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1. Introduction

Let A be any ring. Recall that an additive map ¢ : A — A is a derivation
if 6(AB) = 6(A)B + Ad(B) for all A,B € A; in particular, ¢ is called an
inner derivation if there exists some T € A such that 6(4) = AT — TA for
all A € A. More generally, ¢ is said to be a Lie derivation if §([A, B]) =
[0(A), B] 4+ [A,§(B)] for all A, B € A, where [A, B] = AB — BA. The question
of characterizing Lie derivations and revealing the relationship between Lie
derivations and derivations have been studied by many authors (see [1-4,8,9,

,20]).

Let A be a #-ring. An additive map § : A — A is a x-derivation if it is a
derivation and satisfies §(A*) = §(A)* for all A € A; is a *-Lie derwation if
0([A,B].) = [0(A), B]« + [A,6(B)]« for all A, B € A, where [A,B]. = AB —
BA*. In addition, if the additivity of § is deleted, then ¢ is called a nonlinear
x-derivation and nonlinear x-Lie derivation, respectively. Yu and Zhang [18]
proved that every nonlinear x-Lie derivation from a factor von Neumann algebra
into itself is an additive *-derivation.

On the other hand, many different kinds of higher derivations also have been
studied in commutative and noncommutative rings. Let A be an associative
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Nonlinear *-Lie higher derivations 660

x-algebra over a commutative ring R. Denote by N the set of all non-negative
integers and let D = {¢y, }nen be a family of R-linear mappings on A such that
¢ = tdy. D is called:

(a) a higher derivation if for each n € N,

onlay) = D ¢i(2)d;(y)
i+j=n
for all z,y € A;
(b) a Lie higher derivation if for each n € N,

oullz.yl) = D [di(2), 65(y)]
1+j=n
for all 2,y € A.
(¢c) an inner higher derivation if A is unital and there exist two sequences
{an}nen and {b,}nen in A satisfying the conditions ag = by = 1 and
ZZ‘L:O a,;bn_,; = 6n0 = Z?:O bian_i such that

¢n (I) = i a;xby_;
=0

for all x € A and for each n € N, where 9, is the Kronecker sign.

If n = 1, then higher derivations, Lie higher derivations and inner higher deriva-
tions are usual derivations, Lie derivations and inner derivations, respectively.
In addition, D is called a nonlinear Lie higher derivation if the R-linearity of
D in the above (b) is removed. The structure of Lie higher derivations also had
been discussed by many authors. Qi and Hou [13] gave a characterization of
Lie higher derivations on nest algebras. Xiao [17] proved that every nonlinear
Lie higher derivation of triangular algebras is the sum of an additive higher
derivation and a nonlinear functional vanishing on all commutators. For other
results, see [5-7,10,11,14,16] and the references therein.

Motivated by *-Lie derivation, we here can introduce a concept of *-Lie
higher derivations. We say that D is a x-Lie higher derivation if for each
n €N

Byl = 3 [6u(o), 65 W)
i+j=n
holds for all ,y € A. If D have no any linearity, then D is called a nonlinear -
Lie higher derivation. Obviously, x-Lie higher derivations are %-Lie derivation
ifn=1.

The purpose of this paper is to consider nonlinear *-Lie higher derivations
on factor von Neumann algebras.

As usual, R and C denote respectively the real field and complex field. Let
‘H be a complex Hilbert space. We denote by B(#) the algebra of all bounded
linear operators on H. Let M C B(H) be a von Neumann algebra. Recall that
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M is a factor if its center is CI, where I is the identity of M. Let Mg, be the
subspace of all self-adjoint operators in M.

2. Main result
The following is our main result.

Theorem 2.1. Let M be factor von Neumann algebras acting on a complex
Hilbert space H with dim H > 2. Suppose that D = {¢n}nen is a nonlin-
ear x-Lie higher derivation on M, then D = {¢n}nen is an additive x-higher
derivation.

To prove Theorem 2.1, we need some lemmas. The following three lemmas
can be found in [18].

Lemma 2.2. Let A € M. Then AB = BA* for every B € M implies that
A eRI

Lemma 2.3. Let B € M. Then AB = BA* for every A € M implies that
B =0.

Lemma 2.4. Let P € M be a nontrivial projection and A € M. Then AB =
BA* for every B € PM(I — P) implies that A = uP + (I — P) for some
ueC.

Now we chose a nontrivial projection P, € M and set P, = I — P;. Write
Mij = PLMP; i j = 1,2.

Let D = {¢p}nen be a nonlinear *-Lie higher derivation on M. We define
Ap: M= M by

An(A) = ¢n(A) - [A7 Un]u

where U,, = P1¢,(P1) P2 — Pa¢,(P1)Py. One can verify that L = {A, }hen 18
also a nonlinear *-Lie higher derivation on M.

By [18, Lemmas 2.4, 2.6, Remark 2.1], we can get the following lemma.

