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Abstract. Many simulation algorithms (chemical reaction systems, dif-
ferential systems arising from the modeling of transient behavior in the
process industries and etc.) contain the numerical solution of systems of
differential equations. For the efficient solution of the above mentioned

problems, linear multistep methods or Runge-Kutta technique are used.
For the simulation of chemical procedures the radial Schrödinger equa-
tion is used frequently. In the present paper we will study a symmetric
two-step Obrechkoff method, in which we will use of technique of VSDPL

(vanished some of derivatives of phase-lag), for the numerical integration
of the one-dimensional Schrödinger equation. We will show superiority of
new method in stability, accuracy and efficiency. So we present a stability
analysis and an error analysis based on the radial Schrödinger equation.

Also we will apply the new proposed method to the resonance problem
of the radial Schrödinger equation.
Keywords: P-stable, Phase-lag, Schrödinger equation, trigonometrically
fitted.

MSC(2010): Primary: 65L05; Secondary: 65L06.

1. Introduction

The time-independent Schröodinger equation is one of the basic equations
of quantum mechanics. Its solutions are required in the studies of atomic and
molecular structure and spectra, molecular dynamics and quantum chemistry.
Large research on the construction of numerical methods for the solution of the
Schrödinger equation has been done the last years. The aim and scope of this
research is the construction of fast and reliable methods for the solution of the
Schrödinger equation and related problems.
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Specially, in this subject the following works have been done in recent years:

• Phase-fitted methods and numerical methods with minimal phase-lag
are developed in [1–4,11].

• In [5, 9, 10, 13–19] exponentially and trigonometrically fitted methods
are obtained.

We can divide the numerical methods for the numerical solution of the
Schrödinger equation and related problems into two main categories:

The radial time-independent Shorödinger equation can be written as:

(1.1) y′′(x) =

(
l(l + 1)

x2
+ V (x)− E

)
y(x).

The boundary conditions are y(0) = 0, and a second boundary condition,
for large values of x, determined by physical considerations. The function
W (x) = l(l + 1)/x2 + V (x) is called the effective potential, which satisfies
limx→∞ W (x) = 0. The quantity E = k2 is a real number denoting the energy,
l is a given integer representing the angular momentum, V is a given function
which denotes the potential.

The numerical methods for the approximate solution of the Schrödinger
equation and related problems can be divided into two main categories:

(1) Methods with constant coefficients.
(2) Methods with coefficients depending on the frequency of the problem.

1

Large research on the algorithmic development of numerical methods for the
solution of the Schrödinger equation has been done during the last decades
. The earliest method to solve (1.1) numerically is the Numerov’s method.
Recently Simos have developed 10th algebraic order Obrechkoff method [12].
In [19] an improved trigonometrically fitted P-stable of 12th algebraic order
Obrechkoff method have developed by Wang, Daele and Berghe [17], Sujatha
D. Achar [1] and Vanden Berghe [18] have been developed Obrechkoff method
to solve Second order initial value problems. The purpose of this paper is to
study the importance of the properties of P-stability, trigonometrically-fitting
and VSDPL technique for the numerical integration of the one-dimensional
Schrödinger equation. This will be done via the study of the error analysis,
stability region and the application of the investigated methods to the numerical
solution of the radial Schrödinger equation. We will investigate all of the three
categories of methods, i.e.:

(1) the category of the VSDPL technique, for linear multistep methods,
(2) the category of P-stable linear multistep methods,
(3) the category of trigonometrically-fitted linear multistep methods.

1When using a functional fitting algorithm for the solution of the radial Schrödinger

equation, the fitted frequency is equal to:
√

|l(l+ 1)/x2 + V (x)− k2|.
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In this paper we will use a recent methodology for the development of numerical
methods for the approximate solution periodic initial-value problems. The
new methodology is based on the requirement of vanishing the phase-lag and
its derivatives. Based on this new methodology we will develop a two step
Obrechkoff method which will have vanishing phase-lag and its first and fifth
derivatives. We will apply the new developed method on the numerical solution
of the radial Schrödinger equation. We will study the efficiency of the new
obtained method via:

• a comparative error analysis
• a comparative stability analysis and finally
• the numerical results produced from the numerical solution of the radial

Schrödinger with the application to the specific potential.
More specifically, we will develop a symmetric two step Obrechkoff method

with twelfth algebraic order. The development of the new family of methods
is based on the requirement of vanishing the phase-lag and its first and fifth
derivatives. We will give a comparative error analysis and investigate region of
periodicity in order to show the efficiency of the new proposed method. Finally,
we will apply the new method to the resonance problem. This is one of the
most difficult problems arising from the radial Schrödinger equation.

