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Abstract. In this paper, it is shown that when a special vertex stretch-
ing is applied to a graph, the cochordal cover number of the graph in-

creases at most two. As a consequence, it is shown that the induced
matching number and cochordal cover number of a special vertex stretch-
ing of a graph G are equal provided G is well-covered bipartite or weakly
chordal graph.
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1. Introduction

Let G be a simple graph with vertex set V (G) = {1, . . . , n} and edge set
E(G). A matching in a graph G is a set of edges M such that no two edges
share a common end. If M is an induced subgraph, the matching is called an
induced matching. The maximum size of an induced matching in G is called
the induced matching number of G and denoted by indmatch(G). The problem
of finding a maximum induced matching is known to be NP-hard.

Let G be a graph and x be a vertex in G. A vertex stretching with respect
to x is defined to be the transformation consisting of the following steps:

(1) partition the open neighborhood N(x) of vertex x into two disjoint
subsets Y and Z in an arbitrary way;

(2) delete vertex x from the graph together with incident edges;
(3) add a chordless path on k vertices (a, x1, · · · , xk−2, b) to the remaining

graph;
(4) connect a to each vertex in Y , and connect b to each vertex in Z.
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Notice that k is a parameter associated with the transformation. We shall
denote the vertex stretching with parameter k by Pk. The graph produced by
this operation will be denoted Pk(G) = Pk(G, x).

Vertex stretching have been applied to different problems for several goals
(see e.g. [1, 4, 8, 12] and [2]).

Although the problem of finding a maximum induced matching is known to
be NP-hard, in [11] Lozin showed that P4 increases the size of a maximum
induced matching by one. As a consequence, Lozin showed that the induced
matching problem remains NP-hard in some special classes of bipartite graphs
such as bipartite graphs with maximum degree 3 or C4-free bipartite graphs.

Let x and Y be non adjacent vertices of a graph G. Identify x and y means
to replace these vertices by a single vertex incident to all the edges which were
incident in G to either x or y. We denote the resulting graph by G/{x, y}.

LetR = K[x1, . . . , xn] be the polynomial ring over a fieldK. The edge ideal of
G in R is defined by I(G) = (xixj | {i, j} ∈ E(G)). In the recent years, several
authors have studied the Castelnuovo–Mumford regularity of R/I(G) denoted
by reg(R/I(G)). It is known that indmatch(G) ≤ reg(R/I(G)), cf. [7, Lemma
2.2]. Recently, Biyikoglu and Civan [3] get motivated to show that P4 increases
the size of the Castelnuovo-Mumford regularity by one.

In [13] Woodroofe introduced the notion of cochordal cover number of a
graph to study the Castelnuovo–Mumford regularity of a graph. A graph G
is called chordal if every induced cycle in G has length 3, and is cochordal if
the complement graph Gc is chordal. The cochordal cover number of G is the
minimum number of cochordal subgraphs required to cover the edges of G and
it is denoted by cochord(G).

Combining [7, Lemma 2.2] and [13, Lemma 1] lead to the following inequal-
ities:

indmatch(G) ≤ reg(R/I(G)) ≤ cochord(G).

Now it is natural to ask: what can we say about the cochordal cover num-
ber of P4(G)?. In this note, we show that P4 increases the cochordal cover
number by at most two. Using [11, Corollary 1] this result implies that the
computational complexity of the cochordal cover number of arbitrary graphs
is equivalent to that of bipartite graphs having sufficiently large girth with
maximum degree three.

2. The results

To prove the main result we need the following lemmas.

