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Abstract. Let C be a nonempty closed convex subset of a real Hilbert

space H. Let {Sn} and {Tn} be sequences of nonexpansive self-mappings
of C, where one of them is a strongly nonexpansive sequence. K. Aoyama
and Y. Kimura introduced the iteration process xn+1 = βnxn + (1 −
βn)Sn(αnu+ (1−αn)Tnxn) for finding the common fixed point of {Sn}
and {Tn}, where u ∈ C is an arbitrarily (but fixed) element in C, x0 ∈ C
arbitrarily, {αn} and {βn} are sequences in [0, 1]. But in the case where
u /∈ C, the iterative scheme above becomes invalid because xn may not

belong to C. To overcome this weakness, a new iterative scheme based on
the thought of boundary point method is proposed and the strong con-
vergence theorem is proved. As a special case, we can find the minimum-
norm common fixed point of {Sn} and {Tn} whether 0 ∈ C or 0 /∈ C.

Keywords: minimum-norm common fixed point, strongly nonexpansive
mappings, strong convergence, boundary point method, variational in-
equality.
MSC(2010): Primary: 47H09; Secondary: 47H10, 90C25.

1. Introduction

Let H be a real Hilbert space endowed with an inner product and its induced
norm denoted by ⟨·, ·⟩ and ∥·∥, respectively. Let C be a nonempty closed convex
subset of H and T : C → C a mapping. Fix(T ) denotes the fixed point set
of T , that is, Fix(T ) = {x ∈ C |Tx = x}. Throughout this paper, Fix(T ) is
always assumed to be nonempty.

Many iteration processes are often used to approximate a common fixed
point of a pair of nonlinear mappings (e.g. [1 − 5], [7 − 9]). One of them is
a classical iterative scheme [1] and is defined as follows: Take an initial guess
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x1 ∈ C arbitrarily and define {xn} recursively by

xn+1 = βnxn + (1− βn)Sn(αnu+ (1− αn)Tnxn)(1.1)

where u ∈ C is an arbitrarily (but fixed) element in C, {Sn} and {Tn} are se-
quences of nonexpansive self-mappings of C, and {αn} and {βn} are sequences
in [0, 1].

The iterative algorithm generated by (1.1) has been widely investigated in
extensive literature. For example, S. Takahashi, W. Takahashi and M. Toyoda
[3] used the iterative scheme generated by (1.1) to deal with the fixed point
problem for a nonexpansive mapping and the zero point problem for a monotone
operator. Y. Yao and J. C. Yao [5] used this algorithm in order to solve the
fixed point problem for a nonexpansive mapping and the variational inequality
(V I) problem for an inverse-strongly monotone mapping. K. Aoyama and Y.
Kimura [1] used this iteration process in order to approximate a common fixed
point of a pair of sequences of nonexpansive mappings where one of them is a
strongly nonexpansive sequence [6].

We next analyze how to get the common fixed point {Sn} and {Tn}. In the
case where u ∈ C, it is not hard to obtain {xn} generated by (1.1) converges
strongly to the common fixed point of {Sn} and {Tn} under some assumptions.
But, in the case where u /∈ C, the iteration scheme defined by (1.1) becomes
invalid because xn may not belong to C.

To make up for this weakness, a natural and rational idea is adopting metric
projection PC to modify iterative scheme (1.1) so that the iterative sequence
in C. One simple and feasible modified iterative scheme by PC can be given as
follows:

xn+1 = βnxn + (1− βn)SnPC(αnu+ (1− αn)Tnxn).(1.2)

However, in the process of actual calculation, it is difficult to obtain the specific
expression of PC , in general. In view of this shortage, iteration process (1.2) is
not a right choice.

Main contributions of this paper are as follows: We extend Aoyama and
Kimura’s algorithm, extends Aoyama and Kimura’s result based on the inspi-
ration of viscosity approximation method (e.g. [10 − 22]), and also avoid the
computation of the metric projection PC . we show that the iterative sequence
generated by our proposed algorithm has strongly convergent property under
some appropriate conditions. As a special case, the minimum-norm common
fixed point of {Tn} and {Sn} is obtained whether 0 ∈ C or 0 /∈ C.

