Bn in view of Lemma
2.10, it is easy to deduce that the same is true for g(z, s, ·). Then g(z, s, t) is
differentiable for almost all t ∈ [s,∞) and in view of (1.2) and (2.5), we deduce

that ∂g
∂t (z, s, t) = 0 for a.e. t ≥ s and for all z ∈ Bn. Hence, g(υ(z, s, t), t) =

g(z, s) for z ∈ Bn and t ≥ s ≥ 0.
Moreover, we have

Dg(0, 0) = Dg(0, t)Dυ(0, 0, t) = Dg(0, t)e−
∫ t
0
A(τ)dτ ,

by Lemma 2.10. Thus, Dg(0, t) = Dg(0, 0)e−
∫ t
0
A(τ)dτ . This completes the

proof. □

In the following Theorem, we determine the form of locally biholomorphic
polynomial bounded solutions of the Loewner differential equation, the follow-
ing theorem is due to [17] Theorem 3.2 (see also [31] Proposition 2.1).

Theorem 3.2. Let g(z, t) be a polynomially bounded solution to the Loewner
differential equations (1.2), such that M = Dg(0, 0) is a non-singular matrix.
Then

g(z, s) = M(f(z, s)), z ∈ Bn, s ≥ 0,(3.2)

where f(z, s) is an A(t)-normalized subordination chain solution to the Loewner
differential equations (1.2). Also f(z, s) can be written as follows:

f(z, s) = lim
t→∞

e
∫ t
0
A(τ)dτ (υ(z, s, t) +

n0∑
k=2

Gk(t)(υ(z, s, t)
k)),(3.3)

locally uniformly in z, here υ(z, s, t) is the unique solution of the initial value
problem (2.5), n0 = [k+(A(t))/m(A(t))] and

f(z, t) = e
∫ t
0
A(τ)dτ (z +

∞∑
k=2

Gk(t)(z
k)).

Moreover, if Dg(0, 0) commutes with A(t), then f(z, t) is an A(t)-normalized
polynomially bounded Loewner chain solution to the Loewner differential equa-
tions (1.2).

Proof. Let e−
∫ t
0
A(τ)dτf(z, t) = z +

∑n0

k=2 Gk(t)(z
k) + R(t)(z) be the power

series expansion of e−
∫ t
0
A(τ)dτf(z, t) on Bn for t ≥ 0, where

Gk(t)(z
k) = e−

∫ t
0
A(τ)dτ 1

k!
Dkf(0, t)(z, . . . , z︸ ︷︷ ︸),k−times

and R(t)(z) =
∑∞

n0+1 Gk(t)(z
k).

Now, let f(, t) = [Dg(0, 0)]−1g(z, t). Then

f(z, s) = f(υ(z, s, t), t) = e
∫ t
0
A(τ)dτ (υ(z, s, t) +

n0∑
k=2

Gk(t)(υ(z, s, t)
k))
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+e
∫ t
0
A(τ)dτR(t)(υ(z, s, t)),

where R(t)(z) =
∑∞

n0+1 Gk(t)(z
k). Since g is polynomially bounded, using the

formula for the reminder of the Taylor series and Cauchy formula, we obtain

∥e−
∫ t
0
A(τ)dτDg(0, 0)e

∫ t
0
A(τ)dτR(t)(z)∥ ≤ CρP (t)∥z∥n0+1, ∥z∥ ≤ ρ ≤ 1,

where Cρ is a constant which depends only on ρ and P (t) is a polynomial in t.
From (2.4), (2.6) and this inequality, we have∥∥∥e∫ t

0
A(τ)dτR(t)(υ(z, s, t))

∥∥∥
=

∥∥∥[Dg(0, 0)]−1e
∫ t
0
A(τ)dτe−

∫ t
0
A(τ)dτDg(0, 0)e

∫ t
0
A(τ)dτR(t)(υ(z, s, t))

