ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the Iranian Mathematical Society

Vol. 42 (2016), No. 3, pp. 555-563

Title:

On radical formula and Prüfer domains

Author(s):

F. Mirzaei and R. Nekooei

Published by Iranian Mathematical Society http://bims.irs.ir

ON RADICAL FORMULA AND PRÜFER DOMAINS

F. MIRZAEI AND R. NEKOOEI*

(Communicated by Jost-Hinrich Eschenburg)

ABSTRACT. In this paper we characterize the radical of an arbitrary submodule N of a finitely generated free module F over a commutative ring R with identity. Also we study submodules of F which satisfy the radical formula. Finally we derive necessary and sufficient conditions for R to be a Prüfer domain, in terms of the radical of a cyclic submodule in $R \bigoplus R$. **Keywords:** Prime submodules, Radical of a submodule, Radical formula, Prüfer domains, Dedekind domains.

MSC(2010): Primary: 13A99; Secondary: 13C99, 13F05.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. A proper submodule P of an R-module M is called a p-prime submodule, if $rm \in P$ for $r \in R$ and $m \in M$ implies $m \in P$ or $r \in p = (P:M)$, where $(P:M) = \{r \in R \mid rM \subseteq P\}$. Let I be an ideal of R. The radical, \sqrt{I} , is defined to be the intersection of all prime ideals of R containing I. We denote the radical of I by \sqrt{I} . Let X be a subset of an R-module M. We denote the submodule of M that X generates, by X > 0 or X > 0 is defined to be the intersection of all prime submodule X > 0 in an X > 0 is defined to be the intersection of all prime submodules of X > 0 in particular X > 0 is defined to be the intersection of all prime submodules of X > 0 in particular X > 0 is an X > 0 in particular X > 0 is an X > 0 in X > 0 in

ideal of R.

Let M be an R-module and T be a submodule of M. The envelope of T in M is defined to be the set

$$E_M(T) = \{rm \mid r \in R, m \in M; r^n m \in T, \text{ for some } n \in \mathbf{Z}^+\}.$$

Article electronically published on June 29, 2016. Received: 8 May 2014, Accepted: 25 February 2015.

^{*}Corresponding author.

We say that the submodule T of an R-module M satisfies the radical formula in M (T s.t.r.f. in M) if $Rad_MT = \langle E_M(T) \rangle$. An R-module M s.t.r.f. if for every submodule T of M, the prime radical of T is the submodule generated by its envelope, i.e. $Rad_MT = \langle E_M(T) \rangle$. A ring R s.t.r.f. provided that for every R module M, M s.t.r.f. The question of what kind of rings and modules s.t.r.f. has studied by many authors, see [1,3,6,7,10].

In [1], Azizi has shown that every arithmetical ring with $dimR \leq 1$ satisfies the radical formula. In [9], Parkash proved that every arithmetical ring satisfies the radical formula and Buyruk and Pusat Yilmaz in [2], proved that if R is a Prüfer domain, then the free R-module $R^{(2)}$ satisfies the radical formula.

In [11] Pusat-Yilmaz and Smith have described $Rad_F(T)$, where T is a finitely generated submodule of a free R-module $F = R^{(n)}$. In this paper we generalize this characterization for an arbitrary submodule N of F and we characterize some submodules of F satisfying the radical formula. Finally we apply this characterization on the radical of a cyclic submodule of $R^{(2)}$ to give necessary and sufficient conditions for an integral domain R to be a Prüfer domain.

2. Radical of a submodule and radical formula

Let $X_i = (x_{i1}, \dots, x_{in}) \in F = R^{(n)}$, for some $x_{ij} \in R$, $1 \le i \le m$, $1 \le j \le n$, $m \le n$. We put

$$B_{m \times n} = [X_1 \dots X_m] = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & & & & \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix} \in M_{m \times n}(R).$$

Thus the jth row of the matrix $[X_1 \dots X_m]$ consists of the components of element X_j in F. We use $B(j_1, \dots, j_k) \in M_{m \times k}(R)$ to denote the submatrix of B consisting of the columns $j_1, \dots, j_k \in \{1, \dots, n\}$ and

$$[X_1 \dots X_m]_m = \sum_{j_1,\dots,j_m \in \{1,\dots,n\}} Rdet B(j_1,\dots,j_m)$$

the ideal generated by $\{\det B(j_1,\ldots,j_m)\mid j_1,\ldots,j_m\in\{1,\ldots,n\}\}$. We use N to be a non-zero submodule of F generated by the set $\Psi=\{X_i=(x_{i1},\ldots,x_{in})\in F\mid i\in\Omega\}$. We put $\Re_t=\sum_{i_1,\ldots,i_t\in\Omega}R[X_{i_1}\ldots X_{i_t}]_t,\ 1\leq t\leq n$. Note that

$$\Re_1 \supseteq \Re_2 \supseteq \cdots \supseteq \Re_n = \Re.$$

We first state two useful results.

