
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 42 (2016), No. 3, pp. 499–506

.

Title:

.

Total perfect codes, OO-irredundant and total subdivision in graphs

.

Author(s):

.

H. Hosseinzadeh and N. Soltankhah

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 42 (2016), No. 3, pp. 499–506
Online ISSN: 1735-8515

TOTAL PERFECT CODES, OO-IRREDUNDANT AND TOTAL

SUBDIVISION IN GRAPHS

H. HOSSEINZADEH AND N. SOLTANKHAH∗

(Communicated by Ebadollah S. Mahmoodian)

Abstract. Let G = (V (G), E(G)) be a graph, γt(G). Let ooir(G) be
the total domination and OO-irredundance number of G, respectively. A
total dominating set S of G is called a total perfect code if every vertex in

V (G) is adjacent to exactly one vertex of S. In this paper, we show that
if G has a total perfect code, then γt(G) = ooir(G). As a consequence,
we determine the value of ooir(G) for some classes of graphs. Finally, we
prove some new bounds for the total subdivision number.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph and u ∈ X ⊆ V (G). The
open neighborhood of u is the set of all vertices adjacent to u which is de-
noted by N(u) and, the close neighborhood of u is N [u] = N(u) ∪ {u}. The
open (closed) neighborhood of X is N(X) = ∪u∈XN(u) (N [X] = ∪u∈XN [u]).
A subset S ⊆ V (G) is a dominating set of G if every vertex of V (G)/S is adja-
cent to some vertices of S. The domination number γ(G) of G is the minimum
cardinality of all dominating sets of G. A dominating set of cardinality γ(G) is
called a γ(G)-set. If every vertex of V (G)/S is adjacent to exactly one vertex
of S and S is also an independent set, then S is called a perfect code or an
efficient dominating set [5]. Domination is one of the major and well studied
areas in graph theory. For more details on this concept see [5]. Among many
types of dominating sets, total dominating sets have been investigated exten-
sively [8]. A subset S of vertices in a graph G is a total dominating set if each
vertex of V (G) is adjacent to some vertices of S. The total domination number
is the minimum cardinality of all minimal total dominating sets of G and is
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Figure 1. Minimum total dominating sets for P6□P6

denoted by γt(G). The total dominating set of cardinality γt(G) is called a
γt(G)-set. If every vertex in V (G) is adjacent to exactly one vertex of S, then
S is called a total perfect code or an efficient open dominating set [3]. Not nec-
essarily all graphs have a perfect or total perfect code. For example, the cycle
C5 has neither a perfect code nor a total perfect code, C6 has a perfect code but
not any total perfect code and C4 has total perfect code but not any perfect
code. In this paper we focus on total perfect codes. At the beginning we state
some basic results which are used in our proofs.

Theorem 1.1. [3] If a graph G has a total perfect code S, then |S| = γt(G)
and all total perfect codes have the same cardinality.

Theorem 1.2. [3] For a graph G the following are equivalent:
(a) C = {v1, v2, . . . , vk} is a total perfect code of G.
(b) {N(v1), N(v2), . . . , N(vk)} is a partition of V (G).
(c) |V (G)| =

∑
v∈C deg(v)

We note that not necessarily all γt(G)-sets are perfect. For example, in
Figure 1, squared vertices is the total perfect code of P6□P6 and black vertices
form the total dominating set of minimum size which is not perfect.

Determining whether an arbitrary graph G has a total perfect code is an NP-
complete problem [5] but the existence of total perfect codes for some classes
of graphs has been examined. A total perfect code allows a graph to enjoy
several properties. For example, as an easy observation it can lead to a better
bound for the matching number. We recall that a matching in a graph is a set
of pairwise nonadjacent edges. Number of edges in the maximum matching of
graph G is the matching number α′(G) of G.

It is not hard to see that for every graph G with no isolated vertex, γ(G) ≤
α′(G). Since γ(G) ≤ γt(G), Henning naturally asked in his survey [7] if the
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inequality γt(G) ≤ α′(G) holds for every graph G with sufficiently large min-
imum degree? This inequality was proved for the family of claw-free graphs
with minimum degree at least three and for the family of k-regular graphs when
k ≥ 3 (see [7]). We will show that this is true for all graphs which have total
perfect code.

Observation: If G is a graph with δ(G) ≥ 2 that has a total perfect code,
then γt(G) ≤ α′(G).