2. Preliminaries

Throughout this paper, we adopt the following notations.
1) xn → x : {xn} converges strongly to x, xn ⇀ x : {xn} converges weakly to
x.
2) N: the set of positive integers,
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3) ∂C: the boundary of C,
4) I: the identity mapping on H,
5) H \ S: the complementary set of C in H.

We recall some definitions and facts that are needed in our study.
Let C be a nonempty closed convex subset of H and T : C → C a mapping.

A mapping T is said to be nonexpansive if ∥Tx−Ty∥ ≤ ∥x−y∥ for all x, y ∈ C.
Let {Tn} be a sequence of self-mappings of C. We use the notation Fix({Tn})

to denote the set of common fixed points of {Tn}, i.e.,Fix({Tn}) =
∩∞

n=1 Fix(Tn).
A sequence {zn} is said to be an approximate fixed point sequence of {Tn}
if zn − Tnzn → 0. The set of all bounded approximate fixed point sequences of

{Tn} is denoted by F̃ ix({Tn}) [6]. It is easily see that F̃ ix({Tn}) is nonempty
if Fix({Tn}) is nonempty. A sequence {Tn} is called a strongly nonexpansive
sequence if each Tn is nonexpansive and

xn − yn − (Tnxn − Tnyn) → 0

whenever {xn} and {yn} are sequences in C such that {xn − yn} is bounded
and ∥xn − yn∥ − ∥Tnxn − Tnyn∥ → 0. A sequence {Tn} having a common
fixed point is said to satisfy the condition (Z) if every weak cluster point of

{xn} is a common fixed point whenever {xn} ∈ F̃ ix({Tn}). A sequence {Tn}
of nonexpansive self-mappings of C is said to satisfy the condition (R) if

lim
n→∞

sup
y∈D

∥Tn+1y − Tny∥ = 0

for every nonempty bounded subset D of C [23].
We need some lemmas and facts listed as follows:

Lemma 2.1. [24] Let K be a closed convex subset of a real Hilbert space H
and let PK be the (metric of nearest point) projection from H onto K (i.e., for
x ∈ H, PK(x) is the only point in K such that ∥x − PK(x)∥ = inf{∥x − z∥ :
z ∈ K} ). Given x ∈ H and z ∈ K. Then z = PK(x) if and only if, for any
y ∈ K,

⟨x− z, y − z⟩ ≤ 0.

It is well-known that Fix(T ) is closed and convex if T is nonexpansive.
So the metric projection PFix(T ) is reasonable and thus there exists a unique

element, which is denoted by x†, in Fix(T ) such that ∥x†∥ = infx∈Fix(T ) ∥x∥,
that is, x† = PFix(T )(0). x

† is called the minimum-norm fixed point of T .

Lemma 2.2. [25] In a real Hilbert space H, the following well-known result
holds:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.

Lemma 2.3. [26, 27] Let {xn} and {yn} be bounded sequences in a Banach
space and {βn} a sequence in [0, 1]. Suppose that xn+1 = (1 − βn)xn + βnyn
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for every n ∈ N, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, and

lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

Then xn − yn → 0.

Lemma 2.4. [1] Let H be a real Hilbert space, C a nonempty subset of H,
and {Sn} and {Tn} sequences of nonexpansive self-mappings of C. Suppose
that {Sn} and {Tn} satisfy the condition (R) and {Tny : y ∈ D,n ∈ N} is
bounded for any bounded subset D of C. Then {SnTn} satisfies the condition
(R).

Lemma 2.5. [6] Let H be a real Hilbert space, C a nonempty subset of H,
and {Sn} and {Tn} sequences of nonexpansive self-mappings of C. Suppose that

{Sn} or {Tn} is a strongly nonexpansive sequence and F̃ ix({Sn})∩ F̃ ix({Tn})
is nonempty. Then F̃ ix({Sn}) ∩ F̃ ix({Tn}) = F̃ ix({SnTn}).

The following is a sufficient condition for a real sequence to converge to zero.

Lemma 2.6. [28,29] Let {αn} be a nonnegative real sequence satisfying:

αn+1 ≤ (1− γn)αn + γnδn + σn, n = 0, 1, 2 . . .