Lemma 2.5. Ay has the following properties:

(
(
(3il) = 0;
(
(
(

(0) =0 for each n € N;
(2) Ap(Msge) C Mg, for each n € N;



Nonlinear *-Lie higher derivations 662

nC)QCIforeachneN

=0 for each n € N with n > 1;
1AL (A) for all A € M and for each n € N;
RI fori=1,2 and for each n € N with n > 1;
Zj) C M,; fori,j =1,2 and for each n € N.

3
;TJ
\./
m||

Proof. We proceed by induction on n € N with n > 1. If n = 1, by Lemma 2.5,
it is true.
Now we assume that Lemma 2.6 holds for k < n € N, that is,

AR(0) = 0, Ap(Mya) € Mo, Ax(CI) C CI, Ak(%m —0(k £ 0),

Our aim is to show that An satisfies the similar properties. We will prove
it by using similar arguments as used in [18].
(1) By the induction hypothesis,

pt+q=n

(2) Tt follows from A(CI) C CI and Ax(My,) C My, that Ap(l) =
Ar(I)* € RI. Let T € M, then

[An(D), T] + LAL(T)w = D [8p(1), Ag(T)] = An([I,T),) = 0.
ptg=n

This implies that A, (I)T = TA,(I)* for all T € M. By Lemma 2.2, A, (I) =
A, (I)* € RI, and so we have for A € Mg,

BaA) = AnA) = [AALTL 4 YD 1(A) (D). + (4, An(D).
= An([A,I]*):(JOfPWKn

Thus A, (Mse) € Ms,.
(3) Let A € C, we have for any A € Mg,

[An(A) M+ > [Ap(A), Ag(AD)]w + [A, A (AD)].

p+qg=n
0<p,g<n

= A ([A M) =0
Tt follows from A, (Ms,) € Mg, and the induction hypothesis that
AN, (M) = A (M)A
for all A € Mg,. Hence A, (CI) C CI.
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(4) Since A, ((CI) C CI and A, (My,) € My,, we have A, (—31) € RI. It
follows from [3il, 2iI], = — 11 and Ay (3il) = 0 that
An(5i0) + Si(An(5iD) — An(il)")
iAn(51 5 (An(5 n(5
1 1 1 1 1 1
— [Sil, A, (=iD)]. Ay (Zil), Ag(ZiD)]w + [An (Zi0), =il].
390 8GN 3 D, Aa(GiDl + (D). 517
0p<P?t;<n
1.1 1
— AL ([5il, =iI].) = A, (—=1) € RI.
(131, 3ill) = Anl—51) €
We have from above equation that A, (3i])* = —A,(3il). Hence A, (—31) =
2iA,(%il). Similarly, we can obtain from the fact [,,Z[ 1il], = —1I that
1) = =20, (—3 )ThUSA(%I)—

An(—fil) —Ay(—3iI) and A, (—3
—A,(%4I). Tt follows from Ay (%) =0 that

1. 1 .
Anl=5iDi =5l 35 A5l Ay(=51)l

1. 1

1. . 1 1. . 1
- _An(_§ZI) - ZAn(_§I) = An(§l~7) - lAn(—§I)~

This implies that A,(—31) =0, and so A, (3iI) = 0.
(5) For every A € M, we have

1. 1. 1.
= [An(5iD), Al + > [Ap(5iD), Ag(A)]. + [5il, An(A))s
01:;?«1:271

= iAL(A).

(6) Since Ao = [P, A1a]s for all Aj5 € Mg, it follows from A, (Mg,) C
M, that
An(Ar) = [An(P1), Ao+ Y [Ap(P1), Ag(Ar2)]s + [P, An(A12)]s.
p+g=n

By the induction hypothesis, the above relation implies
Ap(Ar2) = Ap(P1) A1z — A Ap(Pr) + PiA,(Ar2) — Ap(Ar2) Py

Then
PiAL(P1)As = Ay (P) Py
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So for any Ao € Mja,
[PAA,(P1) Py + PoA, (Pr) Py, Arg)s = 0.
Hence by Lemma 2.2, PyA,,(P)P; + PoA,(P1)P, € RI. From the definition of
A, we get
An(Pr) = ¢n(Pr) = [P1,Up] = Prgn(P1) Py + Pagpy(P1) Pe
= PlAn(Pl)Pl + P2A7L(P1)P2 € RI.
Since [Py, Al = —[P2, 4], for all A € M, we have
[An(P), AL+ > [Ap(P1), Ag(A)]w + [Pr, An(A)].

p+g=n
0<p,g<n

= —[An(P2), Al = D [Ap(P), Ag(A)) — [Po, A(A)]s.

pP+g=n
0<p,g<n

Considering the induction hypothesis, the above equation becomes
[An(P2), Al =0
for all A € M, by lemma 2.2, A, (P) € RI.
(7) Let A1 € My, it follows from (6) that
An(A12) = An([P1, Ar2]s) = [P, A (A1)
This yields
PyAL(A12) Py = PIA,(A12) Py = PyA, (A1) Py = 0.
Then A, (A12) € Mi for all Ajo € Mia. We can similarly prove A,,(A421) €
My is valid by considering A, ([Pz, A21]+).