We have organized the paper as follows:
In Section 2, we present phase-lag analysis of Obrechkoff method. In Section
3, we present the development of the new method. Comparison of the new
method with other methods in accordance to their local truncation error and
their stability is made and remarks and theorems are given in Section 4. In
Section 5, the numerical results are presented. Finally, in Section 6 conclusions
are discussed.

2. Phase-lag analysis of Obrechkoff method

Consider Obrechkoff method of the form:

(2.1)
k∑

j=0

αjyn−j+1 =
l∑

i=1

h2i
k∑

j=0

βijy
(2i)
n−j+1,

The method (2.1) is symmetric when αj = αk−j , βij = βik−j , j = 0(1)k. To
investigate the stability properties of the methods for solving the initial value
problem, Lambert and Watson [8] introduced the scalar test equation

(2.2) y′′ = −ω2y, ω, y ∈ R.

When a symmetric 2-step Obrechkoff method, is applied to the scalar test
equation (2.2), a difference equation of the form:

(2.3) A(v) yn+1 − 2B(v) yn +A(v) yn−1 = 0,
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is obtained, where h is the step length and A(v), B(v) are polynomials of v.
The characteristic equation associated with (2.3) is given by:

(2.4) Ω(ξ, v) = A(v)ξ2 − 2B(v)ξ +A(v) = 0,

where A(v) = 1+
∑l

i=1 (−1)
i−1

βi0v
2 i, and B(v) = 1− 1

2

∑l
i=1 (−1)

i−1
βi1v

2 i,

with v = ωh. The roots of (2.4) are complex and of modulus one if

(2.5)

∣∣∣∣B(v)

A(v)

∣∣∣∣ < 1.

Let the roots of (2.4) be ξ1,2 = e±θ(v), when (2.5) is satisfied. The exact
solution of the test equation (2.2) with the initial conditions y(t0) = y0 and
y ′(0) = y ′

0 is given by

(2.6) y(t) = y0 cos(ωt) +
y ′
0

ω
sin(ωt)

Evaluating (2.6) at tn+1, tn and tn+1 and eliminating y0 and y ′
0, we obtain

y(tn+1)− 2 cos(ωh)y(tn) + y(tn−1) = 0, whose characteristic equation is

(2.7) ξ2 − 2 cos(v) ξ + 1 = 0, v = ωh.

The characteristic equation of (2.4) may be written as

(2.8) ξ2 − 2 cos(θ(v)) ξ + 1 = 0, v = ωh.

where cos(θ(v)) = B(v)/A(v).

Definition 2.1. (see [2]) We define the phase-lag error of the method (2.1) as
the leading coefficient in the expansion of

(2.9)
(A(v) cos(v)−B(v))

v2
,

and denote it by P (v) (The motivation of this definition may be easily noted
to be the difference in the frequency distortion of the characteristic equations
(2.8) and (2.7).). P (s) gives us a direct formula to calculate the phase-lag of
any symmetric 2-step Obrechkoff method.

3. Construction of the new method

From the form (2.1) with l = 3 we get

yn+1 − 2yn + yn−1 = h2
[
β10(y

(2)
n+1 + y

(2)
n−1) + β11y

(2)
n

]
+h4

[
β20(y

(4)
n+1 + y

(4)
n−1) + β21y

(4)
n

]
+h6

[
β30(y

(6)
n+1 + y

(6)
n−1) + β31y

(6)
n

]
.(3.1)
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Recently Simos [12] and Daele [17] have developed tenth order methods also
Wang [19], Achar [1] and Berghe [18] have developed twelfth order methods.
The coefficients due to Wang are given by

β10 =
229

7788
, β20 =

−1

2360
,

β21 =
711

12980
, β30 =

127

39251520
, β31 =

2923

3925152
,(3.2)

where

(3.3) β11 = 2v−2 + β21v
2 − β31v

4 − 2 cos(v)
(
v−2 + β10 − β20v

2 + β30v
4
)
.

