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ABSTRACT. In this paper we characterize the radical of an arbitrary sub-
module N of a finitely generated free module F' over a commutatitve ring
R with identity. Also we study submodules of F' which satisfy the radical
formula. Finally we derive necessary and sufficient conditions for R to be
a Priifer domain, in terms of the radical of a cyclic submodule in R €D R.
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1. Introduction

Throughout this paper all rings are commutative with identity and all mod-
ules are unitary. A proper submodule P of an R-module M is called a p-prime
submodule, if rm € P forr € Rand m € M impliesm € Porr € p= (P : M),
where (P : M) ={r € R|rM < P}. Let I be an ideal of R. The radical,
V1, is defined to be the intersection of all prime ideals of R containing I. We
denote the radical of I by VI. Let X be a subset of an R-module M. We
denote the submodule of M that X generates, by < X > or RX. The prime
radical, Rady/T, of a submodule T in an R-module M is defined to be the
intersection of all prime submodules of M containing 7'. If there is no prime
submodule containing 7', then Rady/T = M. In particular Rady M = M. We
use the notation R for R@--- @ R and I™ for I & ---& I, where I is an

n—times n—times
ideal of R.

Let M be an R-module and T be a submodule of M. The envelope of T in

M is defined to be the set

Ey(T)={rm |r€ R,m & M;r"m € T, for some n € Z*}.
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We say that the submodule T of an R-module M satisfies the radical formula
in M (T str.f. in M) if RadyT = (Ep(T)). An R-module M s.t.r.f. if for
every submodule T of M, the prime radical of T is the submodule generated
by its envelope, i.e. RadpyT = (En(T)). A ring R s.t.r.f. provided that for
every R module M, M s.t.r.f. The question of what kind of rings and modules
s.t.r.f. has studied by many authors, see [1,3,06,7,10].

In [1], Azizi has shown that every arithmetical ring with dimR < 1 satisfies
the radical formula. In [9], Parkash proved that every arithmetical ring satisfies
the radical formula and Buyruk and Pusat Yilmaz in [2], proved that if R is a
Priifer domain, then the free R-module R(?) satisfies the radical formula.

In [11] Pusat-Yilmaz and Smith have described Radp(T), where T is a
finitely generated submodule of a free R-module ' = R(™. In this paper we
generalize this characterization for an arbitrary submodule N of F' and we
characterize some submodules of F satisfying the radical formula. Finally we
apply this characterization on the radical of a cyclic submodule of R(?) to give
necessary and sufficient conditions for an integral domain R to be a Priifer
domain.

2. Radical of a submodule and radical formula

LetXi:(xi17...7:rm)EF:R("),forsomexij6R,1§i§m,l§j§n,
m < n. We put

11 12 ... Tin
o1 T2 N Ton

Boisxn =[X1... X)) = . € Myxn(R).
Tmi Tm2 --- Tmn

Thus the jth row of the matrix [X;...X,,] consists of the components of
element X; in F. We use B(j1,...,jk) € Mpmxk(R) to denote the submatrix
of B consisting of the columns jy,...,j% € {1,...,n} and

(X1... Xl = Z RdetB(j1, ..., jm)

the ideal generated by {det B(j1,...,4m) | ji,---,Jm € {1,...,n}}. Weuse N

to be a non-zero submodule of F generated by the set ¥ = {X; = (zi1,...,Tin) €
F|ieQ}. Weput R = Z R[X; ... X;,]t, 1 <t < n. Note that
115, €Q

2O D--- DR, =N

We first state two useful results.
Lemma 2.1. Let F be the free R-module R™. Then ® C (N : F) C VR.
Proof. [3], Lemma 1.1. O
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The following lemma is proved in [3], Lemma 1.5. But we give the proof of
part (ii) of this lemma, because we use this proof in Proposition 2.5.