Let X € Mj; UMas. It follows from the fact [P;, X]. = 0 and A, (P;) € RI
that

0= A, ([P, X]) = [P, An (X))

This implies that P,A,(X)P; = 0 for ¢,j € {1,2} with ¢ # j. Let Ay €
M1, Bag € May. We have from the induction hypothesis and the fact [A11, Baa]«
= [B227A11]* = 0 that

An([A11, Baal) = [An(A11), Baols + [A11, An(B22)]«
= ) [Ap(An), Ag(Ba)l.

p+g=n
0<p,g<n

= [An(A11), Bazls + [A11, An(B22)]«
= [PoAn(A11) P2, Basls + [A11, PLA,(Bag) Py« = 0.

and

Ay ([Baz, A11]x) = [PiAR(B22) Py, Av1]s + [Baz, PaAy (A1) Pyl = 0.
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This implies that

[A11, P1AR(B22)P1]« =0
for all A1, € My, and

[3227 PZAn(All)PQ]* =0
for all Bys € M. By Lemma 2.3, then

PlAn(BQQ)Pl = 0, PgAn(All)Pg =0.
Hence A,,(M;;) € M;; for i = 1,2. The proof is completed. |
In order to obtain Theorem 2.1, we proceed by induction on n € N. When

n = 1, Ay is a nonlinear *-Lie derivation on M. By [18, Theorem 2.1], A;
is an additive x-derivation. Now we assume that A,, is an additive higher *-

derivation for m < n € N. Our aim is to show that A,, is an additive higher
*-derivation.

Lemma 2.7. Leti,j € {1,2} with i # j. Then

(3) An(Au + A22) = An(Au) + An(AQQ) fOT’ all Ay € My and Ay €
Mag;
(4) An(Am + A21) = An(A12) + An(Agl) fO’I“ all A12 € Myy and Agl S

M.
Proof. (1) Let X;; € M;;. It follows from [X;;, Ai;]« = [Xj;, Aii + Aijls,
Lemma 2.6 and the induction hypothesis that

(A (X)) Aigle + D [Bp(X55), Ag(Ai)ls + [Xj5, An(A)l

pt+g=n
0<p,qg<n

= [An(XG)) Aii + Aigle + D [Ap(XG5), Ag(Ais + Aij)l.

pt+g=n
0<p,g<n

+ [Xjjs An(Ai + Aij)ls
[An(X55), Aijle + > [A0(X55), Ag(Ai)]s + (X5, A (A + Aij)]..

p+qg=n
0<p,g<n

Hence

(21)  Xji(An(Ai + Aij) — An(Aij)) = (An(Asi + Aij) — An(Aij)) X,

for all X;; € M,;. Taking X,;; = P; in Eq. (2.1), we have from the fact
An(A”) S Ml'j that

(22)  Pj(An(Aii + Aij) P = Pj(An(Asi + Aij) — An(Ai)) P = 0.

Also, we have from Eq. (2.1) and Lemma 2.3 that

(2.3) Pj(An(Aii + Aij) Py = Pj(An(Aii + Aij) — An(Ay))P; = 0.
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Clearly, it follows from Eq. (2.1) that P;(A, (A + Aij) — An(Ai)) X5, = 0 for
all X;; € M;;. This implies that

(2.4)

PzAn(An + Aij)Pj = AW(AIJ)

On the other hand, we have from Lemma 2.6, the fact [A;;, Xii]« = [Au +
Aij, Xiils for all X;; € M;; and the induction hypothesis that

Hence

[An(Aii), Xii]s + Z [Ap(Aii), Ag(Xia)]« + [Aisy An (X))

pt+g=n
0<p,g<n

[An(Aii 4+ Aig), Xiale + D [Ap(Aii + Aij), Ag(Xii).

pt+g=n
0<p,g<n

[Aii + Aij, An(Xii)]«

[An(Aii + Aig), Xl + Y [Bp(Aii), Ag(Xii)]w + [Aiiy An(Xii)]s-

pt+g=n
0<p,g<n

(An(Aii 4 Aij) — An(Aii)) Xii = X (An(Ais + Aij) — An(Ai))".