If {γn}∞n=1 ⊂ (0, 1),{δn}∞n=1 and {σn}∞n=1 satisfy the conditions:

(1)
∑∞

n=1 γn = ∞;
(2) either lim supn→∞ δn ≤ 0 or

∑∞
n=1 |γnδn| < ∞;

(3)
∑∞

n=1 |σn| < ∞.

Then limn→∞ αn = 0.

3. Boundary point function for non-self contraction

Let C be a nonempty closed convex subset of a real Hilbert space H and
V : C → H is a non-self α-contraction, i.e., ∥V (x) − V (y)∥ ≤ α∥x − y∥
(0 ≤ α < 1), for x, y ∈ C. To formulate our iterative algorithm, we introduce
a function s : C → [0, 1] by the following definition [30]:

s(x) = inf{λ ∈ [0, 1] |λx+ (1− λ)V (x) ∈ C}, x ∈ C.(3.1)

Remark 3.1. Now we explain clearly the rationality of the definition of func-
tion s(x). Since C is closed and convex, in the case where V (x) ∈ C, it
is easy to observe that s(x) = 0 for any x ∈ C. But in the case where
V (x) /∈ C, we obtain s(x)x + (1 − s(x))V (x) ∈ ∂C and s(x) > 0 (other-
wise, suppose that s(x)x + (1 − s(x))V (x) /∈ ∂C, for convenience, we set
w = s(x)x + (1 − s(x))V (x). Obviously, w is an interior point in C. Fur-
thermore, there exists efficiently small δ > 0 such that the neighborhood of
w, B(w, δ), contained C, i.e., B(w, δ) ⊂ C, by using the definition of function
s(x). Thus (1− (s(x)− δ/2)V (x) + (s(x)− δ/2)x ∈ C and s(x)− δ/2 < s(x).
This is a contradiction with the definition of function s(x)). So the function
s(x) above is well-defined.
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We need to consider how to calculate the value of function s(x), for any
x ∈ C. As a matter of fact, in many practical problems, C is often a level set
of a convex function c, that is, C = {x ∈ H | c(x) ≤ a}, where a is a constant
in R1. Without loss of generality, suppose that C = {x ∈ H | c(x) ≤ 0} and
V (x) /∈ C. The function s(x) can be expressed by s(x) = inf{λ ∈ (0, 1] | c(λx+
(1−λ)V (x)) = 0}, for any x ∈ C. To calculate the value of s(x), we only need to
solve the algebraic equation c(λx+(1−λ)V (x)) = 0 with the unknown number
λ. Solving the algebraic equation above is generally easier than computing the
metric projection PC in actual calculation process. We have the following an
illustrative example to show that this point of view.

Example 3.2. Let B : H → H be an inverse-strongly monotone bounded
linear operator with coefficient α > 0, that is, there is a constant α > 0 with
the property ⟨Bx − By, x − y⟩ ≥ α∥Bx − By∥2, ∀x, y ∈ H. Define a convex
function c : H → R1 by

c(x) = 1/2⟨Bx−Bu, x− u⟩ − 2⟨x− u, y∗⟩+ ⟨Bx∗ −Bu, x∗ − u⟩, ∀x ∈ H,

where y∗, u (y∗ ̸= 0) are two given points in H and x∗ is the unique solution of
the equation B(x−u) = y∗. Set C = {x ∈ H | c(x) ≤ 0} and define contraction
V : C → H as V (x) = u, ∀x ∈ C. Note that c(x∗) = −(1/2)⟨Bx∗ − Bu, x∗ −
u⟩ < 0 and c(u) = ⟨Bx∗ − Bu, x∗ − u⟩ > 0, then it is easy to verify that C is
a nonempty closed convex subset of H such that u /∈ C. For a given x ∈ C,
we have c(x) ≤ 0. To obtain the value of s(x), let c(λx+ (1− λ)u) = 0, where
λ ∈ (0, 1] is a unknown variable. Thus we have the following equation

1/2⟨Bx−Bu, x− u⟩λ2 − 2⟨x− u, y∗⟩λ+ ⟨Bx∗ −Bu, x∗ − u⟩ = 0.

