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Abstract. In this paper, we deal with the subdifferential concept on
Hadamard spaces. Flat Hadamard spaces are characterized, and neces-
sary and sufficient conditions are presented to prove that the subdiffer-
ential set in Hadamard spaces is nonempty. Proximal subdifferential in

Hadamard spaces is addressed and some basic properties are highlighted.
Finally, a density theorem for subdifferential set is established.
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convexity.
MSC(2010): Primary: 49J52; Secondary: 49J27, 46N10.

1. Introduction

Nonsmooth analysis, which refers to differential analysis in the absence of
differentiability, has grown rapidly in the past decades. Nonsmooth analysis
has come to play a vital role in functional analysis, optimization, mechanics,
differential equations, etc. The differential analysis in the absence of differen-
tiability is done utilizing the subdifferential notion, which has been introduced
in 1960, by Moreau and Rockafellar.

Although there is an abundant literature about nonsmooth analysis and
nonsmooth optimization on locally convex topological vector spaces (see e.g.
[3,11,14–16] and the references therein), in nonlinear spaces, it is a very young
field. In the recent years, this and related topics have become of strong in-
terest in variational analysis, optimization theory, and their applications. It
is not only by pure mathematical reasons, but also due to important appli-
cations to some classes of problems, which cannot be adequately described in
standard Euclidean or Banach frameworks while can be perfectly modeled in
the Hadamard space settings. Azagra et al. [4, 5] defined subdifferential con-
cept and some related issues on Riemannian manifolds. Many of the results on
Hadamard manifolds remain true for complete CAT(0) space, as a well-known
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and nice nonlinear space. Since such results help in describing some impor-
tant real world problems which are not linear or yet smooth (e.g. the problem
of finding a gradient flow [6]), nowadays there has been a lot of attention to
optimization and control theory on these spaces. A crucial problem in opti-
mization and control theory is studying subdifferential notion and its related
objects. Due to these, it seems vital to work with subdifferential on CAT(0)
spaces to develop the theory. In fact, the concept of subdifferential is very
different in nonlinear spaces, because we do not have vector tools no longer.
An important example of nonlinear spaces, is metric spaces with nonpositive
curvature, developed by Aleksandrov [2]. Hadamard spaces (also named Alek-
sandrov ℜ0 domains or complete CAT(0) spaces) are such spaces that have
some nice properties similar to Hilbert spaces, and hence these are widely-used
in optimization and nonsmooth analysis.

Two basic tools which are required to develop nonsmooth analysis in Hadam-
ard spaces are dual space and subdifferential. These two important concepts
have been defined and investigated in a recently-published paper by Ahmadi-
Kakavandi and Amini [1]. An important question about subdifferential set
is that under which conditions it is nonempty. In this paper, necessary and
sufficient conditions for nonemptyness of the subdifferential set, with respect to
convexity, are proved. Using these conditions, a density theorem is given which
shows that the set of the points with nonempty subdifferential set is dense in
the domain of the function. Moreover, flat Hadamard spaces are characterized
and proximal subdifferential in Hadamard spaces is addressed and some of its
basic properties are established.

Section 2 contains the preliminaries and section 3 is devoted to the main
results.

2. Some guidelines for using standard features

Let (X, d) be a metric space. A constant speed geodesic is a path γ de-
fined on a closed interval I ⊆ R into X such that d(γ(t), γ(t′)) = v|t − t′|, for
some v > 0 and all t, t′ ∈ I. v is called the speed of geodesic γ. A geodesic
space is a metric space (X, d) such that there is a geodesic between each pair
of its points [10]. If such a geodesic is unique for each two points, we call X
a uniquely geodesic space. An important class of uniquely geodesic spaces is
that of Hadamard spaces.
An Hadamard space is a complete simply connected metric space of nonpos-
itive curvature in the sense of Aleksandrov [7, 9, 10]. Equivalently a complete
metric space (X,d) is an Hadamard space if and only if it satisfies the CAT(0)
inequality, that is: for each pair of points x, y ∈ X and t ∈ [0, 1], there exists
xt ∈ X such that

d2(z, xt) ≤ (1− t)d2(x, z) + td2(z, y)− t(1− t)d2(x, y),
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for every z ∈ X; see [7, 12]. Since each Hadamard space is a uniquely geodesic
space, there exists a one to one correspondence between X × X and the set
of all geodesic segments in X. We call each ordered pair (x, y) ∈ X × X, a

bound vector and denote it by −→xy. We consider
−→
0x = −→xx as zero bound vector

at x ∈ X and −−→xy as the bound vector −→yx. Two bound vectors −→xy and −→wz
are called admissible if y coincides with w. The summation of two admissible
bound vectors −→xy and −→yz is defined by −→xy +−→yz = −→xz; see [8] for more detail.