Lemma 2.2. Let F be the free R-module R"™), p be a prime ideal of R and
B =[X1...X;] € Mixn(R) for some X; € F, 1 < i <k and positive integer
k <n. Put

T,(B) ={X = (z1,...,x,) € F | detB(i1,...,ixt1) € p, for everyiy,...,lg41 €
{1,...,n}}, where p =X X1...X;] € Myy1xn(R). Then

i) Tp(B) is a submodule of F.

i) If X = (21,...,2,) € Tp(B), then det(B(i1,...,ix))X € pF + (B) for all
submatrices B(i1,...,i;) of B, where (B) is the R-submodule of F generated
by the rows of B. (Note that in this part, the ideal p is not necessarily prime.)
iii) If the determinant of every submatriz k x k of B is in p, then T,(B) = F.
iv) If there exists a submatriz B(j1,...,Jr) € Mpxr(R) of B such that
det(B(ji, ..., Jk)) € p, then T,(B) is a p-prime submodule of F'.

Proof. ii) Let X = (z1,...,2,) € Tp(B) and B(j1,...,jk) € Mixx(R) be a

submatrix of B. Without loss of generality, assume that j; < jo < ... < jk.

Since detf3(i1,...,ixt+1) € p for every iy, ..., ix41 € {1,...,n}, there exists p; €
k

p such that .TtdetB(jh e ,]k) =pt+ Z(—l)”lxﬁdetB(t,jl, ey Jim1, Jitdy e 7,]k)
=1

forevery 1 <t <n,t#j;,1 <i<k. It follows that det(B(j1, ..., Jjr)) (@1, .., Tn)

k

= Xp-I-ZYi, for some X, € p™ and Y; = (yi1,..-,¥in) € F, 1 < i < k.

i=1
We fix 1 < ) < k. Then Yit = (—1)i+1$jid€tB(t,j1,...,ji_l,ji+1,...,jk)7
1 <t< n, t #jla'”vjk and Yij, = zjqutB(.]lvmjk) and Yijs = Oa 1<s< k7
k

S 7é Z Therefore Yit = Z (—1)m+ixmtxjidet[B(t,j1, . ,ji_l,ji+17 . ajk)]mla

m=1
k
V<t <t # oy and gy, = Y (1) a5, det[B(j, - - k) lmi-
m=1
k
Also Yijs = Z (—1)m+l$mjsxjid€t[3(j1, LR aji—1’j87ji+17 R 7.]k)]ml = Oa 1 S
m=1

k
s <k, s#1i SoY, = Zxji(—l)m+idet[B(j1,...,jk)]miXm and hence

m=1
Y, € (B), 1 <i<k. Thus detB(j1,...,Jk)(x1,...,Zn) € pF + (B). O

Let M be an R-module, p be a prime ideal of R and T be a submodule of
M. In [L1] Pusat-Yilmaz and Smith defined the submodule K(T,p) = {m €
M | em € T+pM, for ¢ € R\p}. They showed that this is the smallest p-prime
submodule of M containing T and so RadyT = N{K(T,p) : p is a prime ideal
of R }.
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Lemma 2.3. Let F be the free R-module R™ and p be a prime ideal of R.
Then

i) If (N : F) < p, then K(N,p) = F.

i) If Ry C p, then K(N,p) = p(™.

i) If I 7¢_ p, then there exists a positive integer k < n and a matrix Bryx, =
[X1...Xk] € Mpxn(R), X; € U, 1 <i <k such that K(N,p) = T,(B), where
T,(B) is the p-prime submodule in Lemma 2.2.

Proof. i) Let p be a prime ideal of R. Assume (N : F') is not contained in p
and ¢ € (N : F)\p. Then ¢F C N and so F' C K(N,p).

ii) Let %1 C p. Then pF contains N and since pF is a p-prime submodule
of F, we get that K(N,p) = p(™.

iii) Let % is not contained in p. Suppose that £ is the set of all positive in-
tegers m such that there exists a matrix Bpxn = [X1...Xm] € Mumxn(R),
for some X; € ¥ (1 < ¢ < m) and a submatrix B(j1,...,Jjm) such that
detB(j1,...,jm) € p, for some ji,...,jm € {1,...,n}. Since ¥ ¢ p(™ hence
1 €& #0. Let k = max(€), by Lemma 2.1, we have k < n.