By Lemmas 2.2 and 2.6, there exists a scalar A € R such that

(2.5)

PA,(Asi + Aij) P = Ap(Ay) + AP

Combining Egs. (2.2)-(2.5), we obtain that

(2.6)

A (Asi + Aij) = Ay (Ai) + An(Aij) + AP

For each X;; € M;;, we have from Eq. (2.6) that there exists a scalar o € R
such that

Ap(=Xi A7) + An(AuXij) + aP;

= An(=XiAj; + AiuXij) = An([Aii + Aij, Xijls)
= [An(Ai+ Ag), Xigle + Y [Ap(Au + Aij), Ag (X))

pt+g=n
0<p,g<n

+  [Aiu+ Aij, An (X))«
= [An(Ai) + An(Asj) + AP, X5«
> [A(AR) + Ap(Aig), Ag(Xi)le + [Asi + Aijy An (X))

p+g=n
0<p,g<n

A ([Aij, Xijle) + An([Aiis Xijle) + A X5

Then AX;; = aP; for each X;; € M;;. This implies that A = 0, and so by Eq.
(26) we have An(A“ + Al]) = An(A”) + An(A”)
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(2) Let X;; € Mj;, Then by the induction hypothesis,
A ([Aii + Ajs, Xjile)
= [An(Aii 4 A0 Xjile + D [Ap(Ai + Aji), Ag (X))

oLl
+ [Aii + Aji, A (Xji) ]«
= [An(Aii + A), X+ D [Ap(Aa) + Dp(A0), Ag(Xj0)]s
pt+g=n
0<p,g<n

(2.7) + [Aii + Aji, An (X))
On the other hand, it follows from (1) that
Ay ([Ai + Ajs, Xjil«)
= An(=Xjidj — XjidG) = An(=XjiAf) + An(=X;i45)
= An([Aji; Xjils) + An([Ais; Xja]+)
= [An(450), Xgile + D0 [8p(Aj0), Ag (X5 + [Aji, An (X))

p+g=n
0<p,g<n

AR (Ai), Xpile 4+ Y [Ap(Ai), Ag (Xl + [Aii, An(Xi)]

p+g=n
0<p,g<n

= [An(Ai) + An(A50), Koo+ Y [Ap(Ai) + Ap(Asi), Ag (X5l

ptg=n
0<p,g<n

+  [Ai + Ajs, An (X))«
Hence by Eq. (2.7)
[An(Aii + Aji), Xjile = [An(Ai) + An(Aji), X«
for all X;; € Mj;. By Lemma 2.4,
(2.8) An(Aii + Aji) — An(Ai) — An(Aji) = pPj + 1P
for some p € C. Since [Xjj, Ajils = [Xj;, Aii + Ajsli for all X;; € M;;, we
have from Lemma 2.6, the induction hypothesis and Eq. (2.8) that

[An(X55) Ajils 4+ ) [Ap(X55): Ag(Aji)] + [X55, An(Ai)]-

p+g=n
0<p,g<n

= AW Ai + Ajile + D [Ap(X55), Ag( A + Aji)l.
pta=n
0<p,g<n

+ [Xj, An(Ai + Aji)ls
[An(X55), Ajile + > [A(X55), Ag(Aji)la + [ X5, An(Azi) + Pyl

pt+g=n
0<p,g<n
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Then pX;; = pX;; for all X;; € Mj;, and so p = 0. By Eq. (2.8), hence
Ap(Aii + Aji) = A (Ai) + An(Aji).

(3) Let X11 S M11~ It follows from [Xlla All]* = [X117 A11 +A22]*, Lemma
2.6 and the induction hypothesis that

[An(X11), Anle + D0 [Ap(X11), Ag(Ar1)]s + [X11, An(An)].

p+q=n
0<p,g<n

= [Ap(X11), A1 + Ago]s + Z [Ap(X11), Ag(A11 + Agz)]«

ptg=n
0<p,g<n

+ [X117AH(A11 +A22)}*
[An(X11), Aur]s + Z [Ap(X11), Ag(A11)]w + [X11, An(Asr + An)l.

pt+g=n
0<p,g<n

Then
X11(An (A1 4+ Az2) — Ap(A171)) = (A (A1 + A2e) — Ay (A1) X,

for every X1; € My;. Applying the same argument as in (1), we can show that

(2.9) PiA, (A1 + Age) Py = PoAp (A1 + Axe)PL =0
and
(2.10) POy (A + Ag2) P = Ap(A1r).

From the fact [XQQ, AQQ]* = [X227 A+ AQQ]* for all Xso € Moo, similarly, we
can obtain that

(211) PQAn(All + AQQ)PQ = AH(AQQ).