Simos’s coefficients are given by

β10 =
89

1878
− 7560

313
β31, β11 =

850

939
+

15120

313
β31,

β20 = − 1907

1577520
+

330

313
β31, β21 =

30257

788760
+

6900

313
β31,

β30 =
59

3155040
− 13

626
β31, β31 =

1

1784160

φ

v2
,(3.4)

where

φ = 190816819200 (1− cos(v))− 95408409600v2 + 7950700800v4

−265023360v6 + 47322560v8 − 52584v10 + 1727v12.

Daele’s coefficients are given by

β10 = 1/39 +
15120

13
β30, β11 =

37

39
− 30240

13
β30, β20 = −660

13
β30 −

17

65520
,

β21 =
1907

32760
− 13800

13
β30, β31 =

59

65520
− 626

13
β30

β30 =

(
131040 + 3360 v2 + 34 v4

)
cos (v)− 131040 + 62160 v2 − 3814 v4 + 59 v6

(15120 + 660 v2 + 13 v4) cos (v)− 15120 + 6900 v2 − 313 v4
.

In the method which proposed by Achar, when letting r = 1(1)6 in below form,
Achar has obtained the coefficients β10, β11, β20, β21, β30 and β31. Because of
its long length we refuse to write it (see [1]).[

sin (rσ)

rσ

]2
= 2 cos (2 rσ)β10 + β11 − 8 r2σ2 cos (2 rσ)β20

−4 r2σ2β21 + 32 r4σ4 cos (2 rσ)β30 + 16 r4σ4β31,

where σ =
ωh

2
.

3.1. Development of the method. In order to find the phase-lag and its
derivatives, we use the formula (2.9). Then we have

P (v) = (cos (v)β30 + 1/2β31) v
4 + (− cos (v)β20 − 1/2β21) v

2

+cos (v)β10 + 1/2β11 +
cos (v)− 1

v2
.(3.5)
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We demand that the phase-lag and its first, second, third, fourth and fifth
derivatives to be equal to zero, the coefficients β10, β11, β20, β21, β30 and β31

are the solution of the system of equations, which arises when we set P (v),
P (j)(v), j = 1(1)5 equal to zero. So we have

β10 =
γ1
ϑv3

, β11 =
γ2
ϑv3

, β20 =
γ3
ϑv5

,(3.6)

β21 =
γ4
ϑv5

, β30 =
γ5
ϑv7

, β31 =
γ6
ϑv7

,

where

γ1 =
(
− 9450− 7290v2 − 18v6 − 540v4

)
(cos(v))3 +

((
− 405v3 − 3v7

−405v − 54v5
)
sin(v)− 1260v4 + 4590v2 + 6v6 + 9450

)
(cos(v))2

+
( (

−4500v3 + 144v5 − 7020v
)
sin(v)− 9180v2 + 9450 + 3870v4

+168v6
)
cos(v) +

(
−9810v3 − 1170v5 + 84v7 + 7425v

)
sin(v)

−9450 + 2520 v4 + 11880 v2 + 24 v6,

γ2 =
(
12v6 + 9180v2 − 2520v4 + 18900

)
(cos(v))4 +

((
14040v − 288v5

+9000v3
)
sin(v)− 1080v4 − 14580v2 − 36v6 − 18900

)
(cos(v))3

+
((

810v3 + 810v + 6v7 + 108v5
)
sin(v)− 24480v4 + 34560v2

−18900 + 816v6
)
(cos(v))2 +

( (
−8064v5 − 28080v + 36000v3

)
sin(v)

+4500v4 + 336v6 − 18360v2 + 18900
)
cos(v)− 168v

((213
14

v4 − 315

4

+
195

2
v2 + v6

)
sin(v)− 4v5 +

450

7
v − 600

7
v3
)
,

γ3 =
(
11340− 648v4 + 4140v2 − 36v6

)
(cos(v))3 +

((
90v5 + 3915v3

+6075v − 3v7
)
sin(v)− 792v4 − 5220v2 − 11340 + 12v6

)
(cos(v))2

+
((

192v5 + 360v3 + 3240v
)
sin(v)− 4302v4 + 336v6 + 10440v2

−11340
)
cos(v) +

(
8550v3 − 1722v5 − 9315v + 84v7

)
sin(v) + 11340

+48v6 − 9360v2 + 1152v4,
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γ4 =
(
−22680 + 24v6 − 1584v4 − 10440v2