Lemma 2.1. Let F be the free R-module $R^{(n)}$. Then $\Re \subseteq (N:F) \subseteq \sqrt{\Re}$.

Proof. [8], Lemma 1.1.
$$\Box$$

The following lemma is proved in [8], Lemma 1.5. But we give the proof of part (ii) of this lemma, because we use this proof in Proposition 2.5.

Lemma 2.2. Let F be the free R-module $R^{(n)}$, p be a prime ideal of R and $B = [X_1 \dots X_k] \in M_{k \times n}(R)$ for some $X_i \in F$, $1 \le i \le k$ and positive integer k < n. Put

 $T_p(B) = \{X = (x_1, \dots, x_n) \in F \mid det\beta(i_1, \dots, i_{k+1}) \in p, for \ every \ i_1, \dots, i_{k+1} \in A\}$ $\{1, \ldots, n\}\}, \text{ where } \beta = [X \ X_1 \ldots X_k] \in M_{k+1 \times n}(R). \text{ Then }$ i) $T_p(B)$ is a submodule of F.

ii) If $X = (x_1, \ldots, x_n) \in T_p(B)$, then $det(B(i_1, \ldots, i_k))X \in pF + \langle B \rangle$ for all submatrices $B(i_1,\ldots,i_k)$ of B, where $\langle B \rangle$ is the R-submodule of F generated by the rows of B. (Note that in this part, the ideal p is not necessarily prime.) iii) If the determinant of every submatrix $k \times k$ of B is in p, then $T_p(B) = F$. iv) If there exists a submatrix $B(j_1,\ldots,j_k)\in M_{k\times k}(R)$ of B such that $det(B(j_1,\ldots,j_k)) \not\in p$, then $T_p(B)$ is a p-prime submodule of F.

Proof. ii) Let $X=(x_1,\ldots,x_n)\in T_p(B)$ and $B(j_1,\ldots,j_k)\in M_{k\times k}(R)$ be a submatrix of B. Without loss of generality, assume that $j_1 < j_2 < \ldots < j_k$.

Since
$$det\beta(i_1,\ldots,i_{k+1}) \in p$$
 for every $i_1,\ldots,i_{k+1} \in \{1,\ldots,n\}$, there exists $p_t \in p$ such that $x_t detB(j_1,\ldots,j_k) = p_t + \sum_{i=1}^k (-1)^{i+1} x_{j_i} detB(t,j_1,\ldots,j_{i-1},j_{i+1},\ldots,j_k)$ for every $1 \le t \le n, t \ne j_i, 1 \le i \le k$. It follows that $det(B(j_1,\ldots,j_k))(x_1,\ldots,x_n)$

$$=X_p + \sum_{i=1}^k Y_i$$
, for some $X_p \in p^{(n)}$ and $Y_i = (y_{i1}, \dots, y_{in}) \in F$, $1 \leq i \leq k$.

We fix $1 \le i \le k$. Then $y_{it} = (-1)^{i+1} x_{j_i} det B(t, j_1, \dots, j_{i-1}, j_{i+1}, \dots, j_k), 1 \le t \le n, t \ne j_1, \dots, j_k \text{ and } y_{ij_i} = x_{j_i} det B(j_1, \dots, j_k) \text{ and } y_{ij_s} = 0, 1 \le s \le k,$

$$s \neq i$$
. Therefore $y_{it} = \sum_{m=1}^{k} (-1)^{m+i} x_{mt} x_{j_i} det[B(t, j_1, \dots, j_{i-1}, j_{i+1}, \dots, j_k)]_{m1}$,

$$1 \le t \le n, \ t \ne j_1, \dots, j_k \text{ and } y_{ij_i} = \sum_{m=1}^k (-1)^{m+i} x_{mj_i} x_{j_i} det[B(j_1, \dots, j_k)]_{mi}.$$

Also
$$y_{ij_s} = \sum_{m=1}^{k} (-1)^{m+i} x_{mj_s} x_{j_i} det[B(j_1, \dots, j_{i-1}, j_s, j_{i+1}, \dots, j_k)]_{mi} = 0, 1 \le 1$$

$$s \leq k, \ s \neq i$$
. So $Y_i = \sum_{m=1}^k x_{j_i} (-1)^{m+i} det[B(j_1, \dots, j_k)]_{mi} X_m$ and hence $Y_i \in \langle B \rangle, \ 1 \leq i \leq k$. Thus $detB(j_1, \dots, j_k)(x_1, \dots, x_n) \in pF + \langle B \rangle$.

