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Abstract. We introduce the notions of T-dual Rickart and strongly T-
dual Rickart modules. We provide several characterizations and inves-
tigate properties of each of these concepts. It is shown that every free

(respectively, finitely generated free) R-module is T-dual Rickart if and

only if Z
2
(R) is a direct summand of R and End(Z

2
(R)) is a semisim-

ple (resp. regular) ring. It is shown that, while a direct summand of a
(strongly) T-dual Rickart module inherits the property, direct sums of
T-dual Rickart modules do not. Moreover, when a direct sum of T-dual
Rickart modules is T-dual Rickart, is included. Examples illustrating the

results are presented.
Keywords: Dual Rickart modules; t-lifting modules; t-dual Baer mod-
ules; T-dual Rickart modules; strongly T-dual Rickart modules.
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1. Introduction

The notion of Baer rings was introduced by Kaplansky in 1955 [11]. A ring
R is called right Baer (resp. left Baer ) if the right (resp. left) annihilator of
any nonempty subset of R is generated by an idempotent. Baer property is
left-right symmetric for every ring. This notion was extended to Rickart rings
by Hattori [10]. A ring R is said to be right Rickart (also known as p.p ring) if
the right annihilator of any single element of R is generated by an idempotent,
as a right ideal of R. Rickart rings play an important role in the structure
theory of rings. The study of Rickart and Baer rings has its roots in functional
analysis with close links to C∗-algebras and Von Neumann algebras.

Recently, the notions of Baer and Rickart rings were extended and studied
in general module-theoretic setting by Rizvi, Roman and Lee ( [13] and [17]).
The notion of t-Baer modules was introduced by Asgari and Haghany [2]. They
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used second singular submodule in their definition. The notion of T-Rickart
modules was introduced in [7], as a generalization of t-Baer modules.

In [21], Keskin-Tütüncü and Tribak introduced the concept of dual Baer
modules. A module M is called a dual Baer module if for every right ideal I of
S = End(M),

∑
f∈I Im(f) is a direct summand of M , equivalently, DS(N) =

{f ∈ S : f(M) ⊆ N} is a direct summand of S, for every submodule N of
M . The notion of dual Rickart modules was introduced by Lee, Rizvi and
Roman [14].

In [1], the authors introduced the notions of t-lifting modules and t-dual Baer
modules, which are generalizations of lifting modules. Motivated from these
notions and T-Rickart modules we present the new class of modules named
T-dual Rickart modules and investigate new results.

In Section 3, we give an equivalent condition for a module to be T-dual
Rickart and show that a direct summand of a T-dual Rickart module is T-dual
Rickart. It is shown that every free (resp. finitely generated free) R-module is

T-dual Rickart if and only if Z
2
(R) is a direct summand of R and EndR(Z

2
(R))

is a semisimple (resp. regular) ring. We introduce the notion of relative T-dual
Rickart modules to show that over a right perfect ring, every R-module is t-
lifting if and only if every R-module is T-dual Rickart. Also, it is shown that
every T-dual Rickart module M has summand sum property (SSP) for direct

summands which are contained in Z
2
(M).

In Section 4, we show that a direct sum of T-dual Rickart modules is not
a T-dual Rickart module, in general. Moreover, we investigate the question:
When are the direct sums of T-dual Rickart modules, also T-dual Rickart?

In Section 5, the notion of strongly T-dual Rickart module is defined and
several characterizations of such modules are given. We show that each direct
summand of a strongly T-dual Rickart module is strongly T-dual Rickart, and
direct sum of arbitrary strongly T-dual Rickart modules is strongly T-dual
Rickart under necessary and sufficient conditions.

2. Preliminaries

Throughout all rings (not necessarily commutative rings) have identity and
all modules are unital right modules. For the sake of completeness, we state
some definitions and notations used throughout this paper. LetM be a module
over a ring R. For submodules N and K of M , N ≤ K denotes N is a sub-
module of K and End(M) denotes the ring of right R-module endomorphisms
of M . In what follows, by ≤⊕ and E(M) we denote, respectively, a module
direct summand and the injective hull of M . The symbols Z, Zn and Q stand
for the ring of integers, the ring of residues modulo n and the ring of rational
numbers, respectively.

In [19], Talebi and Vanaja defined Z(M) as follows:

Z(M) = ∩{Ker(φ) : φ ∈ Hom(M,N), where N is small in its injective hull}.
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Also, Z
2
(M) is defined as Z(Z(M)).

Definition 2.1. (1) Let M be a module. Let N and L be submodules of M .
N is called a supplement of L if it is minimal with the property M = N + L,
or equivalently, M = N + L and N ∩ L ≪ N . A module M is called amply
supplemented if, for any submodules A, B of M with M = A+ B there exists
a supplement P of A such that P ⊆ B (see [6]).

(2) A submodule N of M is called t-small in M , denoted by N ≪t M , if for

every submodule K of M , Z
2
(M) ⊆ N +K implies that Z

2
(M) ≤ K (see [1]).

(3) A submodule N of M is called t-coclosed in M if N/K ≪t M/K implies
that N = K (see [1]).

(4) A module M is called t-lifting if every submodule N of M contains a
direct summand K of M such that N/K ≪t M/K (see [1]).

(5) A module M is called a cosingular (resp. noncosingular) module, if
Z(M) = 0 (resp. Z(M) =M) (see [19]).