)
(cos(v))4 +

((
− 384v5

−720v3 − 6480v
)
sin(v) + 22680− 72v6 + 8280v2 − 1296v4

)
(cos(v))3

+
( (

−7830v3 − 180v5 + 6v7 − 12150v
)
sin(v) + 22680 + 1632v6

−14400v2 − 13536v4
)
(cos(v))2 +

((
− 2880v3 − 10752v5

+12960v
)
sin(v) + 672v6 − 22680 + 14076v4 + 20880v2

)
cos(v)

−168

((
v6 +

1185

14
v2 − 135

4
+

257

14
v4
)
sin(v)− 8v5 − 480

7
v3 +

180

7
v

)
v,

γ5 =
(
−810− 18v6 + 372v4 + 1350v2

)
(cos(v))3 +

((
− v7 + 126v5

−135v3 − 2295v
)
sin(v) + 810 + 270v2 + 6v6 − 12v4

)
(cos(v))2

+
((

48v5 + 540v3 + 1620v
)
sin(v) + 810 + 168v6 − 540v2

−1182v4
)
cos(v) +

(
− 534v5 + 28v7 + 810v3 + 675v

)
sin(v)

−810− 1080v2 + 24v6 + 552v4,

γ6 =
(
12v6 − 24v4 + 1620 + 540v2

)
(cos(v))4 +

((
− 96v5 − 1080v3

−3240v
)
sin(v)− 1620− 36v6 + 2700v2 + 744v4

)
(cos(v))3

+
((

270 v3 − 252 v5 + 2 v7 + 4590 v
)
sin(v)− 1620 + 816 v6

−8640 v2 − 2496 v4
)
(cos(v))2 +

((
− 4320v3 − 2688v5

+6480v
)
sin(v) + 336 v6 + 1620 + 5196 v4 − 1080 v2

)
cos(v)(3.7)

+
(
−56v7 − 7830v + 2700v3 − 564v5

)
sin(v) + 672v6

−2880v4 + 6480v2,

ϑ = sin(v)
(
18v4 + 135v2 + 135 + v6

)
(cos(v))2

−270 cos(v)v3 + sin(v)
(
−28v6 − 18v4 + 270v2 − 135

)
.

The behavior of coefficients of the method are shown in figures 1, to 3. Based
on this procedure we obtain the following expansion for the LTE:

LTE = − 45469

1697361329664000

(
15ω8y(6)n + 15ω4y(10)n

+6ω2y(12)n + y(14)n + 20ω6y(8)n + ω12y(2)n + 6ω10yn

)
h14,
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Figure 1. Behavior of the coefficients β10 and β11 in new method.

Figure 2. Behavior of the coefficients β20 and β21 in new method.

4. Comparative error and stability analysis

In this section we will study the following methods:

• The symmetric two-step Obrechkof tenth algebraic order method de-
veloped by Simos [12].

• The trigonometrically-fitted symmetric two-step P-stable Obrechkof
twelfth algebraic order method developed by Wang [19].

• The symmetric two-step Obrechkof tenth algebraic order method de-
veloped by Daele [17].

• The trigonometrically-fitted symmetric two-step Obrechkof twelfth al-
gebraic order method developed by Achar [1] with the set {cos(P ω h)}
where P = 1(1)6.
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Figure 3. Behavior of the coefficients β30 and β31 in new method.

• The exponentially-fitted two-step Obrechkoff twelfth algebraic order
method developed by Vanden Berghe [18] with the set {1, x, . . . , x5,
exp(±ωh), x exp(±ωh)}.

• The new developed two-step Obrechkof twelfth algebraic order method
with use of VSDPL technique in which we derive method with vanished
the set {p(v), p(i)(v), i = 1(1)5} where P (v) is phase-lag of new method
and v = ωh.