Let M be an R-module, p be a prime ideal of R and T be a submodule of M. In [11] Pusat-Yilmaz and Smith defined the submodule $K(T,p) = \{m \in$ $M \mid cm \in T + pM$, for $c \in R \setminus p$. They showed that this is the smallest p-prime submodule of M containing T and so $Rad_MT = \bigcap \{K(T,p) : p \text{ is a prime ideal } \}$ of R \}.

Lemma 2.3. Let F be the free R-module $R^{(n)}$ and p be a prime ideal of R. Then

- i) If $(N:F) \nsubseteq p$, then K(N,p) = F.
- ii) If $\Re_1 \subseteq p$, then $K(N,p) = p^{(n)}$.
- iii) If $\Re_1 \nsubseteq p$, then there exists a positive integer k < n and a matrix $B_{k \times n} = [X_1 \dots X_k] \in M_{k \times n}(R)$, $X_i \in \Psi$, $1 \le i \le k$ such that $K(N, p) = T_p(B)$, where $T_p(B)$ is the p-prime submodule in Lemma 2.2.
- *Proof.* i) Let p be a prime ideal of R. Assume (N:F) is not contained in p and $c \in (N:F) \setminus p$. Then $cF \subseteq N$ and so $F \subseteq K(N,p)$.
- ii) Let $\Re_1 \subseteq p$. Then pF contains N and since pF is a p-prime submodule of F, we get that $K(N,p) = p^{(n)}$.
- iii) Let \Re_1 is not contained in p. Suppose that ξ is the set of all positive integers m such that there exists a matrix $B_{m \times n} = [X_1 \dots X_m] \in M_{m \times n}(R)$, for some $X_i \in \Psi$ $(1 \leq i \leq m)$ and a submatrix $B(j_1, \dots, j_m)$ such that $det B(j_1, \dots, j_m) \notin p$, for some $j_1, \dots, j_m \in \{1, \dots, n\}$. Since $\Psi \not\subset p^{(n)}$, hence $1 \in \xi \neq \emptyset$. Let $k = \max(\xi)$, by Lemma 2.1, we have k < n.
- Let $B_{k\times n}=[X_1\ldots X_k]\in M_{k\times n}(R)$ such that $det B(j_1,\ldots,j_k)\not\in p$, for some $j_1,\ldots,j_k\in\{1,\ldots,n\}$. Then by Lemma 2.2(iv), we have $T_p(B)$ is a p-prime submodule of F. It is clear that $N\subseteq T_p(B)$ and by Lemma 2.2(ii), $T_p(B)\subseteq K(N,p)$.

The Theorem 2.4, is a generalization of Theorem 1.5 in [11].

Theorem 2.4. Let F be the free R-module $R^{(n)}$ and $N = \langle \Psi \rangle$. Then $Rad_F N = \{X = (x_1, \ldots, x_n) \in \sqrt{\Re_1} F \mid [X \ X_{i_1} \ldots X_{i_{k-1}}]_k \subseteq \sqrt{\Re_k}, \text{ for every } i_1, \ldots, i_{k-1} \in \Omega, \ 2 \le k \le n\}, \text{ where } \Re_k = \sum_{i_1, \ldots, i_k \in \Omega} R[X_{i_1} \ldots X_{i_k}]_k \text{ and } [X \ X_{i_1} \ldots X_{i_{k-1}}]_k = \sum_{j_1, \ldots, j_k \in \{1, \ldots, n\}} Rdet B(j_1, \ldots, j_k) \text{ with } B = [X \ X_{i_1} \ldots X_{i_{k-1}}].$

Proof. Let ξ be the set of prime ideals of R containing (N:F). Then by Lemma 2.3 (ii), $\sqrt{\Re_1}F = \bigcap_{\Re_1 \subset p \in \xi} K(N,p)$ and so we get $Rad_F N = \bigcap_{p \in \xi} K(N,p) = \sqrt{\Re_1}F \cap \bigcap_{p \in \xi} K(N,p)$