Let Brxn = [X1...Xk] € Mgxn(R) such that detB(j1,...,jk) € p, for some
Ji,---5Jk € {1,...,n}. Then by Lemma 2.2(iv), we have T,,(B) is a p-prime
submodule of F. It is clear that N C T,(B) and by Lemma 2.2(ii), T,,(B) C
K(N,p). O

The Theorem 2.4, is a generalization of Theorem 1.5 in [11].

Theorem 2.4. Let F be the free R-module R"™ and N = (V). Then RadpN =
{X =(21,...,20) EVIRIF | [X X4, ... Xi,_, e © VR, for everyis, ... ip_1 €
Q,2<k<n}, where R = Y R[Xi, ... XiJx and [X Xi, ... X, ]k =
i1yeryil €Q
> RdetB(ju, . .., ji) with

Jise-ndw€{1,...,n}
B=[X X, ...X;_,].

Proof. Let £ be the set of prime ideals of R containing (N : F'). Then by Lemma

2.3 (i), VI F = m K(N,p) and so we get RadpN = mK(N,p) =
R1Cpeg pEE
VRIENL () K(W,p)).
Ri1Zpeg

Let A = {X = (z1,...,2,) € VRIF | [X Xiy ... Xs,_ ]k € VRy, for every
i1y yip—1 € 2,2 < k < n}. We show that RadpN = A. Suppose that
X = (21,...,2,) € RadpN where x; € R, 1 < i < n. Then X € Vi FnN
[ m K(N,p)]. Let p be any prime ideal of R containing R (2 < k <n). If
R Zpeg
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Rr_1 C p, then [X Xi1 . ..X,’kfl]k C p, for all iq,...,ix_1 € Q. If Rr_1 Q: D,
then ®; ¢ p and so by Lemma 2.3 (iii), there exists a matrix By_1x, =
[X1...Xk—1] € Mg_1xn(R), for some X; € ¥(1 <14 <k —1) with a submatrix
B(i1,...,ik—1) such that detB(i1,...,ixk—1) € p and K(N,p) = T,(B). By [8],
Proposition 1.7, K(N,p) = {Y = (y1,...,yn) € F | [Y X4y ... X5, ]k C P
for every iy,...,ik—1 € Q}. Since X € K(N,p), then [X X; ... X; ] C
p, for every iy,...,ix—1 € Q. It follows that [X X;, ... X;,_,]x € VR, for
every ii,...,i5—1 € £ and hence X € A. So RadpN C A. Now let X =
(z1,...,2,) € A and p be any prime ideal in £ such that ®; ¢ p. Then by
Lemma 2.3 (iii), there exists a positive integer m < n and a matrix By, x, =
[X1...Xm] € Mpxn(R), for some X; € ¥U(1 < ¢ < m) with a submatrix
B(j1,.--,jm) such that detB(j1,...,jm) &€ p, for some j1,...,jm € {1,...,n}
and K (N,p) = T,(B). It is clear that X € K(N,p) and so X € RadpN. Thus
A = RadgpN. O

Proposition 2.5. Let F = R™ be a free R-module and N = (). If there
erist 1<j<n-—1and B=[X1...X;] € Mjxn(R), for some X;,...,X, € ¥
such that B contains an j X j submatriz whose determinant is a unit in R and
VRj41=+/(N:F), then N s.t.r.fin F.