Combining Eqs. (2.9)-(2.11), we see that A, (A11+A22) = Ay (A11)+ A, (Ags).
(4) Let X192 € M;s. By the induction hypothesis

Ay ([Ar2 + A1, X12]4)
= [A, (A2 + Ao1), Xao]s + Z [Ap (A2 + A21), Ag(Xi12)]«

pt+g=n
0<p,g<n

+ [A12 + A1, Ap(X12)]«
= [An (A2 + Ag), Xia)s + Z [AL(A12) + Ap(Ag), Ag(X12)].

pt+g=n
0<p,g<n

(2.12) 4 [Ai2 + Ao1, Ap(Xi2)]s



669 Zhang, Qi and Zhang

On the other hand, we have from (3) that
An([Ar2 + Ag1, X12]s)
= Ap(A21 X129 — X12A75) = Ap(A21 X12) + Ay (= X12475)
= Ap([A21, X12]s) + Ap([A12, X12]+)
= [An(Aar), Xiolo + D [Ap(A21), Ag(X12)) + [A21, A (X12)].

ptqg=n
0<p,g<n

+ [An(Aiz), Xiole + Y [Ap(Ara), Ag(Xa2)]w + [Ar2, An(X12)]

ptag=n
0<p,qg<n

= [An(Ar) + An(An), Xiolo + Y [Ap(A12) + Ap(Az1), Ag(X12)]

ptg=n
0<p,g<n

+ [Ar2 + Ao, An(X12)]s
This and Eq. (2.12) show that
[An(Ar2 + A21), Xi2]s = [An(A12) + An(A21), Xi2]«
for all X715 € Mjs. By Lemma 2.4, there exists a scalar u € C such that
(2.13) Ap(Arz + A1) = Ap(Are) + Ay (Agr) + uPy + GPe.

We see from Eq. (2.13) that for each X7, € Mj; there exists a scalar a € C
such that

An([X11, A2 + Ao1]s) = Ap(X11d12 — A1 X7)
= Ap(X11412) + Ap(—A1 X{,) + aP +@Ps.
On the other hand, it follows from Eq. (2.13) again
An([X11, Arz + Asily)
= [An(X11), 412+ Aoy + Z [Ap(X11), Aq(A12 + Aa1))x

pt+g=n
0<p,g<n

+  [Xu1, An(Arz + A21)s
= [An(Xun) A+ Al + Y [Ap(X11), Ag(Arz) + Ag(Az)]

pt+q=n
0<p,g<n

+ [ X11, A, (Ar2) + Ap (A1) + pPy + 1P,
= Ap([X11, A12)) + Ap([X11, A21]s) + [Xa1, pP1 + BPs)
= A, (X11412) + Ap(—An XT7) + p(X11 — X77).

Hence p(X11—X7,) = aP1+aP,. This implies that @ = 0, then pu(X11 —X7) =
0 for all X1; € My, and so p = 0. Therefore, we have from Eq. (2.13) that

Ay (Ars + Aor) = Ap(Agz) + Ay (Asq). The proof is completed. O
Lemma 2.8. A, (Y7, Ajj) = Y71 An(Aij) for all Ajj € Mj;.
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Proof. Let 4,5 € {1,2} with ¢ # j. Then
[Aii + Aji, Tiile = [Asi + Aij + Aji, T«

for all T;; € M;;, and so by Lemma 2.6 and the induction hypothesis
(2.14) [An(Ais + Aij + Aji) — A (A + Aji), Tiile = 0
for all T;; € M;;. Tt follows from Lemmas 2.2, 2.6 and 2.7(2) that
(2.15) PAL(Aii + Aij + Aji) Py = Ap(Ai) + M P
for some \; € R. By Eq. (2.14), we have

Pi(An (A + A +A5) — Ap(Aii + Aj))T5 =0
for all T;; € M;;. It follows from Lemmas 2.6 and 2.7(2) that
(2.16) PiA, (A + Aij + Aj) P = Ap(A4j).

On the other hand, we have from Lemma 2.6, the fact [A;;, T};]«
A+ Aji, Tj;)« for all T;; € M,; and the induction hypothesis that

[An (A + Aij + Aji) — An(Aij), Tyl = 0.

670

= [A; +

for all T;; € M;;. Then by Lemmas 2.2 and 2.6, there is a Ay € R such that

(2.17) PjAn(Aii + A + Aji)Pj = A P;.

Also, we have P,(A,L(A” + Aij + Aﬂ) — An(Aij))Tjj = 0 for all Tjj S ij.

This implies that
(2.18) Pl (Aii + Aij + Aji) Py = Ay (Aij).

Combining Egs. (2.15)-(2.18), we obtain that

(2.19) Ap(Ai+ A +Aj) = Ap(Aii) + An(Aij) + Ap(Aji) + M P+ AP

It follows from Eq. (2.19) that for each T;; € M;; there exist aj,a9 € R

such that

A (T Aii — AuTh) + Ap(TiiAij) + A (= A T5) + aa Py + o P
= An(TiyAi + T Aij — Ay Ty — AyiT5) = Ap([Tis, Asi + Aij + Ajils)

ptg=n
0<p,g<n

= [An(Ta), Aii+ Aij + Ajile + D [Bp(T), Ag(Aii) + Ay (A

)