Proof. Let C = {v1, v2, . . . , vk} be a total perfect code of G. We may assume
that vivi+1 ∈ E(G), for all odd i with 1 ≤ i ≤ k − 1. By Theorem 1.1,
N(v1)∪. . .∪N(vk) is a partition of V (G). Since δ(G) ≥ 2, for each i, 1 ≤ i ≤ k,
there is ui ∈ N(vi) \ C. The edges uivi for 1 ≤ i ≤ k form a matching for the
graph G. Therefore, γt(G) ≤ α′(G). □

In the next section we will establish the exact values of OO-irredundance
number for some classes of graphs. In Section 3 we will give some bounds for
total subdivision domination number of some graphs.

2. Total perfect codes and OO-irredundance

The set X ⊆ V (G) is OO-irredundance if and only if for each v ∈ X,
N(v)−N(X \ {v}) ̸= ∅. For convenience we let PN(v) = N(v) \N(X \ {v}).
The minimum cardinality among all maximal OO-irredundant set denoted by
ooir(G) and is called OO-irredundance number of the graph G. To the best
of our knowledge ooir has only been determined for paths and cycles [1]. The
main theorem of this section leads to determination of the exact value of OO-
irredundace number for several classes of graphs.

The following proposition is an easy consequence of definitions.

Proposition 2.1. Any minimal total dominating set of a graph G is also a
maximal OO-irredundant set. Therefore, ooir(G) ≤ γt(G).

Proof. Assume that S is a minimal total dominating set of G. Then, for each
u ∈ S there is v ∈ V (G) such that N(v) ∩ N(S) = {u}. Therefore, N(v) \
N(S \ {v}) ̸= ∅ and S is an OO-irredundant set. On the other hand, for each
x ∈ V \S, S ∪{x} is not an OO-irredundant set since otherwise there is v ∈ V
that is not adjacent to any vertex in S. □

The following lemma is our main result of this section.

Lemma 2.2. Let G = (V,E) be a simple graph, C = {v1, v2, . . . , vk} total
perfect code and S ⊆ V a maximal OO-irredundant set of G. Then, |S| ≥ |C|.

Proof. Without loss of generality we can assume that v1 /∈ S. We claim that we
can find a vertex x(v1) ∈ (V (G)\C)∩S. Since S is a maximal OO-irredundant
set, S∪{v1} is not OO-irredundant. This means that there is at least one vertex
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Figure 2. A tree with large total domination number and
small OO-irredundance number

in S ∪ {v1} that has no private neighborhood. To proceed with the proof, we
consider the following two cases:
Case 1) There is y ∈ S such that N(y) \N(S \ {y}) ⊆ N(v1). This means that
all private neighbors of y belong to N(v1). Accordingly, we define x(v1) = y.
Furthermore, we define X1(v1) ⊆ S to be the set of all vertices x(v1) (The
index 1 for X indicates the Case 1.)
Case 2) N(v1) ⊆ N(S). Note that this implies N(v1)\N(S∪{v1}) = ∅. In this
case we define x(v1) to be a vertex in S which has a common neighbor with v1.
Likewise, we define the set X2(v1) consisting of vertices in S of this type.
Note that in both cases Xi(v1) ∩ C = ∅ (i ∈ {1, 2}). Now it remains to prove
that if vi, vj /∈ S then x(vi) ̸= x(vj). Since X2(vi) ∩ X2(vj) = ∅ without loss
of generality we can assume X2(vi) = X2(vj) = ∅ and X1(vi) = X1(vj) = {y}.
This means that y has at least one private neighbor in N(vi) and one is in
N(vj). Now consider S

∪
{vi}. Since it is not an OO-irredundant set, there is

z ∈ S
∪
{vi} such that N(z) \N((S

∪
{vi}) \ z) ̸= ∅. We know that z ̸= vi since

otherwise z ∈ X2(vi). Also z ̸= y contradicts the assumption that X1(vi) =
{y}. By symmetry this is true for vj . We conclude that S \ {y} ∪ {vi, vj}
is an OO-irredundant set for a subset of G properly containing S, and this
contradiction with maximality of S. Hence either X2(vi) = X2(vj) ̸= ∅ or
|X1(vi)∆X1(vj)| ⩾ 2. □

The previous lemma yields that if the graph G has a total perfect code, then
γt(G) ≤ ooir(G). Therefore, by Proposition 2.1 we have the following theorem.