 $\sqrt{\Re_1}F\cap [\bigcap_{\Re_1\not\subset p\in\xi}K(N,p)].$

Let $\Delta = \{X = (x_1, \dots, x_n) \in \sqrt{\Re_1}F \mid [X \ X_{i_1} \dots X_{i_{k-1}}]_k \subseteq \sqrt{\Re_k}$, for every $i_1, \dots, i_{k-1} \in \Omega, 2 \leq k \leq n\}$. We show that $Rad_FN = \Delta$. Suppose that $X = (x_1, \dots, x_n) \in Rad_FN$ where $x_i \in R$, $1 \leq i \leq n$. Then $X \in \sqrt{\Re_1}F \cap [\bigcap_{\Re_1 \not\subset p \in \xi} K(N, p)]$. Let p be any prime ideal of R containing \Re_k $(2 \leq k \leq n)$. If

 $\Re_{k-1} \subseteq p, \text{ then } [X \ X_{i_1} \dots X_{i_{k-1}}]_k \subseteq p, \text{ for all } i_1, \dots, i_{k-1} \in \Omega. \text{ If } \Re_{k-1} \not\subset p, \text{ then } \Re_1 \not\subset p \text{ and so by Lemma 2.3 (iii), there exists a matrix } B_{k-1 \times n} = [X_1 \dots X_{k-1}] \in M_{k-1 \times n}(R), \text{ for some } X_i \in \Psi(1 \leq i \leq k-1) \text{ with a submatrix } B(i_1, \dots, i_{k-1}) \text{ such that } \det B(i_1, \dots, i_{k-1}) \not\in p \text{ and } K(N, p) = T_p(B). \text{ By } [8], \text{ Proposition 1.7, } K(N, p) = \{Y = (y_1, \dots, y_n) \in F \mid [Y \ X_{i_1} \dots X_{i_{k-1}}]_k \subseteq P \text{ for every } i_1, \dots, i_{k-1} \in \Omega \}. \text{ Since } X \in K(N, p), \text{ then } [X \ X_{i_1} \dots X_{i_{k-1}}]_k \subseteq P \text{ for every } i_1, \dots, i_{k-1} \in \Omega \text{ . It follows that } [X \ X_{i_1} \dots X_{i_{k-1}}]_k \subseteq \sqrt{\Re_k}, \text{ for every } i_1, \dots, i_{k-1} \in \Omega \text{ and hence } X \in \Delta. \text{ So } Rad_F N \subseteq \Delta. \text{ Now let } X = (x_1, \dots, x_n) \in \Delta \text{ and } p \text{ be any prime ideal in } \xi \text{ such that } \Re_1 \not\subset p. \text{ Then by Lemma 2.3 (iii), there exists a positive integer } m < n \text{ and a matrix } B_{m \times n} = [X_1 \dots X_m] \in M_{m \times n}(R), \text{ for some } X_i \in \Psi(1 \leq i \leq m) \text{ with a submatrix } B(j_1, \dots, j_m) \text{ such that } \det B(j_1, \dots, j_m) \not\in p, \text{ for some } j_1, \dots, j_m \in \{1, \dots, n\} \text{ and } K(N, p) = T_p(B). \text{ It is clear that } X \in K(N, p) \text{ and so } X \in Rad_F N. \text{ Thus } \Delta = Rad_F N.$

Proposition 2.5. Let $F = R^{(n)}$ be a free R-module and $N = \langle \Psi \rangle$. If there exist $1 \leq j \leq n-1$ and $B = [X_1 \dots X_j] \in M_{j \times n}(R)$, for some $X_1, \dots, X_j \in \Psi$ such that B contains an $j \times j$ submatrix whose determinant is a unit in R and $\sqrt{\Re_{j+1}} = \sqrt{(N:F)}$, then N s.t.r.f in F.

Proof. Suppose there exists a matrix $B = [X_1 \dots X_j] \in M_{j \times n}(R)$, for some $X_1, \dots, X_j \in \Psi$ with a submatrix $B(i_1, \dots, i_j) \in M_{j \times j}(R)$, for some $i_1, \dots, i_j \in \{1, \dots, n\}$ such that $detB(i_1, \dots, i_j)$ is unit. Let $X \in Rad_F N$. Then $[XX_1 \dots X_j]_{j+1} \subseteq \sqrt{\Re_{j+1}} = \sqrt{(N:F)}$. If we replace the ideal p in Lemma 2.2(ii) with $\sqrt{(N:F)}$, then $detB(i_1, \dots, i_j)X \in \sqrt{(N:F)}F + N$. It follows that $X \in \sqrt{(N:F)}F + N$ and hence $Rad_F N = \sqrt{(N:F)}F + N = \langle E_F(N) \rangle$.