So, we have the following methods:
The symmetric two-step Obrechkof method developed by Simos

(4.1) LTESimos = − 2923

209898501120
y(12)n h12.

The P-stable trigonometrically-fitted symmetric two-step Obrechkof method
developed by Wang

(4.2) LTEWang =
45469

1697361329664000

(
−y(14)n + ω12y′′n

)
h14.

The symmetric two-step Obrechkof method developed by Daele

(4.3) LTEDaele =
127

43589145600
yn

(12)h12.

The trigonometrically-fitted symmetric two-step Obrechkof method developed
by Achar

(4.4) LTEAchar = − 45469

1697361329664000
(T )h14,

where

T = 296296ω8y(6)n + 3003ω4y(10)n + 91ω2y(12)n + y(14)n + 44473ω6y(8)n

+773136ω10y(4)n + 518400ω12y(2)n .
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The Exponentially-fitted two-step Obrechkof method developed by Vanden
Berghe

LTEV anBer = − 45469

1697361329664000

(
ω4y(10)n + y(14)n + 2ω2y(12)n

)
h14(4.5)

The new two-step Obrechkof method of this paper

(4.6) LTENew = − 45469

1697361329664000
(T )h14,

where

T = 15ω8y(6)n + 15ω4y(10)n + 6ω2y(12)n + y(14)n + 20ω6y(8)n

+ω12y(2)n + 6ω10y(4)n .

Theorem 4.1. For the numerical solution of the time independent radial
Schrödinger equation the new proposed method produced in this paper is the
most accurate method, especially for large values of |G| = |V c− E|.

Proof. The radial time independent Schrödinger equation is of the form

(4.7) y
′′
(x) = f(x) y(x).

Based on the paper of Ixaru and Rizea [6], the function f(x) can be written
in the form f(x) = g(x) + G, where g(x) = V (x) − Vc = g, and Vc is the
constant approximation of the potential and G = v2 = Vc −E. We express the

derivatives y
(i)
n , i = 2, 3, 4, · · · , which are terms of the local truncation error

formulae, in terms of Eq. (4.7). The expressions are presented as polynomials
of G. Finally, we substitute the expressions of the derivatives, into the local
truncation error formulae. We use the procedure mentioned above and the
formulae:

y(2)n = (V (x)− Vc +G)y(x),

y(4)n =

(
d2

dx2
V (x)

)
y(x) + 2

(
d

dx
V (x)

)(
d

dx
y(x)

)
+(V (x)− Vc +G)

(
d2

dx2
y(x)

)
,

y(6)n =

(
d4

dx4
V (x)

)
y(x) + 4

(
d3

dx3
V (x)

)(
d

dx
y(x)

)
+3

(
d2

dx2
V (x)

)(
d2

dx2
y(x)

)
+ 4

(
d

dx
V (x)

)2

y(x)

+6(V (x)− Vc +G)

(
d

dx
V (x)

)(
d

dx
y(x)

)
+4(V (x)− Vc +G)

(
d2

dx2
V (x)

)
y(x)

+(V (x)− Vc +G)2
(
d2

dx2
y(x)

)
· · · .
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We consider two cases in terms of the value of E:
1-The energy is close to the potential, i.e. G = Vc − E ≈ 0. So only the
free terms of the polynomials in G are considered. Thus for these values of
G, the methods are of comparable accuracy. This is because the free terms of
the polynomials in G, are the same for the cases of the classical method and
of the new developed methods and of comparable accuracy for the method of
Wang [19].
2- G ≫ 0 or G ≪ 0. Then |G| is a large number.
So, we have the following asymptotic expansions of the local truncation errors:
The method produced by Simos [12]

(4.8) LTE Simos = h12

(
− 2923

209898501120
y(x)G6 + · · ·

)
.

The P-stable trigonometrically-fitted method produced by Wang [19]

(4.9) LTE Wang = h14

(
− 45469

282893554944000
g(x) y(x)G6 + · · ·

)
.

The method produced by Daele [17]

(4.10) LTE Daele = h12

(
− 45469

282893554944000
y(x)G6 + · · ·

)
.

The method produced by Achar [1]

(4.11) LTE Achar = h14

((
45469

5612967360
g(x) y(x)

)
G6 + · · ·

)
.