Hereafter, assume that X is an Hadamard space.
The quasi-inner product on Hadamard spaces is defined as follows [8]:

⟨−→xy,−→wz⟩ = 1

2
d2(x, z) +

1

2
d2(y, w)− 1

2
d2(x,w)− 1

2
d2(y, z),

for all x, y, z, w ∈ X.
Suppose that the function f is defined on Hadamard space X to R = R ∪

{−∞,+∞}. The effective domain of f , domf , is the set of all x ∈ X such
that f(x) < +∞ and the epigraph of f is the set {(x, r) : f(x) ≤ r} ⊆ X ×R.
Moreover f is called proper, if for all x ∈ X, f(x) > −∞ and domf ̸= ∅.

Through this paper, we use the notation [x, y] for both closed interval in
R and the image of the geodesic joining x, y in X. For every x, y ∈ X and
t ∈ [0, 1], there is a unique xt ∈ [x, y] such that d(x, xt) = td(x, y). We denote
such element by (1− t)x⊕ ty; see [12]. Clearly [x, y] = {xt : t ∈ [0, 1]}.

A set C ⊆ X is said to be convex if for every x, y ∈ C, the image of the
unique geodesic joining them, is a subset of C; see [10]. Suppose that C is a
convex set. The function f : C −→ R is a convex function if for each constant
speed geodesic γ in C, the function foγ is convex as a function defined on
a subset of R into R; see [10]. Equivalently, f is a convex function if for all
x0, x1 ∈ C and λ ∈ [0, 1],

f((1− λ)x0 ⊕ λx1) ≤ (1− λ)f(x0) + λf(x1).

To define the subdifferential of a convex function in an Hadamard space X,
one needs the dual space notion for X. For this purpose, Ahmadi-Kakavandi
and Amini [1] introduced an equivalence relation on R × X × X defined by

(t, a, b) ∼ (s, c, d) whenever t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩ for all x, y ∈ X. They intro-

duced the equivalence class of (t, a, b) as follows:

[t
−→
ab] := {(s, c, d) : t⟨

−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩, ∀x, y ∈ X}.

Using this equivalent class notion, they defined the dual space of X by

X∗ := {[t
−→
ab] : (t, a, b) ∈ R×X ×X}.

Considering x∗ = [t
−→
ab] and x, y ∈ X, the value of x∗ at −→yx is defined as

⟨x∗,−→yx⟩ := t⟨
−→
ab,−→yx⟩.



On subdifferential in Hadamard spaces 710

The subdifferential of a function f : X −→ R at x ∈ X, is the set

∂f(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ ⟨x∗,−→xy⟩}.
This set on Hadamard spaces has been investigated in [1] at first.

3. Main results

Various important results about subdifferentials, which hold under topologi-
cal vector spaces, are not valid on Hadamard spaces in general. Due to this, we
start this section by introducing the concept of flat Hadamard spaces. After
providing a characterization of flat Hadamard spaces, we establish some ba-
sic properties of subdifferentials under these spaces, though some of the given
results are valid in general Hadamard spaces.

Definition 3.1. An Hadamard space X is said to be flat if for each x, y ∈ X
and λ ∈ [0, 1], the following property is satisfied:

(3.1) d2(z, xλ) = (1− λ)d2(x, z) + λd2(y, z)− λ(1− λ)d2(x, y),

for all z ∈ X.

The following theorem provides a useful characterization of flat Hadamard
spaces.

Theorem 3.2. An Hadamard space X is flat if and only if for each x, y ∈ X,
and λ ∈ [0, 1], we have

⟨−−→xxλ,
−→
ab⟩ = λ⟨−→xy,

−→
ab⟩,

for all a, b ∈ X.