(6) A module M is called dual Baer if for every N ≤ M , there exists an
idempotent e in S = End(M) such that D(N) = {f ∈ End(M) : f(M) ⊆
N} = eS (see [21]).

(7) A module M is called dual Rickart if for each φ ∈ End(M), φ(M) is a
direct summand of M (see [14]).

(8) A module M is said to be t-dual Baer if I(Z
2
(M)) is a direct summand

of M for every right ideal I of End(M) (see [1]).
(9) An idempotent e ∈ R is called left semicentral if re = ere, for each r ∈ R,

or equivalently, eR is an ideal of R. The set of all left semicentral idempotents
of R will be denoted by Sl(R). If e2 = e ∈ End(M), then e ∈ Sl(End(M)) if
and only if eM is a fully invariant direct summand (see [4], [5]).

(10) An R-moduleM is said to have the strong summand sum property (resp.
summand sum property), denoted briefly by SSSP (resp. SSP), if the sum of
any family of (resp. two) direct summands of M is a direct summand of M
(see [21]).

The following proposition is used in the sequel.

Proposition 2.2. (1) [19, Proposition 2.1] Let M and N be two R-modules
and {Mi}i∈I a class of R-modules. Then we have the following:

(i) If N ≤M , then Z(N) ⊆ Z(M) and Z(M/N) ⊇ (Z(M) +N)/N .
(ii) If f :M → N is a homomorphism, then f(Z(M)) ⊆ Z(N).
(iii) Z(M/Z(M)) = 0.
(iv) Z(⊕i∈IMi) = ⊕i∈IZ(Mi).
(2) [22, Corollary 3.2] Let M be a module. Then End(M) is a regular ring if

and only if Im(φ) and Ker(φ) are direct summands ofM for each φ ∈ End(M).
(3) [22, Theorem 3.5] Let R be a ring. Then R is semisimple Artinian if

and only if R possesses an infinitely generated free module F such that End(F )
is a regular ring.
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3. T-dual Rickart modules

Motivated by the definitions of dual Rickart modules, t-dual Baer modules
and T-Rickart modules, we define the T-dual Rickart notion.

Definition 3.1. An R-moduleM is called T-dual Rickart, if φ(Z
2
(M)) ≤⊕ M ,

for any φ ∈ End(M).

Clearly, every cosingular module is T-dual Rickart. One can easily show
that the notions of dual Rickart module and T-dual Rickart module coincide
for every noncosingular module.

In the following, we give an equivalent condition for T-dual Rickart modules.

Theorem 3.2. The following are equivalent for an R-module M with S =
End(M).

(1) M is a T-dual Rickart module;

(2) Z
2
(M) is a direct summand of M and Z

2
(M) is a dual Rickart module.

Proof. (1) ⇒ (2) Since M is T-dual Rickart, idM (Z
2
(M)) = Z

2
(M) ≤⊕

M , where idM is the identity element of S. We show that Z
2
(M) is dual

Rickart. Let Z
2
(M) = eM for some e2 = e ∈ S and φ ∈ End(Z

2
(M)). As

End(Z
2
(M)) = eSe, φ = eψe for some ψ ∈ S. Since M is T-dual Rickart,

ψ(Z
2
(M)) ≤⊕ M . An inspection shows that φ(Z

2
(M)) = eψe(Z

2
(M)) =

ψ(Z
2
(M)) ≤⊕ M , because ψ(Z

2
(M)) ⊆ Z

2
(M). By modularity, φ(Z

2
(M)) ≤⊕

Z
2
(M). Hence Z

2
(M) is dual Rickart.

(2) ⇒ (1) Suppose that Z
2
(M) is a direct summand of M and Z

2
(M) is a

dual Rickart module. Then there exists e2 = e ∈ S such that Z
2
(M) = eM .

Let φ ∈ S. As eφe ∈ End(Z
2
(M)) and Z

2
(M) is dual Rickart, eφe(Z

2
(M)) ≤⊕

Z
2
(M). We show that φ(Z

2
(M)) = eφe(Z

2
(M)). Since Z

2
(M) = eM ,

e(Z
2
(M)) = Z

2
(M). So φe(Z

2
(M)) = φ(Z

2
(M)). As φ(Z

2
(M)) ⊆ Z

2
(M),

eφe(Z
2
(M)) = eφ(Z

2
(M)) = φ(Z

2
(M)). Hence φ(Z

2
(M)) = eφe(Z

2
(M)) ≤⊕

Z
2
(M). Since Z

2
(M) ≤⊕ M , φ(Z

2
(M)) ≤⊕ M . Therefore M is T-dual

Rickart. □

In the following, we present a characterization of amply supplemented T-
dual Rickart modules.

Proposition 3.3. LetM be an amply supplemented module. ThenM is T-dual

Rickart if and only if there exists N ≤⊕ M such that φ(Z
2
(M))/N ≪t M/N ,

for each φ ∈ End(M).

Proof. Suppose that M is a T-dual Rickart module. Then it is clear that for

each φ ∈ End(M), there exists N ≤⊕ M such that φ(Z
2
(M))/N ≪t M/N .