Consequently, we have

λ =
2⟨x− u, y∗⟩ ±

√
4⟨x− u, y∗⟩2 − 2⟨Bx−Bu, x− u⟩⟨Bx∗ −Bu, x∗ − u⟩

⟨Bx−Bu, x− u⟩
.

Hence,

s(x) =
2⟨x− u, y∗⟩−

√
4⟨x− u, y∗⟩2 − 2⟨Bx−Bu, x− u⟩⟨Bx∗ −Bu, x∗ − u⟩

⟨Bx−Bu, x− u⟩

=
2⟨y∗, x∗ − u⟩

2⟨x− u, y∗⟩+
√
4⟨x− u, y∗⟩2 − 2⟨Bx−Bu, x− u⟩⟨y∗, x∗ − u⟩

.

4. Iterative scheme based on boundary point method

Now we give our iteration process based on the thought of boundary point
method for finding the common fixed point of {Sn} and {Tn}: Taking x1 ∈ C
arbitrarily and define {xn} recursively by x1 ∈ C;

yn = αn((1− λn)V (xn) + λnxn) + (1− αn)Tnxn;
xn+1 = βnxn + (1− βn)Snyn;

(4.1)
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where V : C → H is non-self α-contraction (0 ≤ α < 1), λn = s(xn), n =
1, 2, . . . {αn} and {βn} are sequences in [0, 1].

Since C is closed and convex, algorithm (4.1) induces to algorithm (1.1)
on condition of V (xn) ∈ C. But in the case where V (xn) /∈ C, it is easy
to verify the sequence {xn} generated by (4.1) belongs to C and s(xn)xn +
(1 − s(xn))V xn ∈ ∂C for any positive integer n, so we call our algorithm as
boundary point method.

Theorem 4.1. Let H be a real Hilbert space, C a nonempty closed convex
subset of H, and {Sn} and {Tn} sequences of nonexpansive self-mappings of C.
Let V : C → H be an α-contraction. Suppose that F = Fix({Sn})∩Fix({Tn})
is nonempty, both {Sn} and {Tn} satisfy the conditions (R) and (Z), and {Sn}
or {Tn} is a strongly nonexpansive sequence. Let {λn}, {αn} and {βn} satisfy
the following conditions

(D1) αn → 0;
(D2)

∑∞
n=1 αn(1− λn)(1− βn) = ∞.

Then {xn} defined by (4.1) converges strongly to x∗ in F verifying

(4.2) x∗ = PFV (x∗),

which solves the following variational inequality

(4.3) find x∗ ∈ F, such that ⟨(I − V )x∗, x̄− x∗⟩ ≥ 0 , ∀ x̄ ∈ F.

We divide our detailed proof into several lemmas. In the course of the proof
of Lemma 4.2 - Lemma 4.4, we assume that all conditions of Theorem 4.1 are
satisfied.

Lemma 4.2. {xn}, {Tnxn} and {SnVnxn} are bounded, where Vn = αn(1 −
λn)V + αnλnI + (1− αn)Tn, n = 1, 2, . . .

Proof. Take a z ∈ F , we have Snz = z and Tnz = z. Since both Sn and Tn are
nonexpansive, we immediately obtain

∥SnVnxn − z∥ ≤ ∥Vnxn − z∥
≤ αn(1− λn)(α∥xn − z∥+ ∥V z − z∥)
+ αnλn∥xn − z∥+ (1− αn)∥Tnxn − z∥

≤ max
n

{∥V z − z∥
1− α

, ∥xn − z∥}

and hence,

∥xn+1 − z∥ ≤ βn∥xn − z∥+ (1− βn)∥SnVnxn − z∥

≤ βn∥xn − z∥+ (1− βn)max
n

{∥V z − z∥
1− α

, ∥xn − z∥}

≤ max{∥V z − z∥
1− α

, ∥xn − z∥}.
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Thus, inductively,

∥Tnxn − z∥ ≤ ∥xn − z∥ ≤ max{∥V z − z∥
1− α

, ∥x1 − z∥}, n = 1, 2, . . .

This shows that {xn} is bounded, so are {V xn}, {Tnxn} and {SnVnxn}. □

Lemma 4.3. The following results hold:

(a) F̃ ix({SnVn}) = F̃ ix({Sn}) ∩ F̃ ix({Tn});
(b) {SnVn} satisfies the condition (R);

(c) {xn} ∈ F̃ ix({Sn}) ∩ F̃ ix({Tn});

where Vn = αn(1− λn)V + αnλnI + (1− αn)Tn, n = 1, 2, . . .