Proof. Suppose that X is a flat Hadamard space and a, b ∈ X. Then we have

d2(a, xλ)− d2(x, a) = −λd2(x, a) + λd2(y, a)− λ(1− λ)d2(x, y),

and

−d2(b, xλ) + d2(x, b) = λd2(x, b)− λd2(y, b) + λ(1− λ)d2(x, y).

Summing two equations, we get

d2(a, xλ) + d2(b, x)− d2(a, x)− d2(b, xλ)
= λ(d2(a, y) + d2(b, x)− d2(a, x)− d2(b, y)).

Equivalently ⟨−−→xxλ,
−→
ab⟩ = λ⟨−→xy,

−→
ab⟩.

Conversely, if for all a, b ∈ X and λ ∈ [0, 1], ⟨−−→xxλ,
−→
ab⟩ = λ⟨−→xy,

−→
ab⟩, then

putting a = x, we have

d2(x, b) + d2(x, xλ)− d2(xλ, b) = λd2(x, b) + λd2(y, x)− λd2(y, b),

for all b. Therefore

d2(xλ, b) = (1− λ)d2(x, b) + λd2(y, b)− λd2(y, x) + d2(x, xλ).
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Hence

d2(xλ, b) = (1− λ)d2(x, b) + λd2(y, b)− λ(1− λ)d2(x, y),

and the proof is completed. □

It is well-known that, each Hilbert space is a flat Hadamard space. In the
following theorem, we introduce some conditions under which a flat Hadamard
real vector space is a Hilbert space. Recall that, X is a flat Hadamard real
vector space if it is a real vector space satisfying Definition 3.1. A metric d on
X enjoys the translation invariance property if

d(x+ z, y + z) = d(x, y) ∀x, y, z ∈ X.

Theorem 3.3. Suppose that (X, d) is an Hadamard real vector space with
translation invariant metric. If X is flat, then it is a Hilbert pace.

Proof. Suppose that x is an arbitrary point in X and l := d(x, 0). Let γ be the
geodesic parameterized by arc length from 0 to x. For each t ∈ [0, 1],

d(tx, 0) = d(γ(tl), γ(0)) = tl = td(x, 0).

If t > 1, then

d(
1

t
tx, 0) =

1

t
d(tx, 0).

Thus

d(tx, 0) = td(x, 0).

For t < 0, since d is translation invariant, we get

d(tx, 0) = d(−tx, 0) = −td(x, 0) = |t|d(x, 0).

Therefore d(tx, 0) = |t|d(x, 0) for all t ∈ R. Now, we define

∥x∥ = d(x, 0).

Then

∥x+ y∥ = d(x+ y, 0) = d(x,−y) ≤ d(x, 0) + d(0,−y) = d(x, 0) + d(y, 0) = ∥x∥+ ∥y∥.

Furthermore, ∥x∥ = 0 if and only if d(x, 0) = 0 if and only if x = 0. By the
above argument,

∥tx∥ = |t|∥x∥.
Therefore, X is a normed Hadamard space, and hence it is a Hilbert space. □

Remark 3.4. Although each Hilbert space is a flat Hadamard space, Lurie [13]
proved that each flat Hadamrd space is isometric to a (nonempty) closed convex
subset of a Hilbert space. It is clear that a flat Hadamrd space may not be a
vector space and then it may not be a Hilbert space. For example, consider
the closed unit ball in an arbitrary Hilbert space (see p. 14 in [6]).
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Some properties of the subdifferentials defined in Topological Vector Spaces
(TVSs), can not be generalized to Hadamard spaces. For example, if X is
a locally convex TVS and ∂f(x) ̸= ∅ for all x ∈ X, then f is convex and
conversely, if f is a proper and convex function then for each x ∈ int(domf)
such that f is continuous at x, we have ∂f(x) ̸= ∅ (Theorem 7.12 in [3]). The
following theorem gives a sufficient condition for convexity in flat Hadamard
spaces based upon the subdifferential notion, though it is not correct in general
Hadamard spaces necessarily. For example, considering some special metrics

(see Chapter 2 in [9]) the function f(x) = ⟨
−→
ab,−→cx⟩ has nonempty subdifferential

in each point while it is not necessarily convex.

Theorem 3.5. Suppose that X is a flat Hadamard space. If ∂f(x) ̸= ∅ for
each x, then f is convex.