631 Ebrahimi Atani, Khoramdel and Dolati Pish Hesari

Conversely, let φ ∈ End(M). By [1, Corollary 2.6], φ(Z
2
(M)) is a t-

closed submodule of M . Since φ(Z
2
(M))/N ≪t M/N for some N ≤⊕ M ,

φ(Z
2
(M)) = N ≤⊕ M . Hence M is T-dual Rickart. □

The notions of dual Rickart modules and T-dual Rickart modules are the
same over a right V-ring.

Proposition 3.4. Let R be a right V-ring and M an R-module. Then M is
T-dual Rickart if and only if it is a dual Rickart module.

Proof. Since every module over a right V-ring R is noncosingular by [19, Propo-
sition 2.5], M is T-dual Rickart if and only if it is dual Rickart.

□
Example 3.5. (1) The Z-module Z is a cosingular module; hence it is T-dual
Rickart. However it is not a dual Rickart module.

(2) Consider Zp∞ and Zp as Z-module (p is a prime integer). Let M =
Zp∞ ⊕ Zp. Then M is not a dual Rickart Z-module by [14, Example 2.10].

As Z
2
(M) = Zp∞ is a dual Rickart module, M is a T-dual Rickart module by

Theorem 3.2.

Following result shows that direct summands of a T-dual Rickart module
inherit the property.

Theorem 3.6. Let M be a T-dual Rickart module and N ≤⊕ M . Then N is
a T-dual Rickart module.

Proof. Assume that N ≤⊕ M say M = N ⊕ N ′. Hence Z
2
(M) = Z

2
(N) ⊕

Z
2
(N ′). Let φ ∈ End(N) and e : M → N be natural projection. Then

φe ∈ End(M). As M is a T-dual Rickart module, φe(Z
2
(M)) ≤⊕ M . As

φ(Z
2
(N)) = φe(Z

2
(M)), φ(Z

2
(N)) ≤⊕ N . Therefore N is T-dual Rickart. □

The following reformulated proposition characterizes t-dual Baer modules in
terms of the SSSP and the T-dual Rickart property for modules.

Proposition 3.7. Let M be a module. Then M is t-dual Baer if and only if M
is T-dual Rickart and M has SSSP for direct summands which are contained

in Z
2
(M).

Proof. See [1, Theorem 3.2]. □
It is clear that every t-dual Baer is T-dual Rickart. Following examples show

that the converse is not true.

Example 3.8. The ring R =
∏∞

n=1 Z2 is a regular ring. Hence R is a dual
Rickart R-module. As R is commutative, R is a V-ring. Hence, by Proposition
3.4, R is a T-dual Rickart R-module. Also it is not t-dual Baer (dual Baer)
by [14, Example 2.8].
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Example 3.9. Let R be a free algebra generated over a field by {xi : i ∈ I}
with |I| ≥ 2. Then by [12, Example 2.23(i), (j)], R is a right hereditary ring
which is not right Noetherian. As R is not right Noetherian, by [3, Theorem
1.3], there exists a family {Sn : n ∈ N} of simple right R-modules such that
⊕∞

n=1E(Sn) is not injective. Let M = E(⊕∞
n=1E(Sn)). By [20, Example 2.4],

M is not dual Baer. As M is noncosingular, M is not t-dual Baer. However,
M is T-dual Rickart (see Theorem 3.17).

The following result shows that the notions of t-dual Baer and T-dual Rickart
coincide for modules whose endomorphism rings have no infinite set of nonzero
orthogonal idempotents.

Proposition 3.10. Let M be a module and End(M) has no infinite set of
nonzero orthogonal idempotents. Then the following are equivalent:

(1) M is t-dual Baer;
(2) M is T-dual Rickart.

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (1) LetM be a T-dual Rickart module. ThenM = Z
2
(M)⊕N where

Z
2
(M) is dual Rickart by Theorem 3.2. As Z

2
(M) is fully invariant in M by

Proposition 2.2(1), Hom(Z
2
(M), N) = 0, hence

End(M) =

(
End(Z

2
(M)) Hom(N,Z

2
(M))

0 End(N)

)
,

because Z
2
(M) =

(
1 0
0 0

)
M and

(
1 0
0 0

)
∈ Sl(End(M)).

Since End(M) has no infinite set of nonzero orthogonal idempotents, End(Z
2
(M))

has no infinite set of nonzero orthogonal idempotents. Hence by [14, Theorem

4.2], Z
2
(M) is dual Baer. Therefore [1, Theorem 3.2] implies that M is t-dual

Baer. □
Definition 3.11. An R-module M is called T-dual Rickart relative to N (or

N -T-dual Rickart) if φ(Z
2
(M)) ≤⊕ N for each homomorphism φ :M → N .

In view of the above definition, a right R-moduleM is T-dual Rickart if and
only if M is T-dual Rickart relative to M . Clearly, if M or N are cosingular,
then M is T-dual Rickart relative to N .

Theorem 3.12. Let M and N be two R-modules. Then M is T-dual Rickart
relative to N if and only if for every direct summand L ofM and any submodule
K of N , L is T-dual Rickart relative to N .