+ AG(Aji)]s + [Tiin An(Ais) + An(Asj) + An(Aji) + AP + APy

= A,([Thi, Aisls) + An([Thiy Aijls) + An([Tiis Ajil) + M (Tis — T

%

)

= A(TyAi — AuT)) + A (T Aij) + An(—AuT5) + (T — 1)
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This implies that A\; = a3 = as = 0. On the other hand, by Lemma 2.7(4), the
induction hypothesis and Eq. (2.19), we have for any T;; € M;;,

A (T 4A5) + An(=AiT5;)

T3

= A(TjA5 — AiyT};) = An([Th), Aii + Aij + Ajils)
= [A(Ty), i+ A+ Al + D [A(T5), Ag(Aii) + Ag(Asy)

ptqg=n

0%piaen
+ Ag(Aj)]i + [Thj, An(Ai) + An(Aij) + An(Aji) + AP+ A2 Pjl.
= A, ([TJJ7A ] )+ An ([TJJ’A } )+A ([TJJ7A ] )"‘)‘2(Tjj_T;j)
= Ap(—AiyT) + An(T)A5) + X (T — T5;)-
This implies that Ao = 0. Hence by Eq. (2.19), we have for i # j,
(2.20) Ay (A + Aij + Aji) = A (Aii) + An(Aij) + An(4ji).
Since [T}, Z?,j:l Ajjle = [Th1, Ann+ A1+ As ], for all Ty € My, it follows

from the fact A,,(T11) € M and the induction hypothesis that

[T11,A Z Aij) — Ap (A + Aia + As1)] = 0.
,5=1
By Lemmas 2.3, 2.6 and Eq. (2.20), then
2
(2.21) PiAG( ) Aij)Pyr= A (An).
ij=1

Also, we can show that

(222)  PiAL(Y | Aij)Pr = An(Ar), Z A )Py = A, (Agy).

4,5=1 4,j=1
Since [T227 Z?,j:l A”]* = [TQQ, A22+A12 +A21]* for all T22 € M22, it follows

from the fact A,,(Th2) € Mas and the induction hypothesis that

(T2, A Z Aij) — Ap(Aga + Aip + Ao1)] = 0.
B,j=1

By Lemmas 2.3, 2.6 and Eq. (2.20), then

2
(2.23) Py () Aij)Py = Ay (Agy).
i,j=1
Combining Eqgs. (2.21)-(2.23), we have An(Z?,j:1 Ajj) = Z?,j:l Ay (Aij). The

proof is completed. O
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Lemma 2.9. An(Aij-FBij) = An(Aij)—FAn(Bij) for all Aij,Bi]’ S Mij,i,j =
1,2.

Proof. Let i,j € {1,2} with i # j. Then [T};, P;l. = Ti; — T for all Ty € My,
and so by Lemmas 2.7(4) and 2.5,
A(Tig) + A (=T7) = ATy = T75) = [A(Tig), Pils + [ 1J7A1( i)
= Au(Ty) = Au(Tiy)" + TijAa(Py) — A (Py) T
Since A1(P;) € CI and A1(=T7};), A1(T3;)" € M;i, we have from above equa-
tion that TZJAl( ;) = 0 for all T;; € M,;. Hence A;(P;) =0 for j = 1,2. We

next by induction show that A, (P;) = 0. Assume that A,,(P;) = 0 holds for
m < n € N, by Lemmas 2.7(4) and 2.6,

An(Tiy) + An(=Tj5) = An(Ty — T55)

= [AW(Ty), Pl + Y [Ap(Ti), Ag(P)s + [Tij, An(P;)].

= An(Ti;) — An(Tij)" + Ti An(Py) — An(P)T7;.

Similarly, we can obtain that A, (P;) =0 for j =1, 2.
Let Aij,Bij € M”(Z 75 j) Then

[P + Aij, Pj + Bijls = Aij + Bij — Aj; — Bij Aj;

35
and so by Lemmas 2.8, 2.7, 2.6 and the induction hypothesis,
An(Aij + Bij) + An(—Aj;) + An(=Bi; Ajj)
= Anp(Ay + Bij — A — Bij Ajj) = An([Pi + Aij, Py + Bijls)
= [An(P) 4+ An(Aij), P+ Bijla + D> [Ap(P) + Ap(Aij), Ag(P))

p+g=n
0<p,g<n

+  Ay(Bij)ls + [Pi + Aij, An(Py) + An(Bij)].
= [An(4i), P+ Bijle + Y [8p(Ai), Ag(Bij)].

ptg=n
0<p,g<n

+ [P+ Aij, An(Bij)l.
= An([Aij, Bijls) + [An(Asj), Pjls + [Pi, An(Bij)].
= An(_BUA;j)_FA"(AU)_AH(AZJ> +An( Z])'

This implies that
(2.24) An(Aij + Bij) = An(Ay) + An(Byj).
fOI' all Aija sz S M”(l 7& ])
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Let Aj;, Bii € My; and Ty € M,;;(i # j). It follows from Eq. (2.24) and the
induction hypothesis that