∥∥∥
≤ ∥[Dg(0, 0)]−1∥ CρP (t) ∥e

∫ t
0
A(τ)dτ∥ ∥υ(z, s, t)∥n0+1

≤ Cρ,s∥e
∫ t
0

(A(τ)−(n0+1)m(A(τ))In))dτ∥ P (t), ∥z∥ ≤ ρ ≤ 1,

where Cρ,s is a constant which depends only on ρ and s. Since the relation

(1.1) is true we conclude that e
∫ t
0
A(τ)ddτR(t)(υ(z, s, t)) → 0 locally uniformly

in z. Thus we obtain (3.2) and (3.3).
Next, assume that Dg(0, 0) commutes with A(t). Since g is polynomially

bounded Gk(t)(z) = [Dg(0, 0)]−1e
∫ t
0
A(τ)dτe−

∫ t
0
A(τ)dτDg(0, 0)Gk(t)(z), 2 ≤

k ≤ n0, are polynomially bounded locally uniformly on Bn. Thus, by [17,
Theorem 3.2] (also see [31, Theorem 2.8]), [Dg(0, 0)]−1g(z.t) = f(z, t) is an
A(t)-normalized polynomially bounded Loewner chain solution to the Loewner
differential equations (1.2). This completes the proof. □

Corollary 3.3. Let A : [0,∞) → L(Cn,Cn) be a locally Lebesgue integrable
mapping which satisfies the condition (2.4) and the assumptions of Definition
2.3. If f(z, t) is a polynomially bounded solution to the Loewner differential
equations (1.2) such that

f(z, t) = e
∫ t
0
A(τ)dτ (z +

∞∑
k=2

Gk(t)(z
k)),

then

f(z, s) = lim
t→∞

e
∫ t
0
A(τ)dτ (υ(z, s, t) +

n0∑
k=2

Gk(t)(υ(z, s, t)
k)),

and the limit is locally uniformly in z.

If f(z, t) is an A(t)-normalized Loewner chain satisfying (1.2), then we can
write

e−
∫ t
0
A(τ)dτf(z, t) = z+

∞∑
k=2

Fk(t)(z
k) or f(z, t) = e

∫ t
0
A(τ)dτ (z+

∞∑
k=2

Fk(t)(z
k)),



Polynomially Bounded Solutions of the Loewner differential equation 532

and

Fk(t)(z
k) = e−

∫ t
0
A(τ)dτ 1

k!
Dkf(0, t)(z, . . . , z︸ ︷︷ ︸),

k−times

where Fk(t)(z
k) is a homogenous polynomial mapping of degree k.

Theorem 3.4. Let A : [0,∞) → L(Cn,Cn) be a locally Lebesgue integrable
mapping which satisfies the condition (2.4) and the assumptions of Definition
2.3. Assume that n0 = 1. Let g(z, t) be a polynomially bounded solution to the
Loewner differential equations (1.2). Then

g(z, s) = L(f(z, s)), z ∈ Bn, s ≥ 0,(3.4)

where L = Dg(0, 0) and

f(z, s) = lim
t→∞

e
∫ t
0
A(τ)dτυ(z, s, t),

is the unique A(t)-normalized bounded Loewner chain solution to the Loewner
differential equations(1.2).

Proof. Let

g(z, t) = Dg(0, 0)e
∫ t
0
A(τ)dτz + e

∫ t
0
A(τ)dτ

∞∑
k=2

Gk(t)(z
k),

be a polynomially bounded Loewner chain solution to the Loewner differential
equations (1.2). Then

g(z, s) = g(υ(z, s, t), t) = Dg(0, 0)υ(z, s, t)e
∫ t
0
A(τ)dτ + e

∫ t
0
A(τ)dτR(t)(υ(z, s, t)),

where R(t)(z) =
∑∞

k=2 Gk(t)(z
k). Since g is polynomially bounded, using the

formula for the reminder of the Taylor series and Cauchy formula, we obtain

∥R(t)(z)∥ ≤ CρP (t)∥z∥2, ∥z∥ ≤ ρ,

where Cρ is a constant which depends only on ρ and P (t) is a polynomial in t.
From (2.4), (2.6) and this inequality, we have