Theorem 2.3. If a graph G has a total perfect code, then ooir(G) = γt(G).

The tree T in Figure 2 shows that the difference between ooir(G) and γt(G)
can be arbitrarily large. Note that T is of order 2k + 2. The vertex of degree
k + 1 is called the root of T . The root and one of its neighbors is a maximal
OO-irredundant set of minimum size, hence ooir(T ) = 2. While, we need to
pick up all vertices of degree 2 and the root in the minimum total dominating
set of T , we have γt(T ) = k + 1.
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The existence of total perfect codes for some classes of graphs has been
investigated in the literatures. For example, Pn has a total perfect code if and
only if n ̸≡ 1 (mod 4) and Cn has a total perfect code if and only if n ≡ 0(mod 4)

([3]). Also we have γt(Pn) = γt(Cn) =

{
n
2 n ≡ 0(mod 4)

⌊n
2 ⌋+ 1 otherwise

[5]. This

means we can easily compute the value of ooir for infinitely many cycles and
paths. This has been a challenge in [1]. Grid graphs Pn□Pm which have total
perfect code are characterized in [9, 12]. In particular, it is proved in [9] that
for two positive integers m and n, n ≥ m ≥ 2, Pn□Pm has a total perfect code
if and only if m is even and n = m + c(m + 1) or n = m + 2 + c(m + 1) or
n = m− 2+ c(m+1), for a nonnegative integer c. All trees which have a total
perfect codes are found in [3]. So using our result, we can find the value of ooir
for these graphs.

In the following we consider the existence of total perfect codes for some
other graphs.

Proposition 2.4. The hypercube Qn with 2n vertices has a total perfect code
if and only if n = 2m for some integer m.

Proof. First assume that C = {v1, . . . , vk} is a total perfect code of Qn. Then,
by Theorem 1.1, V (Qn) = N(v1) ∪ · · · ∪ N(vk). Since for each 1 ⩽ i ⩽ k,
|N(vi)| = n, thus 2n = |V (Qn)| = k × n. So n = 2m for an integer m. Also
Q2m = Q2(m−1)□P2 , where □ shows the Cartesian product. But it is proved
that Q2m−1 has perfect codes [10]. Let C be a perfect code of Q2m−1 , then
V (Q2m−1)[C]□P2 is a total perfect code of Q2m . □

Proposition 2.5. If both m and n are integer multiplies of 4, then Cn□Cm

has a total perfect code.

Proof. We know that Cn (n ≡ 0( mod 4)) has a total perfect code of size n
2 .

So we can assume P and P̄ are two disjoint total perfect codes for Cn such
that P ∪ P̄ = V (Cn). Let C1

n, C
2
n, · · · , Cm

n be m copies of Cn in Cn□Cm. For
convenience we denote the vertex set of P in jth copy of Cn by Pj(1 ⩽ j ⩽ m).
We define two sequences {ai}mi=2 and {bj}mj=2 as follows: ai+1 = ai+4, , a1 = 1

and bj+1 = bj + 4, b1 = 3. Also we define the set T = {∪m
i=1Pai

∪
∪m
j=1P̄bj}.

The condition m ≡ 0 (mod 4), guarantees that T is a total perfect code of
Cn□Cm.

□

Therefore, there are plenty of graphs for which we can compute their OO-
irredundance numbers rather easily by Theorem 2.3, while it is too computa-
tional to determine them directly.
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3. Total perfect code and total subdivision number

We say that an edge uv ∈ E is subdivided if the edge uv is deleted, but a
new vertex x is added along with two new edges ux and xv. We only permit
an edge to be subdivided once. The domination subdivision number sdγ(G)
of a graph G is the minimum number of edges that must be subdivided in
order to increase the domination number. We also define the total domination
subdivision number (sdγt(G)) of G in a same way. Since the total domination
number of a single edge does not change when it is subdivided, in the study
of total domination subdivision numbers we must assume that the graph is of
order n ≥ 3. It is known that these two parameters can be arbitrarily large [4,6].
It is also difficult to find good upper bounds for them. The best known upper
bound for the total domination subdivision number of a connected graph G of
order n ≥ 3 is ⌊ 2n

3 ⌋ [2].
The following theorems shows that if a graph G has a total perfect code,

then we can find a new upper bound for the total subdivision number of G.