Proof. Suppose there exists a matrix B = [X1...X;] € M;xn(R), for some
Xi,...,X; € U with a submatrix B(i1,...,i;) € M;x;(R), for some i1,...,i; €
{1,...,n} such that detB(i1,...,¢;) is unit. Let X € RadpN. Then [X X1 ... X;]j+1
C VRjs1 = /(N : F). If we replace the ideal p in Lemma 2.2(ii) with /(N : F),
then detB(iy,...,i;)X € /(N : F)F+N. It follows that X € /(N : F)F+N
and hence RadpN = /(N : F)F + N = (Ep(N)). O

Corollary 2.6. Let (R,m) be a local ring with m as mazimal ideal. Let F' be
the free R-module R™ and N = (¥). If R; = R and \/Rj41 = /(N : F), for
some 1l <j<mn-—1, then N s.t.r.fin F.

Proof. Let ®; = > R[X;,...X;]; = R, for some 1 < j < n—1
il,...,ijEQ

and \/R;4+1 = /(N : F). Since R is a local ring, then there exists a ma-

trix B = [X1...Xj] € Mjxn(R), for some Xq,...,X; € ¥ with a sub-

matrix B(i1,...,4;) € Mjy;(R), for some iy,...,7; € {1,...,n} such that

detB(i1,...,1;) is unit. Then by Proposition 2.5, N s.t.r.f in F. O
Proposition 2.7. Let R be a commutative ring with identity. Let F be the free
R-module R™ and N = (V). If VR = VR = - = /Roq = /(N F),
then RadpN = /(N : F)F = (Er(N)).

Proof. Let N be a submodule of F such that /R =vIRo=---=/R,,_1 =

v/(N : F). Then by Theorem 2.4, RadpN = {X = (21,...,2y,) € \/(N : F)F|
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X X;, ... X 1k1 C (N : F), for every iq,... ikleQand2<k<n}

Since X; € /(N : F)F, for every X; € U, we get that Radp N = /(N F =

(Ep(N)).
Theorem 2.8 is a generalization of Theorem 1.9 in [11].

Theorem 2.8. Let F = R™ be a free R-module and N = (U), where ¥ =
{Xi:(xﬂ,...,xm) eFr | ZGQ}

Let I be an ideal of R andT N +IF. Then RadpT ={X = (z1,...,2n) €
VR HIF | [X Xiy oo X e CSVRE + I, for every iy, ... ig—1 €0,2<k<
n}, where RNy = Z RIX;, ... Xk, 1 <k <n.

B1,..,0 EQ

Proof. Let ¥ = {Y; = (Yi1,---,Yin) € IF | i € Q'} be a subset of IF such
that IF = (0’). Then T'= (¥ U ¥’} and so by Theorem 2.4, RadprT = {X =
(l‘1,...,l‘n) S \/?Ri/lF I [X Zi1 -~-Zik,1]k: - \/W/k, Zi17~-~7Zik71 S \IIU\I//, for
every i, ..., i5—1 € QUY, 2 <k <n}, where R'y, = Z R[Z;, ... Z;, ]k,
i1 ey EQUQY
1 <k<n. Butitis easy to see that v/, = VR, +1, 1 < i < n. Also if
X € F then [X Z;, ... Z;, |k C VRi + 1, for every zl,...,ik_l e QU if
and only if [X X, ... X, _ ] SVRL + 1, for every iy,...,ik—1 € Q. O

3. Prifer domains

There are many equivalent conditions for an integral domain R to be a
Priifer domain [5], Theorem 24.3. In what follows we give another equivalent
condition in terms of radical of a cyclic submodules of R()

Let R be an integral domain and K its field of fractions. R is said to be
integrally closed if for every a € K, f(a) = 0 for some monic polynomial
f € Rjz], then a € R. Furthermore, R is integrally closed if and only if
(I :x I) = R, for every finitely generated ideal I of R [1], Theorem 3.7.1, where
(I:xgI)={ze K|zl CI}.

In Theorem 3.1 we give necessary and sufficient condition for an integral
domain to be integrally closed, by radical of a cyclic submodules in R(™).

Theorem 3.1. Let R be an integral domain with quotient field K and let F' be
the free R-module R\™) . Then R is integrally closed if and only if Radr(R(ax, . . .,
an)

N (I,)"™ = R(ax,...,an), for every (ai,...,a,) € F and n > 1, where I,, =
(a1, ...,an) 1s a finitely generated ideal of R.