Lemma 2.1. Let G be a graph and x, y be two non-adjacent vertices of G. If
N(x)

∩
N(y) = ∅ and G is cochordal graph, then H = G/{x, y} is cochordal

graph.
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Proof. At first note that every vertex of NG(x) is adjacent to every vertex of
NG(y), since otherwise if x′ ∈ NG(x) is not adjacent to y′ ∈ NG(y) in G,
then x − y − x′ − y′ − x is an induced cycle of length four in Gc, which is a
contradiction.
Let x = y = a in graph H. Suppose that C is an induced cycle of length k in
(G/{x, y})c. If a is not a vertex of C, then C is a cycle of Gc and hence k = 3.
Suppose that a is a vertex of C and

C : a = v1 − v2 − · · · − vk − v1 = a.

Then v2, vk /∈ NH(a) and v3, v4, · · · , vk−1 ∈ NH(a). Since NH(a) = NG(x)∪
NG(y), we conclude that {v2, vk} ⊆ NGc(x)

∩
NGc(y) and vi ∈ NG(x)

∪
NG(y). Suppose that v3 ∈ NG(x). Since every vertex of NG(x) is adjacent to
every vertex of NG(y), we conclude that v4 ∈ NG(x). By the same argument
we conclude that {v3, v4, · · · , vk−1} ⊆ NG(x). Hence the cycle x − v2 − v3 −
· · · − vk−1 − vk − x is an induced cycle of Gc. Thus k = 3 and H is a chordal
graph. □

Lemma 2.2. Let G be a cochordal graph. Then

2 ≤ cochord(P4(G)) ≤ 3.

Proof. Let NG(x) = X
∪
Y be a partition of neighborhoods of x and P4(G) =

P4(G, x) is obtained from G, by deleting the vertex x, adding the path x1 −
a− b− x2, joining the vertex x1 to vertices in X and joining the vertex x2 to
vertices in Y . Define three subgraph G1, G2, G3 of P4(G) as follows:

V (G1) = X
∪

{x1, a, b}, E(G1) = {x1a, ab}
∪

{x1z : z ∈ X},

V (G2) = Y
∪

{x2, b}, E(G2) = {x2b}
∪

{x2z : z ∈ Y },

V (G3) = V (P4(G)) \ {x1, x2, a, b}, E(G3) = E(P4(G)) \ (E(G1)
∪

E(G2)).

It is not difficult to see that Gi’s are cochordal edge-disjoint subgraphs P4(G)
and cover the edges of P4(G). Therefore cochord(P4(G)) ≤ 3. On the other
hand if X ̸= ∅ (or Y ̸= ∅), we can consider z ∈ X(z ∈ Y ) and by considering
four vertices z, x1, x2b (or a) we have a induced cycle C4 in P4(G)c. Hence
2 ≤ cochord(P4(G)). □

Remark 2.3. Note that for any graph G, the cochord number of Pk(G) =
Pk(G, x) dependents on x and partition of N(x); for example P4(C4) is C7

or C4.P4 (this is a graph union of C4 and P4 where their intersection has just
one vertex which is the end vertex of P4) and we have cochord(C7) = 3 and
cochord(C4.P4) = 2 and we have cochord(C7) = 3 and cochord(C4.P4) = 2.

Lemma 2.4. Let G be a cochordal graph. Then cochord(P4(G, x)) = 2, if one
of the following holds:
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i) One of the partitions of N(x) is empty;
ii) Induced subgraph ⟨NG(x)⟩ is a clique.

Proof. i) By the same notation as in the proof of Lemma 2.2, Suppose that
Y = ∅. Hence two graphs

G1 : x1 − a− b− x2, G2 : P4(G) \ {a, b, x2}

are edge-disjoint cochordal subgraphs of P4(G) which cover the edge set of
P4(G). Hence cochord(P4(G)) ≤ 2. Therefore cochord(P4(G)) = 2
ii) In this case consider the following edge-disjoint subgraphs of P4(G):

G1 : x1 − a− b− x2, G2 : P4(G) \ {a, b}.