Corollary 2.6. Let (R,m) be a local ring with m as maximal ideal. Let F be the free R-module $R^{(n)}$ and $N = \langle \Psi \rangle$. If $\Re_j = R$ and $\sqrt{\Re_{j+1}} = \sqrt{(N:F)}$, for some $1 \leq j \leq n-1$, then N s.t.r.f in F.

Proof. Let $\Re_j = \sum_{i_1,\dots,i_j \in \Omega} R[X_{i_1}\dots X_{i_j}]_j = R$, for some $1 \leq j \leq n-1$

and $\sqrt{\Re_{j+1}} = \sqrt{(N:F)}$. Since R is a local ring, then there exists a matrix $B = [X_1 \dots X_j] \in M_{j \times n}(R)$, for some $X_1, \dots, X_j \in \Psi$ with a submatrix $B(i_1, \dots, i_j) \in M_{j \times j}(R)$, for some $i_1, \dots, i_j \in \{1, \dots, n\}$ such that $det B(i_1, \dots, i_j)$ is unit. Then by Proposition 2.5, N s.t.r.f in F.

Proposition 2.7. Let R be a commutative ring with identity. Let F be the free R-module $R^{(n)}$ and $N = \langle \Psi \rangle$. If $\sqrt{\Re_1} = \sqrt{\Re_2} = \cdots = \sqrt{\Re_{n-1}} = \sqrt{(N:F)}$, then $Rad_F N = \sqrt{(N:F)}F = \langle E_F(N) \rangle$.

Proof. Let N be a submodule of F such that $\sqrt{\Re_1} = \sqrt{\Re_2} = \cdots = \sqrt{\Re_{n-1}} = \sqrt{(N:F)}$. Then by Theorem 2.4, $Rad_FN = \{X = (x_1, \ldots, x_n) \in \sqrt{(N:F)}F | x_n \in \mathbb{R}^n \}$

 $[X \ X_{i_1} \dots X_{i_{k-1}}]_k \subseteq \sqrt{(N:F)}$, for every $i_1, \dots, i_{k-1} \in \Omega$ and $2 \leq k \leq n$. Since $X_i \in \sqrt{(N:F)}F$, for every $X_i \in \Psi$, we get that $Rad_F N = \sqrt{(N:F)}F = \langle E_F(N) \rangle$.

Theorem 2.8 is a generalization of Theorem 1.9 in [11].

Theorem 2.8. Let $F = R^{(n)}$ be a free R-module and $N = \langle \Psi \rangle$, where $\Psi = \{X_i = (x_{i1}, \ldots, x_{in}) \in F \mid i \in \Omega\}$. Let I be an ideal of R and T = N + IF. Then $Rad_F T = \{X = (x_1, \ldots, x_n) \in \sqrt{\Re_1 + I}F \mid [X \ X_{i_1} \ldots X_{i_{k-1}}]_k \subseteq \sqrt{\Re_k + I}$, for every $i_1, \ldots, i_{k-1} \in \Omega$, $2 \le k \le n$, where $\Re_k = \sum_{i_1, \ldots, i_k \in \Omega} R[X_{i_1} \ldots X_{i_k}]_k$, $1 \le k \le n$.

Proof. Let $\Psi' = \{Y_i = (y_{i1}, \dots, y_{in}) \in IF \mid i \in \Omega'\}$ be a subset of IF such that $IF = \langle \Psi' \rangle$. Then $T = \langle \Psi \cup \Psi' \rangle$ and so by Theorem 2.4, $Rad_FT = \{X = (x_1, \dots, x_n) \in \sqrt{\Re'_1}F \mid [X \mid Z_{i_1} \dots Z_{i_{k-1}}]_k \subseteq \sqrt{\Re'_k}, \mid Z_{i_1}, \dots, Z_{i_{k-1}} \in \Psi \cup \Psi', \text{ for every } i_1, \dots, i_{k-1} \in \Omega \cup \Omega', 2 \leq k \leq n\}, \text{ where } \Re'_k = \sum_{\substack{i_1, \dots, i_k \in \Omega \cup \Omega'}} R[Z_{i_1} \dots Z_{i_k}]_k,$

 $1 \leq k \leq n$. But it is easy to see that $\sqrt{\Re'_i} = \sqrt{\Re_i + I}$, $1 \leq i \leq n$. Also if $X \in F$ then $[X \ Z_{i_1} \dots Z_{i_{k-1}}]_k \subseteq \sqrt{\Re_k + I}$, for every $i_1, \dots, i_{k-1} \in \Omega \cup \Omega'$ if and only if $[X \ X_{i_1} \dots X_{i_{k-1}}]_k \subseteq \sqrt{\Re_k + I}$, for every $i_1, \dots, i_{k-1} \in \Omega$.