Theorem 3.1. Let G be a graph with δ(G) ≥ 2 and let C = {v1, v2, . . . , vk}
be a total perfect code of G. If there is an edge vivj ∈ E(C) such that N(vi) ∪
N(vj)/{vi, vj} is not an independent set in G, then sdγt(G) ≤ 2.

Proof. We show that there are two edges in the graph G such that the to-
tal domination number of G will increase if we subdivide them. Assume
vivj ∈ E(C) and that N(vi) ∪ N(vj)/{vi, vj} is not an independent set. Let
G′ be the graph obtained by subdividing two edges vivj and ab ∈ E(G[N(vi)∪
N(vj)/{vi, vj}]) with two vertices x and y, respectively. Also let S′ be a γt(G

′)-
set. We consider the following two cases:

(1) |S′∩{x, y}| ∈ {1, 2}. It is not hard to see that vertices x and y can not
totally dominate N(vi)∪N(vj) and we need at least two more vertices
from N(vi)∪N(vj). So |S′ ∩{N(vi)∪N(vj)}| ⩾ 3. Also we know that
V (G) = N(v1) ∪ · · · ∪N(vk). So to totally dominate other vertices of
V (G′) we need at least one vertex of each set. This means we need at
least k + 1 vertices in S′ and hence we have γt(G

′) > γt(G).
(2) |S′ ∩ {x, y}| = 0. First note that a unique vertex of N(vi) ∪N(vj) can

not dominate both x and y, also |S′ ∩ {vi, vj}| ⩾ 1. Without loss of
generality we can assume vi ∈ S′. Now to totally dominate vi we need
|S′∩N(vi)| ⩾ 1. But none of the already chosen vertices can dominate
vj . So we need at least one other vertex of S′ ∩ N(vj). This means
|S′ ∩ {N(vi) ∪N(vj)}| ⩾ 3. So, γt(G

′) > γt(G).

□

Haynes et al. [6] proved that for any grid graph Pn□Pm, 1 ≤ sdγt(Pn□Pm) ≤
4. Soltankhah [11] improved this bound and proved that sdγt(Pn□Pm) ≤ 3 for
m,n ≥ 3. Since total perfect codes of grid graphs satisfy the conditions of



505 Hosseinzadeh and Soltankhah

Figure 3. A graph with a total perfect code and sdγt > 2

Theorem 3.1, we conclude that, sdγt
(Pn□Pm) ≤ 2 for any grid graphs which

has a total perfect code.
The Conditions in Theorem 3.1 are in fact necessary. In the graph of Figure

3, black vertices form a total perfect code of the graph and it is easy to check
that subdividing any two edges of the graph do not increase the total domi-
nation number. However, our next theorem shows that the total subdivision
number of this graph is equal to 3.

Theorem 3.2. Let G be a connected graph with δ(G) ≥ 2 and the set C =
{v1, v2, . . . , vk} be a total perfect code of G. If for each vivj ∈ E(G) such that
vi, vj ∈ C, N(vi)∪N(vj)/{vi, vj} is an independent set in G, then sdγt(G) ≤ 3.

Proof. According to Theorem 1.1, V (G) = N(v1)∪ . . .∪N(vk) is a partition of
V (G). We choose two integers i ̸= j ∈ {1, . . . , k} such that vivj ∈ E(G). Let
x ∈ N(vi) and y ∈ N(vj).

We can show that the total domination number increases by subdividing
three edges xvi, vivj and vjy with three vertices a, b and c, respectively. Let
G′ be the resulting graph and let S′ be a γt(G

′)−set. First assume that, |S′ ∩
{a, b, c}| = 3. To totally dominate vertices in

∪k
l=1,l ̸=i,j N(vl) we need at least

k−2 vertices in S′, so we conclude γt(G
′) > γt(G). Also if |S′∩{a, b, c}| = {1, 2},

we need at least two other vertices of N(vi)∪N(vj) to totally dominate the set
{a, b, c, vi, vj}. Thus again we have γt(G

′) > γt(G). Finally, if |S′∩{a, b, c}| = 0
then |S′ ∩ {vi, vj}| ≥ 1. Let vi ∈ S′, to totally dominate vi there must be a
vertex t ∈ N(vi) ∩ S′ but neither t nor vi can dominate vj . Therefore, S′

contains at least one other vertex of N(vj). Thus γt(G
′) > γt(G). □
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