Proof. Let x, y ∈ X, λ ∈ (0, 1) be arbitrary and x∗ ∈ ∂f(xλ) in which xλ =
(1− λ)x⊕ λy. Then

f(y)− f(xλ) ≥ ⟨x∗,−−→xλy⟩ = −⟨x∗,−−→yxλ⟩
= −(1− λ)⟨x∗,−→yx⟩ = (1− λ)⟨x∗,−→xy⟩.

Similarly, we get
f(x)− f(xλ) ≥ −λ⟨x∗,−→xy⟩.

Multiplying the above inequalities by λ and (1− λ), respectively, we have

f(xλ) ≤ (1− λ)f(x) + λf(y).

Thus f is convex. □
We continue the paper with proximal subgradient notion and some of its

basic properties.

Definition 3.6. x∗ ∈ X∗ is a proximal subgradient of the function f : X −→ R
if there exist positive numbers k and r such that

f(x) ≥ f(x0) + ⟨x∗,−−→x0x⟩ − kd2(x0, x) ∀x ∈ B(x0, r).

The set of all proximal subgradients of f at x is called proximal subdifferential
of f at x. We use the notation ∂P f(x0) for proximal subdifferential of f at x0.

The following theorem gives some important properties of the (proximal)
subdifferential set. In part (iii) of this theorem, we use the summation on X∗

as defined in [1] (See equation (7) in [1]). The proofs of parts (ii) and (iv) is
not difficult and hence omitted.

Theorem 3.7.
(i) ∂f(x) ⊆ ∂P f(x) for all x ∈ X. Moreover if f is convex and X is flat,

then ∂f = ∂P f .
(ii) If f attains its minimum (global) at x0, then 0X∗ ∈ ∂f(x0).
(iii) Let λ, µ ∈ R. If ∂Pλf(x) + ∂Pµg(x) is a subset of X∗ (resp. ∂λf(x) +

∂µg(x) is a subset of X∗), then ∂Pλf(x) + ∂Pµg(x) ⊆ ∂P (λf + µg)(x)
(resp. ∂λf(x) + ∂µg(x) ⊆ ∂(λf + µg)(x)).
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(iv) ∂(cf) = c∂f and ∂P (cf) = c∂P f for all c > 0.

Proof. (i) Clearly ∂f(x) ⊆ ∂P f(x) for all x ∈ X. Suppose that x∗ ∈
∂P (f)(x0). Then for some positive r, k,

f(x)− f(x0) ≥ ⟨x∗,−−→x0x⟩ − kd2(x, x0),

for each x ∈ B(x0, r). Let z be an arbitrary point of X and λ ∈ [0, 1].
By convexity of f , we have
(1− λ)f(x0) + λf(z)− f(x0) ≥ f(xλ)− f(x0)

≥ ⟨x∗,−−−→x0xλ⟩ − kd2(xλ, x0)
= λ⟨x∗,−→x0z⟩ − kλ2d2(x0, z),

in which xλ = (1− λ)x0 ⊕ λz. Dividing the above inequality by λ and
tending λ to 0, we get the desired result.

(ii) If x∗
1 + x∗

2 ∈ ∂Pλf(x) + ∂Pµg(x), then there exist positive numbers
k1,k2 and r1, r2 such that

λf(y) ≥ λf(x) + ⟨x∗
1,
−→xy⟩ − k1d

2(x, y)

for all y ∈ B(x, r1), and

µg(y) ≥ µg(x) + ⟨x∗
2,
−→xy⟩ − k2d

2(x, y)

for all y ∈ B(x, r2). Setting k = k1 + k2 and r = min{r1, r2} and
summing the above two inequalities, the desired result is obtained.
The proof for ∂ is similar.

□
One important question arising in this topic is, “when ∂f(x) ̸= ∅?”. This

question is very important in optimization from both theoretical and compu-
tational standpoints. The following theorem addresses this issue. This result
holds in general Hadamard spaces.

Theorem 3.8. Suppose that f is lsc and convex; and X0 = (x0, f(x0)) is the
closest point of epif to a point E = (e, re) /∈ epi(f) such that f(x0) ̸= re. Then
∂f(x0) ̸= ∅.