Ay ([Aii + Bii, Tijls) = Ay (Au‘Tij + By T;5)

= An(AuTi;) + An(BiiTij) = An([Aii, Tijle) + An([Bii, Tijle)
= [An(Ai) Tl + > [8p(Ai), Ag(Tij)]e + [Asi An(Tij)l-
oLlatn
+  [An(Bii), Tijl« + Z [Ap(Bii), Ag(Tij)] + [Biiy An(Tij))
oLptadn
= [An(Aii) + An(Bi), Tijle + Z [Ap(Aii + Bii), Ag(Ti5)]
pt+qg=n
0<p,g<n

+  [Aii + Bii, An(T35))«-
On the other hand, we have from Lemma 2.6 that
Ay ([Aii + Bii, Tij))
= [A (An + Bu 'L] « + Z An + Bu) A (E])]*

ptqg=n
0<p,g<n
+  [Aii + Bii, An(Tij)] -
Hence (A, (A + Bii) — An(Ay) — An(B; )) ;= 0 for all T;; € M,;;. This
implies that A, (A + Bi) = An(Aii) + An(By;) for all Ay, By € M. The
proof is completed. O

Lemma 2.10. Let A;;, Bi; € M;; and A;j, Bij € M;;(i # j). Then

(1) An(AisBiy) = An(Ai) Bij + Aiiln(Big) + 5 ovar Apl(Aii) Ag(Byy);
(2) An(AisBui) = An(Ai) Bis + Al (Bi) + 2 e A S(Ai) Ay (Bii);

(3) An(AijBji) = An(Aij)Bji + Aij An( ﬂ)+Z pra=n Dp(Aij)Aq(Bji);
(4) An(AijBjj) = An(Aij)Bjj + AijAn( ay)+2 pha=n A p(Aij) Ag(Bjj).

Proof. (1) By Lemma 2.6, we have
A, (AiiBij) = Ay ([Ai, Bijls)
= [An(Aa), Bigle + [Ais, An(Bij)le + D [Ap(Ai), Ag(Byg))-

p+g=n
0<p,g<n
= An(Ai)Bij + Ailbn(Bi) + D> Ayl Bij).
ptg=n

0<p,g<n
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(2) Let X;; € M;;. From (1) and the induction hypothesis, it is easy to see
that
A, (AiBiXij) = An((AiiBii)Xi‘)
=A (A’LZB’L’L)XZ] +AZ’LB’L’LA Z A AZZB’LZ ( ¥ )

p+g=n
0<p,g<n

= An(AiBi) Xij + AuBiAn(X,5)
(2.25) 4+ > Ap(Ai)Ag(Bii)An(Xi5)

ptgt+r=n
o<r<n
and
Ay (AiiBi Xij) = Ay (A (Bii Xij))
= A (Aii) Bii Xij + AiAn(Bii Xij) + Z Ap(Aii)Ag(BiiXij)
p+g=n
= An(Aii)BiiXij + AiiAp (Bii)Xij + AiiBii Ay (X‘ ‘)
Y Audy( D Ay Bii) Ar(Xij)
ptg=n pt+gt+r=n
0<p,g<n 0<p<n
=A (Aii)BiiXij + A A (B ii)Xij+AiiBiiA ( ij)
(226)  + Y Ay Bi)Xij+ Y., Ay Bii) Ar(Xij).
pt+g=n pt+qt+r=n
0<p<n o<r<n

Combining Egs. (2.25)-(2.26), we have

An(AmBu)ij - (An(An)Bu + AHA Z A 1))Xij~

pt+qg=n
0<p,qg<n

This implies that

An (AHB'L’L) = An (A’Ll)B’L’L + AzzA Z A )

pt+g=n
0<p,g<n

(3) Since A;;Bj; = [Aij, Bjil«, we have

Ay (AijBji) = An([Aij, Bjil«)
= [An(Ai), Bjils + [Ai, An(Bji)le + > [Ap(Aij), Ag(Bji)ls

p+qg=n
0<p,q<n

= An(Alj)BJZ+A1JA Z A )

p+qg=n
0<p,g<n
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(4) From the above and the induction hypothesis, it is easy to see that
An(X;iAiBjj) = An(Xji(Ai; Bjj))
= An(X5i) AijBjj + XjDa(AijByg) + D Dp(X;i)Ag(Ay Byj)

ptg=n
0<p,g<n

= A (Xji)AijBjj + XjiAn(AijBjj)
(227) 4+ D Ap(X;)A(Ay)A(Bj))