Proof. Let L = eM for some e2 = e ∈ End(M) and K ≤ N . Let M be
T-dual Rickart relative to N , we show that L is T-dual Rickart relative to
K. Let φ : L → K be a homomorphism. Then φe ∈ Hom(M,N). Thus
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φe(Z
2
(M)) ≤⊕ N . Since φe(Z

2
(M)) ⊆ K, φe(Z

2
(M)) ≤⊕ K. We show that

Z
2
(L) = eZ

2
(M). Let M = L ⊕ L′. Then Z

2
(M) = Z

2
(L) ⊕ Z

2
(L′). Hence

eZ
2
(M) = eZ

2
(L) = Z

2
(L). Therefore φe(Z

2
(M)) = φ(Z

2
(L)) ≤⊕ K. Thus

L is T-dual Rickart relative to K. The converse is clear. □

Corollary 3.13. Let M be an R-module. Then the following are equivalent.
(1) M is T-dual Rickart;
(2) For any N ≤M , each L ≤⊕ M is T-dual Rickart relative to N ;
(3) If L and N are direct summands of M , then for any φ ∈ Hom(L,N),

φ|L(Z
2
(L)) ≤⊕ N .

Proof. It is clear from Theorem 3.12. □

In the following proposition, we prove that a T-dual Rickart module M has

SSP for direct summands that are contained in Z
2
(M).

Proposition 3.14. Let M be a T-dual Rickart module. Then the following
statements hold true.

(1) If L and N are direct summands of M with L ⊆ Z
2
(M), then L+N is

a direct summand of M .

(2) M has SSP for direct summands that are contained in Z
2
(M).

Proof. (1) Let L ⊆ Z
2
(M) be a direct summand of M say M = L ⊕ L′ and

N = eM for some e2 = e ∈ End(M). We show that Z
2
(L) = L. As M =

L ⊕ L′, Z
2
(M) = Z

2
(L) ⊕ Z

2
(L′). Since Z

2
(L) ⊆ L ⊆ Z

2
(M), L = Z

2
(L) ⊕

L ∩ Z
2
(L′) = Z

2
(L). Consider the projection 1 − e : M → (1 − e)M . By

Corollary 3.13, (1−e)|L(Z
2
(L)) = (1−e)|L(L) is a direct summand ofM . Since

(1−e)|L(L) = (L+N)∩(1−e)M ,M = ((L+N)∩(1−e)M)⊕T for some T ≤M .
Hence by modular law, (1− e)M = ((L+N)∩ (1− e)M)⊕ (T ∩ (1− e)M). So
M = N⊕(1−e)M = N+((L+N)∩(1−e)M)⊕(T ∩(1−e)M) = (L+N)+(T ∩
(1−e)M). Since (L+N)∩ (T ∩ (1−e)M) = 0, M = (N +L)⊕ (T ∩ (1−e)M).
Hence N + L ≤⊕ M .

(2) Apply (1). □

The converse of Proposition 3.14 is not true, in general, as shown below.

Example 3.15. Let R be a nonregular right V-domain (it is known that,
there is a field F with derivation δ such that the differential polynomial ring
F [x, δ] is a nonregular right V-domain [15, C29]). As R is not regular, R is
not a dual Rickart R-module. Since R is a right V-domain, R is noncosingular,
by [19, Proposition 2.5]. Hence R is not T-dual Rickart. However, R has SSP

for direct summands that are contained in Z
2
(R) = R , because R is a domain.
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The following theorem gives a condition equivalent to being T-dual Rickart

for an R-moduleM in terms of
∑

φ∈I φ(Z
2
(M)), where I is a finitely generated

right ideal of End(M).

Theorem 3.16. An R-module M is T -dual Rickart if and only if
∑

φ∈I

φ(Z
2
(M)) is a direct summand of M for every finitely generated right ideal

I of End(M).

Proof. Let I be a finitely generated right ideal of End(M) generated by φ1, ..., φn.

Since M is T-dual Rickart, φi(Z
2
(M)) ≤⊕ M for each 1 ≤ i ≤ n. By Proposi-

tion 3.14,M has SSP for direct summands which are contained in Z
2
(M). Since

φi(Z
2
(M)) ⊆ Z

2
(M),

∑
φ∈I φ(Z

2
(M)) = φ1(Z

2
(M))+...+φn(Z

2
(M)) ≤⊕ M .

The converse is clear. □

As a consequence of [14, Theorem 2.29] and [19, Proposition 2.7], we char-
acterize rings R for which every injective R-module is noncosingular T-dual
Rickart.

Proposition 3.17. Let R be a ring. Then the following are equivalent:
(1) R is right hereditary;
(2) Every injective R-module is noncosingular and T-dual Rickart.

Proof. Clear from [14, Theorem 2.9] and [19, Proposition 2.7]. □

Next, we characterize the class of rings R for which every finitely generated
free R-module is T-dual Rickart.

Theorem 3.18. The following conditions are equivalent for a ring R:
(1) Every finitely generated free R-module is T-dual Rickart;
(2) Every finitely generated projective R-module is T-dual Rickart;
(3) R is a T-dual Rickart R-module;

(4) Z
2
(R) ≤⊕ R and S = EndR(Z

2
(R)) is a regular ring.

Proof. (1) ⇒ (2) Let M be a finitely generated projective R-module. Thus
M ≤⊕ F for some finitely generated free R-module F . By (1), F is T-dual
Rickart. Hence M is T-dual Rickart, by Theorem 3.6.

(2) ⇒ (3) Is clear.

(3) ⇒ (4) By Theorem 3.2, Z
2
(R) ≤⊕ R and Z

2
(R) is a dual Rickart module.