The method produced by Van den Berghe in [18]

(4.12) LTEV an = − 45469

1697361329664000
h14 [TV an] .

where

(4.13) TV an =

((
(g(x))2 + 21

d2

dx2
g(x)

)
y(x)+ 2

(
d

dx
g(x)

)(
d

dx
y(x)

))
G5 + · · · .

The new method produced in this paper

LTENew = − 45469

17680847184000
h14 (ψ(x)G3 + · · ·

)
,(4.14)

ψ(x) =

((
d4

dx4
g(x)

)
g(x) +

5

2

(
d

dx
g (x)

)
d3

dx3
g(x)

+
5

3

(
d2

dx2
g(x)

)2

+
3

2

d6

dx6
g (x)

)
y(x)

+
1

3

(
d5

dx5
g(x)

)
d

dx
y(x).
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method Algebraic order Order of G CFAE
Simos 12 6 − 2923

209898501120
Daele 12 6 127

43589145600
Achar 14 6 45469

5612967360
Wang 14 6 − 45469

282893554944000
Vanden Berghe 14 5 − 45469

1697361329664000
New method 14 3 − 45469

17680847184000

Table 1. Comparative error analysis for the methods. CFAE
is the coefficient of the maximum power of G in the asymptotic
expansion and order of G is the order of the maximum power
of G in the asymptotic expansion of the local truncation error.

Hence, for the Wang’s, Achar’s, Simos’s and Daele’s Methods the error in-
creases as the sixth power of G. For the Van den Berghe’s Method the error
increases as the fifth power of G. For new method produced in this paper the
error increases as the third power of G (see Table 1.). So, for the numerical
solution of the time independent radial Schrödinger equation the new proposed
method produced in this paper is the most accurate Method, especially for
large values of |G| = |Vc − E|. □

In order to define the interval of periodicity we follow the procedure:
(1) Application of the proposed method to the scalar test equation: The method
(3.1) with the coefficients (3.2) is applied to the scalar test equation y′′ = −ϑ2y,
where ϑ ̸= ω.
(2) Definition of the difference equation and the corresponding characteristic
equation: We obtain the following difference equation:

(4.15) Dm(s2; v) yn+1 − 2Nm(s2; v) yn +Dm(s2; v) yn−1 = 0,

where s = ϑh, h is the step length and Dm(s2; v) and Nm(s2; v) are poly-
nomials of s , v where Dm(s2; v) = 1 −

∑m
i=1(−s2)iβi0 and Nm(s2; v) = 1 +∑m

i=1(−s2)iβi1. The rational function Rmm(s2; v) = Dm(s2;v)
Nm(s2;v) is the stability

function of the method (remark that in the classical case v = 0 ). The charac-
teristic equation arising from (4.15) is v2 − 2Rmm(s2; v)v + 1 = 0.

A polynomial-based or classical method with stability function Rmm (s2; v =
0) = Rmm(s2) has an interval of periodicity (0, s20) if

∣∣Rmm(s2)
∣∣ < 1 for 0 <

s2 < s20. The method is P-stable if
∣∣Rmm(s2)

∣∣ < 1 for all real s ̸= 0. For the
classic method we have

(4.16) R3 3(s
2; v) =

1− 3665
7788s

2 + 711
25960s

4 − 2923
7850304s

6

1 + 229
7788s

2 + 1
2360s

4 + 127
39251520s

6
.
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For a method with coefficients depending on the frequency of the problem with
stability function Rmm(s2; v) the corresponding question of practical interest
is this for a given method (i.e., a given ω) and a given test frequency (i.e.,
given each value of ϑ relevant to the problem), what restriction, if any, must
be placed on the step length h to ensure that the condition Rmm(s2; v) is
satisfied. Coleman and Ixaru [5] have phrased this answer in three definitions
for methods with general stability functions of the form Rnm(s2; v).

In Fig. 4, we present the s− v plane for the new methods produced in this
paper. A shadowed area denotes the s− v region where the method is stable,
while a white area denotes the region where the method is unstable.

Definition 4.2. (see [5])A method is called singularly almost P-stable if its
interval of periodicity is equal to (0,∞)- S2 only when the frequency of the
exponential fitting is the same as the frequency of the scalar test equation, i.e.
s = v.