3. Prüfer domains

There are many equivalent conditions for an integral domain R to be a Prüfer domain [5], Theorem 24.3. In what follows we give another equivalent condition in terms of radical of a cyclic submodules of $R^{(2)}$.

Let R be an integral domain and K its field of fractions. R is said to be integrally closed if for every $a \in K$, f(a) = 0 for some monic polynomial $f \in R[x]$, then $a \in R$. Furthermore, R is integrally closed if and only if $(I:_K I) = R$, for every finitely generated ideal I of R [4], Theorem 3.7.I, where $(I:_K I) = \{x \in K \mid xI \subseteq I\}$.

In Theorem 3.1 we give necessary and sufficient condition for an integral domain to be integrally closed, by radical of a cyclic submodules in $R^{(n)}$.

Theorem 3.1. Let R be an integral domain with quotient field K and let F be the free R-module $R^{(n)}$. Then R is integrally closed if and only if $Rad_F(R(a_1, \ldots, a_n))$

 $\cap (I_n)^{(n)} = R(a_1, \ldots, a_n)$, for every $(a_1, \ldots, a_n) \in F$ and $n \geq 1$, where $I_n = \langle a_1, \ldots, a_n \rangle$ is a finitely generated ideal of R.

Proof. Let R be an integrally closed domain. If n=1, then the proof is clear. Let $n \geq 2$ and $(x_1, \ldots, x_n) \in Rad_F(R(a_1, \ldots, a_n)) \cap (I_n)^{(n)}$, for some $(x_1, \ldots, x_n), (a_1, \ldots, a_n) \in F$. We can assume that there exists $1 \leq t \leq n$, such that $a_t \neq 0$. Since $R(a_1, \ldots, a_n)$ is a cyclic submodule of F and $n \geq 2$

then by [8], Proposition 1.2, $(R(a_1,\ldots,a_n):F)=\langle 0\rangle$. Since $(x_1,\ldots,x_n)\in Rad_F(R(a_1,\ldots,a_n))$ and $(R(a_1,\ldots,a_n):F)=\langle 0\rangle$, by Theorem 2.4, $x_ia_t=a_ix_t$ for all $i;\ 1\leq i\leq n,\ i\neq t,$ and hence $a_t(x_1,\ldots,x_n)=x_t(a_1,\ldots,a_n).$ It follows that $\frac{x_t}{a_t}\in (I_n:_KI_n).$ Since R is integrally closed then $x_t=ra_t,$ for some $r\in R$ and hence $(x_1,\ldots,x_n)=r(a_1,\ldots,a_n)\in R(a_1,\ldots,a_n).$ Conversely, let $I_n=\langle a_1,\ldots,a_n\rangle$ $(n\geq 1)$ be a finitely generated ideal of R and $\frac{f}{s}\in (I_n:_KI_n)$ for some $0\neq s,\ f\in R.$ Then there exist $x_i\in I_n,\ 1\leq i\leq n,$ such that $fa_i=sx_i.$ By Theorem 2.4, $(x_1,\ldots,x_n)\in Rad_{R^{(n)}}(R(a_1,\ldots,a_n))\cap (I_n)^{(n)}.$ Then $(x_1,\ldots,x_n)=r(a_1,\ldots,a_n),$ for some $r\in R.$ Since $s(x_1,\ldots,x_n)=f(a_1,\ldots,a_n),\ f=rs$ and so $\frac{f}{s}\in R.$

Theorem 3.2. Let R be an integral domain. Then R is a Prüfer domain if and only if for all $a, b \in R$, $(aR+bR)^2 = a^2R+b^2R$ and $I^{(2)} \cap Rad_F(R(a,b)) = R(a,b)$, where $I = \langle a,b \rangle$.