Thus for each φ ∈ End(Z
2
(R)), Im(φ) ≤⊕ Z

2
(R). We show that Ker(φ) ≤⊕

Z
2
(R). As Z

2
(R)/Ker(φ) ∼= Im(φ) ≤⊕ Z

2
(R) and Z

2
(R) is a projective mod-

ule, the exact sequence 0 → Ker(φ) → Z
2
(R) → Z

2
(R)/Ker(φ) → 0 splits.

Hence Ker(φ) ≤⊕ Z
2
(R). Thus by Proposition 2.2(2), End(Z

2
(R)) is a regular

ring.
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(4) ⇒ (1) Let F = R(n) be a free R-module where n ∈ N. Then Z
2
(F ) =

Z
2
(R)(n) ≤⊕ F . We show that Z

2
(F ) is dual Rickart. Let S = End(Z

2
(F )).

As End(Z
2
(R)) is regular, S =Matn(End(Z

2
(R))) (the n×n matrix ring over

End(Z
2
(R)) is regular. Hence by Proposition 2.2(2), Z

2
(F ) is a dual Rickart

module. Therefore by Theorem 3.2, F is T-dual Rickart. □

Next, we characterize several important classes of rings in term of every free
module is T-dual Rickart.

Theorem 3.19. The following conditions are equivalent for a ring R:
(1) Every free R-module is T-dual Rickart;
(2) Every projective R-module is T-dual Rickart;

(3) Z
2
(R) ≤⊕ R and S = EndR(Z

2
(R)) is a semisimple ring.

Proof. (1) ⇒ (2) Is clear from Theorem 3.6.

(2) ⇒ (3) As R is T-dual Rickart, Z
2
(R) ≤⊕ R say R = Z

2
(R) ⊕ R′. Let

F = R(Λ) be an infinitely generated free R-module. By (2), F is T-dual Rickart

and so Z
2
(F ) = Z

2
(R)(Λ) is dual Rickart by Theorem 3.2. Similar to the proof

of Theorem 3.18, End(Z
2
(F )) is regular. As EndR(Z

2
(F )) = EndS(S

(Λ)) is
regular, S is a semisimple ring by Proposition 2.2(3).

(3) ⇒ (1) Let F = R(Λ) be a free R-module. As Z
2
(R) ≤⊕ R, Z

2
(F ) =

Z
2
(R)(Λ) ≤⊕ F . By (3), End(Z

2
(R)) is a semisimple ring. Hence EndR(Z

2
(F )) =

EndR(Z
2
(R)(Λ)) = EndS(S

(Λ)) is a regular ring, because S(Λ) is a semisimple
S-module (it is known that endomorphism ring of every semisimple module is

a regular ring [23, 20.6]). Therefore by Proposition 2.2(2), Z
2
(F ) is a dual

Rickart. Hence by Theorem 3.2, F is T-dual Rickart. □

In the following theorem we extend the [1, Theorem 3.12].

Theorem 3.20. Let R be a right perfect ring. Then the following are equiva-
lent:

(1) Every R-module is t-lifting;
(2) Every R-module is t-dual Baer;
(3) Every R-module is T-dual Rickart.

Proof. (1) ⇔ (2) It is clear from [1, Theorem 3.12].
(2) ⇒ (3) is clear.
(3) ⇒ (1) Since over a right perfect ring every R-module is amply supple-

mented by [23, 43.9], for an R-moduleM , it suffices to show that every t-closed
submodule is a direct summand of M by [1, Theorem 2.9]. Let N be a t-closed

submodule of M . Hence N is noncosingular and Z
2
(N) = N by [1, Propo-

sition 2.5]. Consider R-module M ⊕ N . By (3), M ⊕ N is T-dual Rickart.
By Theorem 3.12, N is T-dual Rickart relative to M . Let i : N → M be the
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inclusion homomorphism from N to M . As N is T-dual Rickart relative to

M , i(Z
2
(N)) = i(N) = N ≤⊕ M . Hence every t-closed submodule is a direct

summand of M and M is a t-lifting module. □

4. Direct sum of T-dual Rickart modules

This section is devoted to investigate when direct sums of T-dual Rickart
modules are T-dual Rickart. In the following examples, it is shown that a direct
sum of T-dual Rickart modules is not T-dual Rickart, in general.

Example 4.1. Let F be a field and V be an infinite dimensional vector space
over F . Set J = {x ∈ EndF (V ) : dimF (xV ) < ∞} and R = F + J . By [9,
Example 6.19], R is regular. Also J = Soc(RR) and J is essential in RR

(see [9, Page 180]). As R is regular and J is semisimple, R and J are dual
Rickart R-modules. By [9, Example 6.19], R is a right V-ring. Hence by
Proposition 3.4, R and J are T-dual Rickart. We claim that R ⊕ J is not T-
dual Rickart. Otherwise, if R⊕ J is T-dual Rickart, then by Corollary 3.13, J
is T-dual Rickart relative to R. Let i : J → R be the inclusion homomorphism

from J to R. Then i(Z
2
(J)) = i(J) = J ≤⊕ R, a contradiction. Thus R⊕ J is

not T-dual Rickart.