∥e
∫ t
0
A(τ)dτR(t)(υ(z, s, t))∥ ≤ CρP (t) ∥e

∫ t
0
k(A(τ))dτ∥ ∥υ(z, s, t)∥2

≤ Cρ,s ∥e
∫ t
0

(A(τ)−2m(A(τ))In))dτ∥ P (t), ∥z∥ ≤ ρ,

where Cρ,s is a constant which depends only on ρ and s. Since the relation

(2.4) is true we conclude that e
∫ t
0
A(τ)dτR(t)(υ(z, s, t)) → 0 locally uniformly in

z. Thus, we obtain (3.4). By Lemma 2.14, f(z, s) = limt→∞ e
∫ t
0
A(τ)dτυ(z, s, t)

is the unique A(t)-normalized bounded Loewner chain solution to the Loewner
differential equations (1.2). This completes the proof. □

As a corollary of above theorem, we obtain the following uniqueness of poly-
nomially bounded solution to the Loewner differential equations (1.2) ([6, Corol-
lary 4.4]).



533 Ebadian, Rahrovi, Shams and Sokó l

Corollary 3.5. Assume that n0 = 1. Let f(z, t) be a polynomially bounded so-

lution to the Loewner differential equations (2.20) such that Df(0, 0) = e
∫ t
0
A(τ)dτ .

Then

f(z, s) = lim
t→∞

e
∫ t
0
A(τ)dτυ(z, s, t),

and it is the unique A(t)-normalized bounded Loewner chain solution to the
Loewner differential equations (1.2).

Lemma 3.6. Let A : [0,∞) → L(Cn,Cn) be a locally Lebesgue integrable
mapping which satisfies the condition (2.4) and the assumptions of Definition
2.3. If P is a polynomial such that P (t) ≥ 0 for t ≥ s then

∫ ∞

s

P (t) ∥e−
∫ t
s
A(τ)dτ∥ ∥υ(z, s, t)∥n0+1

(1− ∥υ(z, s, t)∥)2
dt

≤
Qε,A(t),P (s)

(1− ∥z∥)2
k+(A(t))

m(A(t))
+ε

, ε > 0,

where Qε,A(t),P is a polynomial of the same degree as f .

Proof. Let

α =
k+(A(t))

m(A(t))
+

ε

2
.

We can restrict to the case when ε is small enough so that α < n0 + 1. Using
(2.6) we see that

∥υ(z, s, t)∥n0+1

(1− ∥υ(z, s, t)∥)2
≤ ∥υ(z, s, t)∥α

(1− ∥υ(z, s, t)∥)2

≤ e−α
∫ t
s
m(A(τ))dτ∥z∥α

(1− ∥z∥)2α

≤ e−α
∫ t
s
m(A(τ))dτ

(1− ∥z∥)2α
.

Let ε1 be small enough so that

∥e−
∫ t
s
A(τ)dτ∥ ≤ e−

∫ t
s
k(A(τ))dτ

≤ Cε1e
−

∫ t
s

(k(A(τ))+ε1)dτ

= Cε1e
−

∫ t
s

(k(A(τ))dτ ) + ε1(t− s),
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and γ = αm(A(τ))− k(A(τ))− ε1. Then∫ ∞

s

P (t) ∥e
∫ t
s
A(τ)dτ∥ ∥υ(z, s, t)∥n0+1

(1− ∥υ(z, s, t)∥)2
dt

≤
∫ ∞

s

Cε1

e
∫ t
s

(k(A(τ))+ε1)dτe−α
∫ t
s
m(A(τ))dτ

(1− ∥z∥)2α
P (t)dt

=
Cε1

(1− ∥z∥)2α

∫ ∞

s

e−γ(t−s)P (t)dt,

and it is not hard to see that

Qε,A(t),P (s) = Cε1

∫ ∞

s

e−γ(t−s)P (t)dt,

satisfies our requirements. This completes the proof. □

Theorem 3.7. Let A : [0,∞) → L(Cn,Cn) be a locally Lebesgue integrable
mapping which satisfies the condition(2.4) and the assumptions of Definition
2.3. If Fk : [0,∞) → Pk(Cn), k = 2, . . . ,m are polynomially bounded and the
limit

f(z, s) = lim
t→∞

e
∫ t
0
A(τ)dτ (υ(z, s, t) +

n0∑
k=2

Fk(t)(υ(z, s, t)
k)),

exists locally uniformly in ∈ Bn for some s ≥ 0, then f(z, s) is univalent.