A method is P-stable if the s − v plane is completely shadowed. It can be
seen the following:

• The Wang’s method [19] is P-stable only in the case in which s = v,
i.e. if the frequency of the method is equal to the frequency of the scalar test
equation then we can say that this method is a singularly P-stable method (see
Definition 4.2) and we comprehend that Van den Berghe’s and new methods
are singularly P-stable methods.

• It is necessary to observe the surroundings of the first diagonal of the s−v
plane because for the solution of the Schrödinger equation the frequency of the
method is equal to the frequency of the scalar test equation. For new method
we see that the surroundings of the first diagonal of the s−v plane is bigger than
Wang’s method with properties of P-stability and Van den Berghe’s method
with properties of trigonometrically-fitted.

• There are areas in Figs. 4 that are white and in which the conditions of sta-
bility are not satisfied. In the new symmetric two-step Obrechkoff method with
vanished phase-lag and its derivatives this areas (white) are fewer than both
Wang’s and Van den Berghe’s methods with property P-stable and trigonometr-
ically-fitted respectively.

Remark 4.3. Stability region for method in which we use VSDPL technique is
better than methods in which is used from property of trigonometrically-fitted
and P-stable in a symmetric two-step Obrechkoff method for the numerical
integration of the Schrödinger equation.

2Where S is a set of distinct points.
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Figure 4. The stability plane for new method with VSDPL
technique (left), trigonometrically-fitted (center) and P-stable
method developed by Wang (right). The stable regions are
colored in dark red.

5. Numerical results

In order to illustrate the efficiency of the new method given by the coefficients
in appendix A we apply it to the radial time independent Schrödinger equation.
In order to apply the new method to the radial Schrödinger equation the value
of parameter v is needed. For every problem of the one-dimensional Schrödinger
equation given by (1.1) the parameter v is given by

v =
√

|q(x)| =
√

|V (x)− E|,(5.1)

where V (x) is the potential and E is the energy.

5.1. Woods-Saxon potential. We use as potential the well-known Woods-
Saxon potential given by

(5.2) V (x) =
u0

1 + z
− u0z

a(1 + z)2
,

with z = exp[(x−X0)/a], u0 = −50, a = 0.6, and X0 = 7.0 .
The behavior of Woods-Saxon potential is shown in Fig. 5.
It is well known that for some potentials, such as the Woods - Saxon potential,
the definition of parameter v is not given as a function of x but based on some
critical points which have been defined from the investigation of the appropriate
potential (see for details [7]).
For the purpose of obtaining our numerical results it is appropriate to choose
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Figure 5. The Woods-Saxon potential.

v as follows (see for details [7]):

v =



√
E − 50, x ∈ [0, 6.5− 2h],√
E − 37.5, x = 6.5− h,√
E − 25, x = 6.5,√
E − 12.5, x = 6.5 + h,√
E, x ∈ [6.5 + 2h, 15].

5.2. Schrödinger equation-resonance problem. Consider the numerical
solution of the radial time-independent Schrödinger equation (1.1) in the well-
known case of the Woods- Saxon potential (5.2). In order to solve this problem
numerically we need to approximate the true (infinite) interval of integration
by a finite interval. For the purpose of our numerical illustration we take the
domain of integration as x ∈ [0, 15]. We consider Eq. (1.1) in a rather large
domain of energies, i.e. E ∈ [1, 1000].
In the case of positive energies, E = k2, the potential dies away faster than the

term l(l+1)
x2 and the Schrödinger equation effectively reduces to

(5.3) y′′(x) =

(
k2 − l(l + 1)

x2

)
y(x),

for x greater than some value X.
The last equation has two linearly independent solutions kxjl(kx) and kxnl(kx),
where jl(kx) and nl(kx) are the spherical Bessel and Neumann functions re-
spectively. Thus the solution of Eq. (1.1) has When (x → ∞) the solution
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takes the asymptotic form

y(x) ≈ Ak x jl(k x)−B k xnl(k x)(5.4)

≈ D [sin(k x− πl/2) + tan(δ l) cos(kx− πl/2)],

where δ l is called scattering phase-shift that may be calculated from the formula

(5.5) tan(δl) =
y(xi)S(xi+1)− y(xi+1)S(xi)

y(xi+1)C(xi)− y(xi)C(xi+1)
,

for x1 and x2 distinct points in the asymptotic region (we choose x1 as the
right-hand end point of the interval of integration and x2 = x1 − h) with
S(x) = kxjl(kx) and C(x) = −kxnl(kx). Since the problem is treated as an
initial-value problem, we need y0 before starting a one-step method. From the
initial condition we obtain y0. With these starting values we evaluate at x1 of
the asymptotic region the phase-shift δl.