Example 4.2. Let R =
∏∞

i=1 Fi with Fi = F is a field for all i ≥ 1. Let
M1 = R andM2 = ⊕∞

i=1Fi. By [14, Example 5.1], M1 andM2 are dual Rickart
and M1 ⊕M2 is not dual Rickart. As R is a V-ring, by [19, Proposition 2.5],
every R-module is noncosingular. Hence by Proposition 3.4, M1 and M2 are
T-dual Rickart, but M1 ⊕M2 is not T-dual Rickart.

When a direct sum of two or more T-dual Rickart modules is also T-dual
Rickart is considered in the following.

Proposition 4.3. Let {Mi}ni=1 and N be modules. If N has SSP for direct

summands which are contained in Z
2
(N), then ⊕n

i=1Mi is T-dual Rickart rel-
ative to N if and only if Mi is T-dual Rickart relative to N for all 1 ≤ i ≤ n.

Proof. The sufficiency is clear from Theorem 3.12. For the necessity, let φ :
⊕n

i=1Mi → N . Then φ = (φi)
n
i=1 where φi is a homomorphism from Mi to

N for each 1 ≤ i ≤ n. By assumption φi(Z
2
(Mi)) ≤⊕ N for each 1 ≤ i ≤ n.

Since Z
2
(⊕n

i=1Mi) = ⊕n
i=1Z

2
(Mi) and N has SSP for direct summands which

are contained in Z
2
(N), φ(Z

2
(⊕n

i=1Mi)) =
∑n

i=1 φi(Z
2
(Mi)) ≤⊕ N (because

φi(Z
2
(Mi)) ⊆ Z

2
(N)). Thus ⊕n

i=1Mi is T-dual Rickart relative to N . □

Corollary 4.4. Let {Mi}ni=1 be modules. Then ⊕n
i=1Mi is T-dual Rickart

relative to Mj (1 ≤ j ≤ n) if and only if Mi is T-dual Rickart relative to Mj

for each 1 ≤ i ≤ n.
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In the following theorem, we present conditions under which Mi is T-dual
Rickart relative to ⊕n

j=1Mj .

Theorem 4.5. Let {Mi}ni=1 and N be modules and for each i ≥ j with 1 ≤
i, j ≤ n, Mi is Mj-projective. Then N is T-dual Rickart relative to ⊕n

j=1Mj if
and only if N is T-dual Rickart relative to Mj for all 1 ≤ j ≤ n.

Proof. ⇒ Is clear from Theorem 3.12.
⇐ Assume that N is T-dual Rickart relative to Mj for each 1 ≤ j ≤ n. We

use induction on n. Let n = 2 and N be T-dual Rickart relative toM1 andM2.
Let φ be a homomorphism from N to M1 ⊕M2. Then φ = π1φ+ π2φ, where
πi is the natural projection from M1 ⊕M2 to Mi (i = 1, 2). As N is T-dual

Rickart relative to M2, π2φ(Z
2
(N)) ≤⊕ M2. Let M2 = π2φ(Z

2
(N)) ⊕ M ′

2

for some M ′
2 ≤ M2. Hence M1 ⊕ M2 = M1 ⊕ π2φ(Z

2
(N)) ⊕ M ′

2. Since

M2 is M1-projective, π2φ(Z
2
(N)) is M1-projective. As M1 + φ(Z

2
(N)) =

M1 ⊕ π2φ(Z
2
(N)) ≤⊕ M1 ⊕M2, there exists T ⊆ φ(Z

2
(N)) such that M1 +

φ(Z
2
(N)) = M1 ⊕ T , by [16, Lemma 4.47]. Thus φ(Z

2
(N)) = φ(Z

2
(N)) ∩

M1 ⊕T . Since N is T-dual Rickart relative to M1, π1φ(Z
2
(N)) =M1 ∩ (M2 +

φ(Z
2
(N))) =M1 ∩φ(Z

2
(N)) ≤⊕ M1. Therefore φ(Z

2
(N)) ≤⊕ M1 ⊕ T . Since

M1 ⊕ T = M1 ⊕ φ(Z
2
(N)) ≤⊕ M1 ⊕ M2, φ(Z

2
(N)) ≤⊕ M1 ⊕ M2. Thus

N is T-dual Rickart relative to M1 ⊕ M2. Now, assume that N is T-dual
Rickart relative to ⊕n

j=1Mj . We show that N is T-dual Rickart relative to
Mn+1 ⊕ (⊕n

j=1Mj). Since Mn+1 is Mj-projective for each 1 ≤ j ≤ n, Mn+1

is ⊕n
j=1Mj-projective. As N is T-dual Rickart relative to Mn+1, N is T-dual

Rickart relative to ⊕n+1
j=1Mj by a similar argument for the case n = 2. □

We remark that we use ideas of the proof of [14, Theorem 5.5] to prove
Theorem 4.5 and extend it to T-dual Rickart modules.

Corollary 4.6. Let {Mi}ni=1 be modules and Mi is Mj-projective for all i ≥ j
with 1 ≤ i, j ≤ n. Then ⊕n

i=1Mi is T-dual Rickart if and only if Mi is T-dual
Rickart relative to Mj for all 1 ≤ i, j ≤ n.

Proof. ⇒ is clear from Theorem 3.12.
⇐ Assume that Mi is T-dual Rickart relative to Mj for all 1 ≤ j ≤ n. Now

⊕n
i=1Mi is T-dual Rickart relative to Mj for all 1 ≤ j ≤ n by Corollary 4.4.