Proof. Since X0 is the closest point to E, for each A = (a, ra) ∈ epif satisfying
A ̸= X0, we have ∠X0(E,A) ≥ π

2 (see Proposition 2.4 in [9]). Consequently

ρ2(A,X0) + ρ2(X0, E) ≤ ρ2(A,E),

in which ρ is the metric of the space X× R defined as follows:

ρ2((x1, r1), (x2, r2)) = d2(x1, x2) + (r2 − r1)
2.

Thus

d2(a, x0) + d2(x0, e) + (f(x0)− ra)
2 + (f(x0)− re)

2 ≤ d2(a, e) + (re − ra)
2.

An easy calculation implies

⟨−→x0e,
−→x0a⟩ ≤ (ra − f(x0))(f(x0)− re).
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Since ra may increase infinitely, f(x0)− re > 0. Putting ra = f(a), we get

⟨x∗,−→x0a⟩ ≤ f(a)− f(x0), ∀a ∈ domf,

in which

x∗ = [
1

f(x0)− re

−→x0e].

Clearly the above inequality holds for each a /∈ domf . Hence x∗ ∈ ∂f(x0), and
the proof is completed. □

The following lemma shows that the assumption of Theorem 3.8 holds for
each interior point of domf .
In fact, Theorem 3.8 proves that if the point under consideration is the pro-
jection of a point outside of epi(f) and these two points do not have the same
values on f -axis, then the subdifferential set is nonempty. Lemma 3.9 shows
that the assumption considered in Theorem 3.8 can be reduced for interior
points. The metric ρ is as used in the previous result.

Lemma 3.9. Suppose that f is lsc and convex. Assume that x0 ∈ int(domf)
and X0 = (x0, f(x0)) is the nearest point of epif to Y0 = (y0, r0). Then
r0 ̸= f(x0).

Proof. By contradiction, assume that r0 = f(x0). There exists r > 0 and
λ0 ∈ [0, 1] such that B(x0, r) ⊆ domf and

(1− λ)x0 ⊕ λy0 ∈ B(x0, r)

for each λ ∈ [0, λ0]. First suppose that there exists λ1 ∈ (0, 1) such that

x1 = (1− λ1)x0 ⊕ λ1y0 ∈ B(x0, r) ∩ [x0, y0]

and f(x0) < f(x1). Put

X1 = (x1, f(x1)) ∈ epif.

Then ∠X0(Y0, X1) ≥
π

2
.

Let

σ : [0,∞) −→ X× R
be the unit speed geodesic emanating from X0 defined by

σ(t) := (x0, f(x0) + t).

Setting κ(t) := ρ(σ(t), Y0) for t ≥ 0, let

γt : [0, κ(t)] −→ [σ(t), Y0],

be the unit speed geodesic emanating from σ(t) to Y0.
Setting

t1 :=
f(x1)− f(x0)

1− λ1
,
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we have

X1 = (1− λ1)σ(t1)⊕ λ1Y0.

Moreover

ρ2(X0, X1) = d2(x0, x1) + (f(x1)− f(x0))
2 = λ2

1d
2(x0, y0) + (f(x1)− f(x0))

2,

ρ2(Y0, X1) = d2(y0, x1)+(f(x1)−f(x0))
2 = (1−λ1)

2d2(x0, y0)+(f(x1)−f(x0))
2

and

ρ2(X0, Y0) = d2(x0, y0).

Since ∠X0(Y0, X1) ≥ π
2 , we have

ρ2(X0, X1) + ρ2(X0, Y0) ≤ ρ2(Y0, X1).

A simple calculation implies λ1 ≤ 0, which makes a contradiction and completes
the proof in the first case.

Now suppose that f(x) ≤ f(x0) for each x ∈ B(x0, r)∩ [x0, y0] ⊆ domf . Let

Yn = (1− 1

n
)X0 ⊕

1

n
Y0 = (yn, rn).