Proof. Let R be an integrally closed domain. If n = 1, then the proof is
clear. Let n > 2 and (21,...,2,) € Radp(R(ay,...,a,)) N (I,)™), for some
(z1,...,2n),(a1,...,a,) € F. We can assume that there exists 1 < t < n,
such that a; # 0. Since R(aq,...,a,) is a cyclic submodule of F' and n > 2
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then by [8], Proposition 1.2, (R(a,...,a,) : F) = {0). Since (x1,...,x,) €
Radp(R(a1,...,a,)) and (R(a1,...,a,) : F) = (0), by Theorem 2.4, z;a; =
a;xy for all i; 1 < i < n, i # t, and hence ai(z1,...,2,) = x¢(a1,...,a,). It
follows that o € (I, :x I,). Since R is integrally closed then x; = ra;, for some

<23
r € R and hence (z1,...,2,) = r(ay,...,a,) € R(ay,...,a,). Conversely, let

I, = {a1,...,a,) (n > 1) be a finitely generated ideal of R and ! € (In:x In)
s

for some 0 # s, f € R. Then there exist z; € I,, 1 < i < n, such that

fa; = sx;. By Theorem 2.4, (z1,...,2,) € Radpwm (R(a1,...,an)) N (1),

Then (z1,...,z,) = 7(a1,...,ay), for some r € R. Since s(xy,...,2,) =

f(al,...,an),f:rsandsoéeli’. a

Theorem 3.2. Let R be an integral domain. Then R is a Prufer domain if
and only if for all a,b € R, (aR+bR)? = a’?R+b*R and I® NRadr(R(a,b)) =
R(a,b), where I = (a,b).

Proof. Let R be a Priifer domain. Then R is integrally closed and by [5],
Theorem 24.3, (aR + bR)? = a?R + bR for all a,b € R. Hence by Theorem
3.1, I® N Radpe (R(a,b)) = R(a,b) and (aR + bR)?> = a?>R + b?R for all
a,b € R. Conversely, let m be a maximal ideal of R. It is enough to show

a b
that R, is a valuation ring. We assume —, — € R,,, for some a,b € R,

518
s$1,89 € R—m. If a € m or b ¢ m then bR}n §2 aR,, or aR,, C bR,,. Now
let a,b be non-zero element of m. Since (aR + bR)?> = a’R + b?R, hence
ab = ra? + sb? for some r, s € R and so a(b—ra) = sb?>. Therefore by Theorem
2.4, (sb,b —ra) € Radge (R(a,b)) N I3, Tt follows that (sb,b — ra) = t(a,b)
for some ¢t € R. Then sb = ta and (1 —t)b = ra and so we have aR,, C bR,,
or bR,, C aR,,. O

A Noetherian valuation domain is called a discrete rank one valuation. Fur-
thermore, a domain R is said to be almost Dedekind provided that, for each
maximal ideal m of R, the localization R,, is a discrete rank one valuation [4],
page 119. It is clear that every almost Dedekind domain is a Priifer domain.
In [4], Theorem 7.1, Chapter III, it is proved that a domain R which is not a
field, is an almost Dedekind domain if and only if R is a Priifer domain of Krull
dimension one and {0} is the only idempotent prime ideal of R. In Theorem
3.4, we give a necessary and sufficient condition for a one dimensional domain
R with {0} as only idempotent prime ideal to be an almost Dedekind domain.