The subgraph G1 is a cochordal graph, since G1 is a path of length three. We
prove that the subgraph G2 is a cochordal graph. Suppose that C is an induced
cycle of length k in Gc

2. If x1, x2 /∈ V (C), then C is an induced subgraph of Gc,
and hence k = 3. Suppose that x1, x2 ∈ C and hence we can show the cycle C
as follows:

C : x1 = v1 − v2 − · · · − vk−1 − (vk = x2)− x1 = v1.

Therefore

{v3, v4, · · · , vk−1} ⊆ NG(x1) = X,

{v2, v3, · · · , vk−2} ⊆ NG(x2) = Y.

But X
∩
Y = ∅, implies that k ≤ 4. Suppose that k = 4. Hence v2 is adjacent

to v3 in Gc
2, which is a contradiction, since NG(x) is a clique. Therefore k = 3.

Now consider the case |V (C)
∩
{x1, x2}| = 1. Without lose of generality assume

that x1 ∈ V (C) and x2 /∈ V (C) (the proof of the case x1 /∈ V (C) and x2 ∈ V (C)
is similar). Again suppose that the cycle C is as the following form:

C : x1 = v1 − v2 − · · · − vk − v1 = x1.

Hence

{v3, v4, · · · , vk−1} ⊆ NG(x1) = X,

Since NG(x) is a clique and X ⊆ NG(x), we conclude that k ≤ 4. If k = 4,
then v3 ∈ X and v2, v4 /∈ NG(x). Hence the cycle x − v2 − v3 − v4 − x is an
induced cycle of length four in Gc, which is a contradiction. Hence k = 3 and
therefore G2 is a cochordal graph. □

Corollary 2.5. For n ≥ 2, cochord(P4(Kn)) = 2.

Lemma 2.6. Let G be a cochordal graph. If G has an induced cycle C4, then
there exists a vertex x, such that cochord(P4(G)) = 3, for some partitions of
NG(x).
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Proof. Let x be a vertex of induced cycle C4 of G and y be a neighborhood
of x among the vertices of cycle C4. Let X = NG(x) \ {y} and Y = {y}.
By this partition of NG(x), the graph P4(G) has an induced cycle C7. If
cochord(P4(G)) = 2 and G1 and G2 are cochrdal, edge-disjoint subgraphs,
which cover the edges of P4(G), then G1 or G2 has an induced path P5. Hence
one of the subgraphsG1 orG2 are not cochordal graph, which is a contradiction.
Hence cochord(P4(G)) = 3. □

Theorem 2.7. Let G be a simple graph. Then

cochord(G) + 1 ≤ cochord(P4(G)).

Proof. Let x ∈ V (G), Y, Z ⊆ N(x) such that Y ∪ Z = N(x) and Y ∩ Z = ∅.
Consider four new vertices x1, x2, a, b. Suppose that

P4(G) = (G− x) + {ay : y ∈ Y }+ {bz : z ∈ Z}+ {x1a, x1x2, x2b}.

Let cochord(P4(G)) = ℓ and G1, · · ·Gℓ be edge disjoint subgraphs of P4(G)

such that E(P4(G)) =
∪ℓ

1 E(Gi) and Gi
c is chordal graph for any 1 ≤ i ≤ ℓ.

Since E(Gi)s cover the edges of P4(G), there exists an i0 such that x2b ∈
E(Gi0). If a /∈ V (Gi0), then NGi0

(a) = ∅ and if a ∈ V (Gi0), since Gc
i0

is
chordal, then NGi0

(a) = {x1}. In any case NGi0
(a) ⊆ {x1}. In addition,

if the edges x1a, x2b ∈ E(Gi0), then x1x2 ∈ E(Gi0). Otherwise the edges
x1x2, x1b, ab, x2a ∈ E(Gi0

c) and therefore Gc
i0

has an induced cycle C4, which
is a contradiction. Thus the path a−x1−x2−b is an induced subgraph of Gi0 .
Since Gc

i0
is chordal, we have Gi0 = a− x1 − x2 − b. Now we for any 1 ≤ i ≤ ℓ

and i ̸= i0 set the graph, Hi := Gi/{a, b} if a, b ∈ V (Gi) and Hi := Gi,
otherwise. Therefore H1,H2, · · · ,Hi0−1,Hi0+1, · · · ,Hℓ is a partition of edges
of G and each Hc

i is chordal by Lemma 2.1. Hence we conclude that

cochord(G) ≤ cochord(P4(G))− 1.