Hence, X0 is the nearest point of epif to each Yn (Proposition 2.4 in [9]).
Moreover yn = f(x0), for all n and the sequence {Yn} is convergent to X0. If
yn ∈ B(x0, r), then f(yn) ≤ f(x0). Thus (yn, rn) = (yn, f(x0)) ∈ epif that
is not true (because X0 is a boundary point of epif and Y0 does not belong
to epif). Therefore, yn ∈ (B(x0, r))

c. It means that {yn} is a sequence in
(B(x0, r))

c converging to x0 which is impossible. This completes the proof. □

An important question in variational analysis and nonsmooth optimization
is nonemptiness of the subdifferential set. This plays a vital role in sketching
numerical algorithms and providing duality results in optimization. We follow
the paper by considering this important issue, and it is shown that the set of
points with nonempty subdifferential set is dense in the interior of domain of
f . In the following theorem,

dom(∂f) = {x ∈ domf : ∂f(x) ̸= ∅}.

Theorem 3.10. (Density) Suppose that f is convex and lsc. Then dom(∂f)
is dense in int(domf).

Proof. For an arbitrary x0 ∈ int(domf), X0 = (x0, f(x0)) is a boundary point
of epif . Therefore, there exists a sequence Yn in (epif)c, convergent to X0.
For each Yn, there exists a unique closest point Xn ∈ epif . It is not difficult
to show that Xn converges to X0. Therefore, the proof is complete, because of
Theorem 3.8. □

A worth studying question is investigating the assumptions under which
dom(∂f) = int(domf), i.e. the subdifferential set be nonempty in each point
of domf .
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We close the paper by some examples. As instances, the Euclidean space
Rn and its convex subsets are CAT (0) spaces. Complete simply connected
Riemannian manifolds of nonpositive sectional curvature and R-trees are also
well-known examples of CAT (0) spaces. Recall that an R-tree, T , is a metric
space such that there is a unique geodesic segment [a, b] joining each pair of
points a, b ∈ T such that [a, b] ∩ [b, c] = {b} implies [a, b] ∪ [b, c] = [a, c].
Hilbert spaces, Euclidean Bruhat-Tits buildings and Hyperbolic spaces are also
examples of CAT (0) spaces [9].

In the following, some convex functions on Hadamard spaces are addressed.
Here, X is an Hadamard space.

1. Distance functions: Let x0 ∈ X be given. Then two functions x 7→
d(x, x0) and x 7→ d2(x, x0) are convex and continuous functions. Also,
considering the convex set C ⊆ X, the distance function defined by
dC(x) = inf

c∈C
d(x, c) is a convex and 1-Lipschitz function.

2. Displacement functions [7]: For an isometry α : X −→ X, the function
Dα : X −→ [0,∞) defined by Dα(x) = d(x, α(x)) is called the displace-
ment function of α. This function is convex because it maps geodesics
to geodesics.

3. Busemann functions [9]: For a geodesic ray c : [0,∞) −→ X, the
function bc : X −→ R defined by bc(x) = lim

t→∞
[d(x, c(t)) − t], is called

the Busemann function associated to the ray c. It is also a well-known
convex function.

The following examples deal with the subdifferential set for two functions.

a. Let x0 ∈ X be a fixed and arbitrary point of X. Set f(x) = d(x0, x).
Then, according to Cauchy-Schwarz inequality (see Theorem 1.1 in [1]),
we have {

[
1

d(x0, z)
−→x0z] : z ∈ X, z ̸= x0

}
⊆ ∂f(x0).

b. Consider the function f : X −→ R defined by f(x) = d2(x, z), for some
fixed z ∈ X. Then, [2−→zx0] ∈ ∂f(x0) because

f(x)− f(x0) = d2(x, z)− d2(x0, z)
≥ d2(x, z)− d2(x0, z)− d2(x0, x) = 2⟨−→zx0,

−−→x0x⟩.
As a concluding remark, although we proved some results concerning the

nonemptiness and density of the domain of subdifferential mapping under
Hadamard spaces, various important issues which are valid for Mordukhovich
limiting subdifferential [14] and the Clarke generalized gradient [11] on Banach
spaces, are open to study here. One of the most important problems is in-
vestigating the chain rule and the mean value theorem for (complete) CAT (0)
spaces. The main difficulty in proving these results is due to the properties of
the summation operator in dual space.
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[6] M. Bačák, Convex Analysis and Optimization in Hadamard Spaces, Walter de Gruyter,

Berlin, 2014.
[7] W. Ballmann, Lectures on Spaces of Nonpositive Curvature, Birkhäuser Verlag, Basel,
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