Proof. First note that if Q ∈ Pk(Cn) then

∥Q(zk)−Q(wk)∥ = ∥
k−1∑
j=0

Q(z − w, zj , wk−1−j∥

≤ ∥Q∥ ∥z − w∥
k−1∑
j=0

∥z∥j∥w∥k−1−j .

Using the above and (2.6) we see that

∥
m∑

k=2

Fk(t)(υ(z1, s, t)
k)−

m∑
k=2

Fk(t)(υ(z2, s, t)
k)∥

≤ CrP (t)e−
∫ t
s
m(A(τ))dτ∥υ(z1, s, t)− υ(z2, s, t)∥, ∥z1∥, ∥z2∥ ≤ r,

where P is a polynomial bounded on Fk, k = 2, . . . ,m. For sufficiently large t
we get

∥
m∑

k=2

Fk(t)(υ(z1, s, t)
k)−

m∑
k=2

Fk(t)(υ(z2, s, t)
k)∥ ≤ ∥υ(z1, s, t)− υ(z2, s, t)∥,
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for ∥z1∥, ∥z2∥ ≤ r, which implies that for sufficiently large t

υ(z, s, t) +

m∑
k=2

Fk(t)(υ(z, s, t)
k),

is univalent on the ball ∥z∥ ≤ r. Now the conclusion follows easily. □
From Corollary 3.3 and Theorem 3.7 we have the following consequences.

Corollary 3.8. All A(t)-normalized polynomially bounded solution of (1.2)
are Loewner chains.

Theorem 3.9. Let f : Bn → Cn be a holomorphic mapping and

f(z) = z +
∞∑
k=2

Gk(z
k).

Then f is A(t)-asymptotically spirallike with respect to A if and only if there
exists h ∈ H(Bn), Dh(0) = A(t) such that

f(z) = lim
t→∞

e
∫ t
0
A(τ)dτ (υ(z, t) +

n0∑
k=2

Gk(υ(z, t)
k)),(3.5)

exists locally uniformly in ∈ Bn, where υ is the solution of (2.5).

Proof. First assume that f is A(t)-asymptotically spirallike with respect to
A. Hence there exists the mapping Q : f(Bn) × [0,∞) → Cn satisfying the
assumptions of Definition 2.8. Let υ be the solution of the initial value problem
(2.5). By definition it will satisfy

f(z) = lim
t→∞

e
∫ t
0
A(τ)dτV (f(z), 0, t),

locally uniformly on ∈ Bn.
Let υ be defined by υ(z, s, t) = f−1(V (f(z), s, t)), z ∈ Bn and t ≥ s. Also,

let h(z, t) = [Df ]−1Q(f(z), t), t ≥ 0. With the same proof as in [10, Theorem
3.5], one sees that h ∈ H(Bn), Dh(0) = A(t) and that υ is the solution of (2.5).

We have

f(z) = lim
t→∞

e
∫ t
0
A(τ)dτV (f(z), 0, t) = lim

t→∞
e
∫ t
0
A(τ)dτf(υ(z, 0, t))

locally uniformly on ∈ Bn. Similar to the proof of Theorem 3.2 we also see
that

lim
t→∞

e
∫ t
0
A(τ)dτf(υ(z, 0, t)) = lim

t→∞
e
∫ t
0
A(τ)dτ (υ(z, 0, t) +

n0∑
k=2

Gk(υ(z, 0, t)
k)),

yielding the desired conclusion (the fact that f is univalent follows from The-
orem 3.7).

Now assume that (3.5) holds. The conclusion follows exactly as in the proof
of [10] Theorem 3.1. □
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