Since E(Gi)s cover the edges of P4(G), without loss of generality, we can
assume x2b ∈ E(G1) and x1a ∈ E(G2). If x1x2 /∈ E(G1)

∪
E(G2), then there

exists 3 ≤ i ≤ ℓ, such that x1x2 ∈ E(Gi). Since Gi
c is a chordal graph, we

conclude that Gi
∼= K2. Now set

H1 := G1 − x2, H2 := G2 − x1.

We conclude that the edge sets of subgraphs

H1, H2, G3, · · · , Gi−1, Gi+1, · · · , Gℓ

is a partition of edges of G and their complements are chordal. Therefore

cochord(G) ≤ cochord(P4(G))− 1.

If x1x2 ∈ E(G1), then NG1(b) is an independent set, because the complement
of G2 is a chordal graph. Suppose that NG1(b) = {x2, w1, w2, · · · , wt} and
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consider the graph

H := (P4(G)− {bw1, bw2, · · · , bwt}) + {aw1, aw2, · · · , awt}.
Set

H1 := a− x1 − x2 − b,H2 := G2 + {aw1, aw2, · · · , awt}
and Hi := Gi for 3 ≤ i ≤ ℓ. It is not difficult to see that the edges of subgraphs
H1,H2, · · ·Hℓ is a partition of edges of H and Hc

i are chordal for 3 ≤ i ≤ ℓ.
Hence the edges of subgraphs H2,H3, · · · ,Hℓ is a partition of edges of G and
we conclude that

cochord(G) ≤ cochord(H) ≤ cochord(P4(G))− 1.

□

3. Open problems

Problem 3.1. Prove or disprove: Let G be a graph with cochord(G) = ℓ. For
any x ∈ V (G), there exist a cochordal cover G1, · · ·Gℓ, such that there exists
1 ≤ i ≤ ℓ which xv ∈ E(Gi), for any v ∈ N(x).

Problem 3.2. For any graph G,

cochord(P4(G)) ≤ cochord(G) + 2.

If the statement of Problem 3.1 is true, then we can solve the Problem 3.2.
Suppose that cochord(G) = ℓ and G1, · · ·Gℓ be edge disjoint subgraphs of G

such that E(G) =
∪l

1 E(Gi), and Gi
c are chordal graphs. Without loss of

generality we can assume that xv ∈ E(G1) for any v ∈ N(x). Hence P4(G1),
G2, · · ·Gℓ, partitioned the edges of P4(G). Now since G1 is a chordal graph,
we conclude that cochord(P4(G)) ≤ cochord(G) + 2, by appling Lemma 2.2.
Also if the statement of Problem 3.1 is true, then by applying Lemma 2.4, the
following lemma is true.

Lemma 3.3. Let G be a graph. Therefore cochord(P4(G, x)) = cochord(G)+1,
if one of the following holds:
i) One of the partition of N(x) is empty;
ii) Induced subgraph ⟨NG(x)⟩ is a clique.

There are some families of graphs such as, complete graph, paths and cycle
of length at least five, with the property cochord(P4(G, x)) = cochord(G) + 1.
Hence it is natural to state the following problem.

Problem 3.4. Characterize all graphs with property that for each vertex x and
each partitions of NG(x), we have cochord(P4(G, x)) = cochord(G) + 1

Problem 3.5. Characterize all graphs G with cochord(P4(G, x)) = 2.

Problem 3.6. Characterize all graphs G for which cochord(P4(G)) = 2.
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