Pata
and
An(XjiAijBjj) = An((Xji4i;) By ')
= An(XjiAi) By + XAy An(Bij) + Y Ap(Xjidi)Ag(By;)
ptg=n
0<p,g<n
= An(Xji)AijBjj + XjiAn(Aij) Bjj + XjiAij An(Bjj)
+ ) ANX)AAi) B+ Y Ap(X;i)Ag(Aiy) A (Bj))
A plateon
= An(Xji)AijBjj +X‘z‘An(Aij)Bjj + X;iAijAn(Bjj)
(228) 4+ Y XuAu(Ai)Ag(Bi)+ D> Ap(Xji)Ag(Aij)An(Bj;).
AR, Piar
Combining Eqs. (2.27)-(2.28), we have
XjiAn(AijBjj) = Xji(An(Aij)Bjj + AijAn(Bjj)
+ > Ap(Aij)Ag(B))).
ptg=n
0<p,g<n

This implies that

An(AijBjj) = An(Aij)Bjj + AyAn(Bij) + > Ayl Bj;).
pt+g=n
0<p,g<n
The proof is completed. O

Lemma 2.11. A, is an additive x-higher derivation of M.
A;; and B = 22 ._1 B;; for some

1,7=1

Proof. Let A,B € M. Then A = Z” 1
Aij, Bij € Myj;. It follows from Lemmas 2.8 and 2.9 that

2 2
An(A—l—B) = Z An(Aij—i-Bij) = Z (An(Aij)+An(Bij)) = An(A)+An(B>

ij=1 ij=1
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By Lemma 2.10,

An(AB) = Ap(A11Bi1) + An(AnBi2) + Ap(Ai2Bo1) + Ap(A12Ba2)
+ A, (A21B11) + Ay (A1 Big) + Ay (A22Bar) + Ay (AgeBao)
= Au(A11)Bi1 + A A (Bn) + Z Ap(A11)Ay(B11)
pt+g=n
0<p,g<n

+ A, (A11)Bi2a + A1, (Big) + Z A, (A11)Aq(B12)
pta=n
0<p,qg<n

+ Ap(A12)Bor + A12An(Bar) + Z Ap(A12)Aq(Ba1)
p+g=n
0<p,q<n

+ A, (A12)Bas + Ao A, (Bag) + Z Ap(Ai2)Aq(Ba2)
pt+g=n
0<p,g<n

+ A, (A21)B11 + A A, (B1) + Z Ap(A21)Ag(Bi1)
ptag=n
0<p,qg<n

+ Ay (A21)Bi2 + A A (Big) + Z Ap(A21)Aq(B2)
p+qg=n
0<p,q<n

+ A, (A22)Boy + A A, (Bar) + Z Ap(A22)Ag(Bar)
pt+g=n
0<p,g<n

+ A, (Az2)Bag + A, (Baz) + Z A, (A22)Ay(Bag),
ptag=n
0<p,g<n

on the other hand, by Lemma 2.6,
An(A)B+ AN (B)+ Y Ay (B)
p+g=n
0<p,g<n

A, (A11)(B11 + Bi2) + An(A12)(B21 + Bag)

+  Ap(A21)(B11 + Bi2) + Ay (Aze)(Ba1 + Baa)

+ AnAn(Bii + Bia) + Aoy (Bo1 + Baz)

+ A1 An(Bi1 + Bia) + Ay, (Bar + Bag)

+ Z Ap(A11)Ag(B1) + Z Ap(A11)Aq(Br2)
oLplan oLhlatn

+ ) A(AR)A(Ba)+ Y Ap(A12)Ag(Ba)
pra=n pta=n

0<p,g<n 0<p,g<n
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+ Y A (A)A(Bu)+ Y Ay(Aan)Ay(Bio)

pta=n ptg=n
0<p,g<n 0<p,g<n

+ > Ap(An)A(Bar) + Y Ay(Az)Ag(Baa).
p+qg=n p+qg=n
0<p,g<n 0<p,g<n

We immediately obtain

An(AB) = A (A)B+AA(B)+ Y A, (A)A(B)

p+g=n
0<p,q<n

for all A, B € M. This shows that each A,, is an additive higher derivation on
M. Let A = B+ 1iC where B,C € M,,. By Lemma 2.6, then

for all A € M. Hence A,, is an additive x-higher derivation of M. The proof is
completed. 0

Note that it is not true that every additive derivation on any factor von
Neumann algebras is inner. However, if 7 is infinite dimensional, then every
additive derivation on type I factor von Neumann algebras is inner ( [15]).
Nowicki in [11] proved that if every additive (linear) derivation of A is inner,
then every additive (linear) higher derivation of A is inner (see also [16, Propo-
sition 2.6]). So, by Theorem 2.1, the following corollary is immediate.

Corollary 2.12. Let H be an infinite dimensional complex Hilbert space. As-
sume that M is a type I factor von Neumann algebra on H. Then every non-
linear x-Lie higher derivation D = {¢, }nen is inner with ¢, (A*) = ¢, (A)* for
each A € M and every n € N.
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