Lemma 3503. Let R be a one dimensional local domain with maximal ideal m

such that ﬂ m"™ = 0. Then R is a valuation ring if and only if Radp>) (R(a,b))
n=1

= Egre (R(a,b)) and (aR +bR)? = a®?R + bR, for all a,b € R.
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Proof. Let R be a valuation ring. It is clear that (aR + bR)? = a2R + V2R, for
all a,b € R. Now let (a,b) be a non-zero element of R and (0,0) # (c,d) €
Radge) (R(a,b)). We assume that ¢ = rd and a = sb, for some r, s € R. Then
we have (¢,d) = d(r,1) and (a,b) = b(s,1). It follows by Theorem 2.4, that
db(r — s) = 0 and d* = tb, for some k € N and t € R. Therefore r = s and
we have (c,d) = d(r,1) = d(s,1), d*(r,1) = d*(s,1) = tb(s,1) = t(a,b). Hence
(¢c,d) € Epe(R(a,b)). Now let a = sb and d = rc for some r,s € R. Then
we have (¢,d) = ¢(1,7) and (a,b) = b(s,1). Now by Theorem 2.4, we have
be(sr — 1) = 0 and c* = tb, for some natural number k and ¢t € R. Therefore
sr = 1 and we have (c,d) = ¢(1,7) and ¢*(1,7) = c*r(s, 1) = trb(s, 1) = tr(a, b).
Hence (c,d) € Ege (R(a,b)). Conversely let a,b be non-zero elements of R. It
is enough to show that a € Rb or b € Ra. Since (aR+bR)? = a? R+ b*R, hence
ab = ra® + sb?, for some r, s € R and so a(b — ra) = sb?>. By Theorem 2.4, we
have (sb,b —ra) € Radpe) (R(a,b)). Now we assume that a € Rb, b € Ra and

we show that sb,b —ra € ﬂ m". Hence sb =0, b —ra = 0. Therefore b = ra,
n=1
which is a contradiction. Since (sb,b—ra) € Radg) (R(a,b)) = Ege (R(a,b)),
then sb, b — ra € m and (sb,b — ra) = ro(zo, yo), for some 0 # rg, zo,y0 € R
such that ry°(zo,y0) = to(a,bd), for some ng € N and ty € R. If ry is unit
in R, then (zo,y0) = £(a,b), for some ¢ € R and so (sb,b — ra) = rol(a,b).
It follows that sb = rofa and b(1 — rof) = ra. Since R is a local ring, rof or
1 — rof is unit and so a € Rb or b € Ra, which is a contradiction. Therefore
ro € m. If o or yo is unit, because ry°ayy = r;°bxo hence ayo = bxg, then we
have b € Ra or a € bR. Hence 0 # rg, 29,0 € m and so sb, b — ra € m?. By
induction, let (sb,b —ra) = rory...7Tk—1(Tk—-1,Yx—1), for some 0 # r;, x;,y; €
m, 0 <7 <k — 1 such that r]*(x;,y;) = t;(a,b), for some n; € N and ¢; € R,
0<i<k-—1. Since z_1,yx—1 € m and bryp_1 = ayk_1, hence by Theorem
2.4, we have (zrx_1,yk—1) € Radge (R(a,b)). So (xx—1,yx—1) = rk(Tk, yr), for
some 0 # 7k, Yk, T, € R such that 7% (xx, yx) = tx(a,b), for some n; € N and
tr € R. Similarly for the case k = 0, we have 0 # rg, =, yr € m and hence
(sb,b—ra) =rory ... rR(TE, i) € (MFH2)2), O

Theorem 3.4. Let R be a one dimensional domain such that ﬂ m" = 0,

n=1
for all mazimal ideals m of R. Then R is almost Dedekind if and only if
(aR + bR)?> = a®’R + b?R and Rad .2 (R (a,b)) = E_ ) (Ry(a,b)), for all
mazximal ideals m of R and a,b € R.

R R

Proof. Let R be almost Dedekind domain. Then R is a Priifer domain and
hence by [7], (aR+bR)? = a®? R+ bR, for all a,b € R. So by [2], Theorem 2.4,
R® st.rf. as an R-module. Now let a,b € R. Then (Radp@ (R(a,b))), =



563

Mirzaei and Nekooei

(Ere (R(a,0)))m = (Ehe) (Rm(a,b))), for all m € max(R). Since R, is a
valuation ring, hence by Lemma 3.3, Rad 2 (Rm(a,0)) = Epe (Rin(a,b)). O
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