Proof. Let R be a Prüfer domain. Then R is integrally closed and by [5], Theorem 24.3, $(aR+bR)^2=a^2R+b^2R$ for all $a,b\in R$. Hence by Theorem 3.1, $I^{(2)}\cap Rad_{R^{(2)}}(R(a,b))=R(a,b)$ and $(aR+bR)^2=a^2R+b^2R$ for all $a,b\in R$. Conversely, let m be a maximal ideal of R. It is enough to show that R_m is a valuation ring. We assume $\frac{a}{s_1},\frac{b}{s_2}\in R_m$, for some $a,b\in R$, $s_1,s_2\in R-m$. If $a\not\in m$ or $b\not\in m$ then $bR_m\subseteq aR_m$ or $aR_m\subseteq bR_m$. Now let a,b be non-zero element of m. Since $(aR+bR)^2=a^2R+b^2R$, hence $ab=ra^2+sb^2$ for some $r,s\in R$ and so $a(b-ra)=sb^2$. Therefore by Theorem 2.4, $(sb,b-ra)\in Rad_{R^{(2)}}(R(a,b))\cap I^{(2)}$. It follows that (sb,b-ra)=t(a,b) for some $t\in R$. Then sb=ta and (1-t)b=ra and so we have $aR_m\subseteq bR_m$ or $bR_m\subseteq aR_m$.

A Noetherian valuation domain is called a discrete rank one valuation. Furthermore, a domain R is said to be almost Dedekind provided that, for each maximal ideal m of R, the localization R_m is a discrete rank one valuation [4], page 119. It is clear that every almost Dedekind domain is a Prüfer domain. In [4], Theorem 7.1, Chapter III, it is proved that a domain R which is not a field, is an almost Dedekind domain if and only if R is a Prüfer domain of Krull dimension one and $\{0\}$ is the only idempotent prime ideal of R. In Theorem 3.4, we give a necessary and sufficient condition for a one dimensional domain R with $\{0\}$ as only idempotent prime ideal to be an almost Dedekind domain.

Lemma 3.3. Let R be a one dimensional local domain with maximal ideal m such that $\bigcap_{n=1}^{\infty} m^n = 0$. Then R is a valuation ring if and only if $Rad_{R^{(2)}}(R(a,b)) = E_{R^{(2)}}(R(a,b))$ and $(aR+bR)^2 = a^2R + b^2R$, for all $a,b \in R$.

Proof. Let R be a valuation ring. It is clear that $(aR+bR)^2=a^2R+b^2R$, for all $a,b\in R$. Now let (a,b) be a non-zero element of $R^{(2)}$ and $(0,0)\neq (c,d)\in Rad_{R^{(2)}}(R(a,b))$. We assume that c=rd and a=sb, for some $r,s\in R$. Then we have (c,d)=d(r,1) and (a,b)=b(s,1). It follows by Theorem 2.4, that db(r-s)=0 and $d^k=tb$, for some $k\in \mathbb{N}$ and $t\in R$. Therefore r=s and we have (c,d)=d(r,1)=d(s,1), $d^k(r,1)=d^k(s,1)=tb(s,1)=t(a,b)$. Hence $(c,d)\in E_{R^{(2)}}(R(a,b))$. Now let a=sb and d=rc for some $r,s\in R$. Then we have (c,d)=c(1,r) and (a,b)=b(s,1). Now by Theorem 2.4, we have bc(sr-1)=0 and $c^k=tb$, for some natural number k and $t\in R$. Therefore sr=1 and we have (c,d)=c(1,r) and $c^k(1,r)=c^kr(s,1)=trb(s,1)=tr(a,b)$. Hence $(c,d)\in E_{R^{(2)}}(R(a,b))$. Conversely let a,b be non-zero elements of R. It is enough to show that $a\in Rb$ or $b\in Ra$. Since $(aR+bR)^2=a^2R+b^2R$, hence $ab=ra^2+sb^2$, for some $r,s\in R$ and so $a(b-ra)=sb^2$. By Theorem 2.4, we have $(sb,b-ra)\in Rad_{R^{(2)}}(R(a,b))$. Now we assume that $a\not\in Rb$, $b\not\in Ra$ and

we show that $sb, b - ra \in \bigcap_{n=1}^{\infty} m^n$. Hence sb = 0, b - ra = 0. Therefore b = ra,