Hence by Theorem 4.5, ⊕n
i=1Mi is T-dual Rickart. □

5. Strongly T-dual Rickart modules

In this section, we introduce the notions of strongly T-dual Rickart modules
and strongly dual Rickart modules. A number of characterizations of such
modules and basic results are provided.
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Definition 5.1. (a) An R-module M is called strongly dual Rickart if Im(φ)
is a fully invariant direct summand of M for each φ ∈ End(M).

(b) An R-module M is called strongly T-dual Rickart if φ(Z
2
(M)) is a fully

invariant direct summand of M for each φ ∈ End(M).

It is clear that every cosingular module is strongly T-dual Rickart. Also a
noncosingular module is strongly T-dual Rickart if and only if M is strongly
dual Rickart.

Theorem 5.2. Let M be an R-module. Then the following are equivalent:
(1) M is strongly dual Rickart;
(2) M is dual Rickart and each direct summand of M is fully invariant;
(3) M is dual Rickart and End(M) is an abelian ring.

Proof. (1) ⇒ (2) LetM be a strongly dual Rickart module. Then it is clear that
M is dual Rickart. Let N ≤⊕ M . Then N = eM for some e2 = e ∈ End(M).
Since eM = Im(e), N is fully invariant. Hence every direct summand of M is
fully invariant.

(2) ⇒ (3) Since every direct summand of M is fully invariant, every idem-
potent of End(M) is left semicentral. Let e2 = e ∈ End(M). Then e and 1− e
are left semicentral. Hence e is central. Thus every idempotent of End(M) is
central.

(3) ⇒ (1) Is clear. □

We give some characterizations of strongly T-dual Rickart modules.

Theorem 5.3. The following statements are equivalent for an R-module M :
(1) M is strongly T-dual Rickart;
(2) M is T-dual Rickart and each direct summand of M which is contained

in Z
2
(M) is fully invariant;

(3) M = Z
2
(M)⊕M ′, where Z

2
(M) is strongly dual Rickart;

(4) M = Z
2
(M) ⊕ M ′ and for each φ ∈ End(M), φ(Z

2
(M)) is a fully

invariant direct summand of Z
2
(M);

(5) M = Z
2
(M)⊕M ′, where Z

2
(M) is dual Rickart and every direct sum-

mand of Z
2
(M) is fully invariant in Z

2
(M);

(6) M = Z
2
(M) ⊕M ′, where Z

2
(M) is dual Rickart and End(Z

2
(M)) is

abelian.

Proof. (1) ⇒ (2) Let M be a strongly T-dual Rickart module. It is clear that
M is T-dual Rickart. Let K be a direct summand of M which is contained
in Z

2
(M). Hence K = eM for some e2 = e ∈ End(M). We show that K =

eZ
2
(M). SinceM = eM⊕(1−e)M , we have Z

2
(M) = Z

2
(eM)⊕Z2

((1−e)M)

and eZ
2
(M) = eZ

2
(eM) = Z

2
(eM) = Z

2
(K) ⊆ K. As K ⊆ Z

2
(M), K ⊆
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eZ
2
(M). Therefore K = eZ

2
(M). By (1), eZ

2
(M) is a fully invariant direct

summand of M , hence K is fully invariant in M .

(2) ⇒ (3) By Theorem 3.2, M = Z
2
(M) ⊕M ′ and Z

2
(M) is dual Rickart.

Let N ≤⊕ Z
2
(M). Then N ≤⊕ M , because Z

2
(M) ≤⊕ M . By (2), N is fully

invariant inM . We show that N is fully invariant in Z
2
(M). Let Z

2
(M) = eM

for some e2 = e ∈ End(M). Hence End(Z
2
(M)) = eEnd(M)e. Let f ∈

End(Z
2
(M)). Then f = ege for some g ∈ End(M). Thus f(N) = ege(N) ⊆ N ,

because N is fully invariant in M . Therefore every direct summand of Z
2
(M)

is fully invariant. This implies that Z
2
(M) is strongly dual Rickart by Theorem

5.2.
(3) ⇒ (4) Let φ ∈ End(M). We can take φ ∈ End(Z

2
(M)), because Z

2
(M)

is fully invariant in M . By (3), Z
2
(M) is strongly dual Rickart, so φ(Z

2
(M))

is a fully invariant direct summand of Z
2
(M).

(4) ⇒ (5) Let φ ∈ End(Z
2
(M)) and Z

2
(M) = eM for some e2 = e ∈

End(M). Then φe ∈ End(M). By (4), φe(Z
2
(M)) = φ(Z

2
(M)) is a fully

invariant direct summand of Z
2
(M). Thus Z

2
(M) is strongly dual Rickart.

Theorem 5.2 gives that every direct summand of Z
2
(M) is fully invariant.

(5) ⇒ (6) It is clear from proof of Theorem 5.2.

(6) ⇒ (1) Let φ ∈ End(M) and Z
2
(M) = eM for some e2 = e ∈ End(M).

Then eφe ∈ End(Z
2
(M)). Thus eφe(Z

2
(M)) is a fully invariant direct sum-

mand of Z
2
(M). Since Z

2
(M) ≤⊕ M , eφe(Z

2
(M)) ≤⊕ M . As φ(Z

2
(M)) ⊆

Z
2
(M), eφe(Z

2
(M)) = φ(Z

2
(M)). Since Z

2
(M) is fully invariant in M and

φ(Z
2
(M)) is fully invariant in Z

2
(M), φ(Z

2
(M)) is fully invariant inM . Hence

M is strongly T-dual Rickart.
□

It is clear that strongly T-dual Rickart modules are T-dual Rickart, but the
converse is not true as the following example shows.