For positive energies we have the so-called resonance problem. This problem
consists either of finding the phase-shift δl or finding those E, for E ∈ [1, 1000],
at which δl =

π
2 . We actually solve the latter problem, known as the resonance

problem when the positive eigenenergies lie under the potential barrier.
The boundary conditions for this problem are:

(5.6) y(0) = 0, y(x) = cos(
√
Ex), for large x.

We compute the approximate positive eigenenergies of the Woods - Saxon res-
onance problem using:

Figure 6. Error Errmax for several values of n for the eigen-
value E3 = 163.215341. The nonexistence of a value of Errmax
indicates that for this value of n, Errmax is positive
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Figure 7. Error Errmax for several values of n for the eigen-
value E4 = 53.588872.

• The symmetric two-step Obrechkof tenth algebraic order method de-
veloped by Simos [12] which is indicated as MethodI.

• The symmetric two-step Obrechkof tenth algebraic order method de-
veloped by Daele [17] which is indicated as MethodII.

• The trigonometrically-fitted symmetric two-step Obrechkof twelfth al-
gebraic order method developed by Achar [1] with the set {cos(P ω h)}
where P = 1(1)6 which is indicated as MethodIII.

• The trigonometrically-fitted symmetric two-step P-stable Obrechkof
twelfth algebraic order method developed by Wang [19] with phase-
lag (frequency distortion) infinity which is indicated as MethodIV.

• The Exponentially-fitted two-step Obrechkof twelfth algebraic order
method developed by Van den Berghe [18] with the set {1, x, · · · , x5,
exp(±ωh), x exp(±ω h)} which is indicated as MethodV.

• The new developed two-step Obrechkof twelfth algebraic order method
with use of VMDPL technique in which we derive method with vanished
set {p(v), p(i)(v) , i = 1(1)5} where P (v) is phase-lag of new method
and v = ωh which is indicated as MethodVI.

The computed eigenenergies are compared with exact ones. In Figs. 6 and 7
we present the maximum absolute error log10(Err) where

(5.7) Err = ∥Ecalculated − Eaccurate∥

of the eigenenergy E3 = 163.215341 and E4 = 53.588872 respectively, for
several values of NFE= Number of Function Evaluations. Also in Figs. 8
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and 9 we present the maximum absolute error log10(Err), of the eigenenergy
E1 = 989.701916 and E2 = 341.495874 respectively, for several values of NFE.

Figure 8. Error Errmax for several values of n for the eigen-
value E1 = 989.701916.

Figure 9. Error Errmax for several values of n for the eigen-
value E2 = 341.495874.
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6. Conclusions

In the present paper we have developed a new P-stable method of twelfth
algebraic order for the numerical solution of the radial Schrödinger equation.

We have applied the new method to the resonance problem of the one-
dimensional Schrödinger equation. Based on the results presented above we
have the following conclusions:

• The Wang’s method (IV) is more efficient than the Simos’s, Daele’s
and Achar’s methods (I,II,III).

• The second trigonometrically-fitted method developed by Vanden Berghe
(V) in [18] is more efficient than the Wang’s method (IV) with prop-
erties of P-stable and also is much more efficient than the method
developed by Simos, Achar and Daele.

• The new developed method (VI) is much more efficient than all the
other methods.

Remark 6.1. Using the technique of vanished phase-lag and its derivatives
in multistep Obrechkoff methods for the numerical solution of the Schrödinger
equation, insure us that the principal term of the local truncation error contains
the energy with a minimum power, which renders the method highly efficient
for the problem and especially for high values of eigenenergies. So, technique
of VSDPL is more important than property of trigonometrically-fitted and
P-stable in multistep Obrechkoff methods for the numerical solution of the
Schrödinger equation.
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