which is a contradiction. Since $(sb,b-ra) \in Rad_{R^{(2)}}(R(a,b)) = E_{R^{(2)}}(R(a,b))$, then $sb, b-ra \in m$ and $(sb,b-ra) = r_0(x_0,y_0)$, for some $0 \neq r_0, x_0, y_0 \in R$ such that $r_0^{n_0}(x_0,y_0) = t_0(a,b)$, for some $n_0 \in N$ and $t_0 \in R$. If r_0 is unit in R, then $(x_0,y_0) = \ell(a,b)$, for some $\ell \in R$ and so $(sb,b-ra) = r_0\ell(a,b)$. It follows that $sb = r_0\ell a$ and $b(1-r_0\ell) = ra$. Since R is a local ring, $r_0\ell$ or $1-r_0\ell$ is unit and so $a \in Rb$ or $b \in Ra$, which is a contradiction. Therefore $r_0 \in m$. If x_0 or y_0 is unit, because $r_0^{n_0}ay_0 = r_0^{n_0}bx_0$ hence $ay_0 = bx_0$, then we have $b \in Ra$ or $a \in bR$. Hence $0 \neq r_0, x_0, y_0 \in m$ and so $sb, b-ra \in m^2$. By induction, let $(sb,b-ra) = r_0r_1 \dots r_{k-1}(x_{k-1},y_{k-1})$, for some $0 \neq r_i, x_i, y_i \in m$, $0 \leq i \leq k-1$ such that $r_i^{n_i}(x_i,y_i) = t_i(a,b)$, for some $n_i \in N$ and $t_i \in R$, $0 \leq i \leq k-1$. Since $x_{k-1}, y_{k-1} \in m$ and $bx_{k-1} = ay_{k-1}$, hence by Theorem 2.4, we have $(x_{k-1},y_{k-1}) \in Rad_{R^{(2)}}(R(a,b))$. So $(x_{k-1},y_{k-1}) = r_k(x_k,y_k)$, for some $0 \neq r_k, y_k, x_k \in R$ such that $r_k^{n_k}(x_k,y_k) = t_k(a,b)$, for some $n_k \in \mathbb{N}$ and $t_k \in R$. Similarly for the case k = 0, we have $0 \neq r_k, x_k, y_k \in m$ and hence $(sb,b-ra) = r_0r_1 \dots r_k(x_k,y_k) \in (m^{k+2})^{(2)}$.

Theorem 3.4. Let R be a one dimensional domain such that $\bigcap_{n=1}^{\infty} m^n = 0$, for all maximal ideals m of R. Then R is almost Dedekind if and only if $(aR + bR)^2 = a^2R + b^2R$ and $Rad_{R_m^{(2)}}(R_m(a,b)) = E_{R_m^{(2)}}(R_m(a,b))$, for all maximal ideals m of R and $a, b \in R$.

Proof. Let R be almost Dedekind domain. Then R is a Prüfer domain and hence by [5], $(aR+bR)^2=a^2R+b^2R$, for all $a,b\in R$. So by [2], Theorem 2.4, $R^{(2)}$ s.t.r.f. as an R-module. Now let $a,b\in R$. Then $(Rad_{R^{(2)}}(R(a,b)))_m=$

 $\langle E_{R^{(2)}}(R(a,b))\rangle_m = \langle E_{R_m^{(2)}}(R_m(a,b))\rangle$, for all $m \in \max(R)$. Since R_m is a valuation ring, hence by Lemma 3.3, $Rad_{R_m^{(2)}}(R_m(a,b)) = E_{R_m^{(2)}}(R_m(a,b))$. \square

Acknowledgments

The authors would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

- [1] A. Azizi, Radical formula and prime submodules, J. Algebra 307 (2007), no. 1, 454–460.
- [2] D. Buyruk and D. P. Yilmaz, Modules over Prüfer domains which satisfy the radical formula, Glasg. Math. J. 49 (2007), no. 1, 127–131.
- [3] S. Ceken and M. Alkan, On radical formula over free modules with two generators, Numerical Analysis and Applied Mathematics ICNAAM (2011) 333–336.
- [4] L. Fuchs and L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2001.
- [5] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
- [6] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1991), no. 12, 3593–3602.
- [7] K. H. Leung and S. H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J. 39 (1997), no. 3, 285–293.
- [8] F. Mirzaei and R. Nekooei, On prime submodules of a finitely generated free module over a commutative ring, *Communications In Algebra*, Accepted.
- [9] A. Parkash, Arithmetical rings satisfy the radical formula, J. Commutative Algebra (2013), no. 2, 293–296.
- [10] H. Sharif, Y. Sharifi and S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar. 71 (1996), no. 1-2, 103-108.
- [11] D. P. Yilmaz and P. F. Smith, Radical of submodules of free modules, Comm. Algebra 27 (1999), no. 5, 2253–2266.
- (F. Mirzaei) DEPARTMENT OF PURE MATHEMATICS, FACULTY OF MATHEMATICS AND COMPUTER, SHAHID BAHONAR UNIVERSITY OF KERMAN, P.O. BOX 76169133, KERMAN, IRAN. *E-mail address*: mirzaee0269@yahoo.com
- (R. Nekooei) Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran.

 $E ext{-}mail\ address: rnekooei@uk.ac.ir}$