Example 5.4. Consider M = Zp∞ ⊕ Zp∞ as Z-module. It is clear that M is
T-dual Rickart, by Proposition 3.17, howeverM is not strongly T-dual Rickart,

by Theorem 5.3, because End(Z
2
(M)) = End(M) is not abelian.

Next, we see that a direct summand of a strongly T-dual Rickart module
inherits the property.

Proposition 5.5. (1) Every direct summand of a strongly dual Rickart module
M is strongly dual Rickart.

(2) Every direct summand of a strongly T-dual Rickart module M is strongly
T-dual Rickart.
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Proof. (1) Let N = eM for some e2 = e ∈ End(M) and φ ∈ End(N). Then
φe ∈ End(M). Therefore φe(M) = φ(N) is a fully invariant direct summand of
M . By modularity φ(N) ≤⊕ N . As φ(N) is fully invariant inM and N ≤⊕ M ,
φ(N) is fully invariant in N . Therefore N is strongly dual Rickart.

(2) Let M be a strongly T-dual Rickart module and N ≤⊕ M say M =

N ⊕ N ′. By Theorem 5.3, Z
2
(M) is strongly dual Rickart. Since Z

2
(M) =

Z
2
(N) ⊕ Z

2
(N ′), Z

2
(N) is strongly dual Rickart by (1). As Z

2
(M) ≤⊕ M ,

Z
2
(N) ≤⊕ N . Hence N is strongly T-dual Rickart by Theorem 5.3. □

Proposition 5.6. Let M = ⊕i∈IMi. Then M is strongly dual Rickart if and
only if

(i) Mi is strongly dual Rickart for each i ∈ I.
(ii) For each distinct i, j ∈ I, Hom(Mi,Mj) = 0.

Proof. By Proposition 5.5, for each i ∈ I, Mi is strongly dual Rickart. By
Theorem 5.2, each direct summand ofM is fully invariant, so for each i ̸= j ∈ I,
Hom(Mi,Mj) = 0.

Conversely, since for each i ̸= j ∈ I, Hom(Mi,Mj) = 0, End(M) =
⊕i∈IEnd(Mi). Let f ∈ End(M). Then f = ⊕i∈Ifi where fi ∈ End(Mi)
for each i ∈ I. Since Mi is strongly dual Rickart, fi(Mi) = eiMi for some
ei ∈ Sl(End(Mi)). This implies that f(M) = ⊕i∈Ifi(Mi) = ⊕i∈Iei(Mi). As
ei(Mi) is a direct summand of Mi for each i ∈ I, f(M) is a direct summand
of M . As End(M) = ⊕i∈IEnd(Mi) and for each i ∈ I, End(Mi) is an abelian
ring, End(M) is an abelian ring. HenceM is strongly dual Rickart by Theorem
5.2. □
Theorem 5.7. LetM = ⊕i∈IMi. Then the following are equivalent for module
M .

(1) M is strongly dual Rickart;
(2) For each i ∈ I, Mi is strongly T-dual Rickart and for each i ̸= j ∈ I,

Hom(Z
2
(Mi), Z

2
(Mj)) = 0.

Proof. (1) ⇒ (2) Proposition 5.5 implies that for each i ∈ I, Mi is strongly

T-dual Rickart. Also Theorem 5.3 gives Z
2
(M) = ⊕i∈IZ

2
(Mi) is strongly dual

Rickart. Hence for each i ̸= j ∈ I, Hom(Z
2
(Mi), Z

2
(Mj)) = 0, by Proposition

5.6.
(2) ⇒ (1) By (2) and Theorem 5.3, for each i ∈ I, Mi = Z

2
(Mi) ⊕ M ′

i

and Z
2
(Mi) is strongly dual Rickart. Hence Z

2
(M) = ⊕i∈IZ

2
(Mi) ≤⊕ M .

As for each i ̸= j ∈ I, Hom(Z
2
(Mi), Z

2
(Mj)) = 0, Z

2
(M) = ⊕i∈IZ

2
(Mi) is

strongly dual Rickart by Proposition 5.6. Hence M is strongly T-dual Rickart
by Theorem 5.3. □
Theorem 5.8. Let R be a ring and F be a free R-module. The following are
equivalent:
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(1) F is strongly T-dual Rickart;
(2)(i) RR is strongly T-dual Rickart and rank(F ) = 1, or

(ii) Z
2
(R) = 0.

Proof. (1) ⇒ (2) Let F be a free R-module and strongly T-dual Rickart with
rank(F ) ≥ 2. By Theorem 5.2, RR is strongly T-dual Rickart. Hence by

Theorem 5.3, R = Z
2
(R) ⊕ R′. Let F = R(I), then F = Z

2
(R)(I) ⊕ R′(I),

where Z
2
(R)(I) is strongly dual Rickart. Hence its direct summands must be

fully invariant. Therefore Hom(Z
2
(R), Z

2
(R)) = 0 by Proposition 5.6 and so

Z
2
(R) = 0.
(2) ⇒ (1) Is clear. □
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