Proof. We first show (a). Let {zn} be a bounded sequence in C and z ∈ F . If

{zn} ∈ F̃ ix({Tn}), we have

∥zn − Vnzn∥ ≤ αn(1− λn)(α∥z − zn∥+ ∥V z − zn∥) → 0, (n → ∞)

and therefore {zn} ∈ F̃ ix({Vn}). On the other hand, if {zn} ∈ F̃ ix({Vn}), we
obtain

∥zn − Tnzn∥ = ∥Vnzn − Tnzn∥
≤ αn(1− λn)∥V zn − Tnzn∥+ αnλn∥zn − Tnzn∥
≤ αn(1− λn)(α∥zn − z∥+ ∥V z − z∥+ ∥z − Tnzn∥)
+ αnλn(∥zn − z∥+ ∥z − Tnzn∥)

≤ αn sup
n
{∥V z − z∥+ 2∥zn − z∥} → 0, (n → ∞)

and hence {zn} ∈ F̃ ix({Tn}). Then we obviously have F̃ ix({Tn}) = F̃ ix({Vn})
and F̃ ix({SnTn}) = F̃ ix({SnVn}). Since F is nonempty, {Sn} or {Tn} is a
strongly nonexpansive sequence. By Lemma 2.5, it is easy to verify that

F̃ ix({SnVn}) = F̃ ix({SnTn}) = F̃ ix({Sn}) ∩ F̃ ix({Tn}).

We next show (b). Since F is nonempty, we have {Tny : y ∈ D,n =
0, 1, 2, . . .} is bounded for any nonempty bounded subset D of C, by condi-
tion {Tn} satisfies the condition (R), there hold

∥Vny − z∥ ≤ (1− λn)αn(α∥y − z∥+ ∥V z − z∥)
+ λnαn∥y − z∥+ (1− αn)∥Tny − z∥

≤ max{∥V z − z∥
1− α

, sup
y∈D

∥y − z∥}
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and

sup
y∈D

∥Vn+1y − Vny∥ ≤ |(1− λn+1)αn+1 − (1− λn)αn|∥V y∥

+ |λn+1αn+1 − λnαn| sup
y∈D

∥y∥

+ sup
y∈D

∥(1− αn+1)Tn+1y − (1− αn)Tny∥

≤ (|αn+1 − αn|+ αn|λn+1 − λn|)(sup
y∈D

∥V y∥+ sup
y∈D

∥y∥)

+ sup
y∈D

∥Tn+1y − Tny∥+ |αn+1 − αn| sup
y∈D

∥Tny∥ → 0

for any nonempty bounded subset D of C. Hence, we further obtain that {Vn}
satisfies the condition (R) and {Vny : y ∈ D,n = 0, 1, 2, . . .} is bounded for any
nonempty bounded subset D of C. Lemma 2.4 implies that {SnVn} satisfies
the condition (R).

We finally show (c). Using Lemma 4.2, there is a nonempty bounded subset
D of C such that {xn} ∈ D, for every n ∈ N. Set Un = SnVn for every n ∈ N.
Since Un is nonexpansive and {Un} satisfies the condition (R) by (b), we obtain

∥Un+1xn+1 − Unxn∥ ≤ ∥Un+1xn+1 − Unxn+1∥+ ∥Unxn+1 − Unxn∥
≤ sup

y∈D
∥Un+1y − Uny∥+ ∥xn+1 − xn∥

and this implies that

∥Un+1xn+1 − Unxn∥ − ∥xn+1 − xn∥ ≤ sup
y∈D

∥Un+1y − Uny∥ → 0, (n → ∞).

By Lemma 4.2, Lemma 2.3 and (a), we have

{xn} ∈ F̃ ix({Un}) = F̃ ix({Sn}) ∩ F̃ ix({Tn})

and this proof is finished. □

Lemma 4.4. lim supn→∞⟨(I − V )x∗, Tnxn − x∗⟩ ≥ 0, where x∗ is the unique
solution of VI (4.3).

Proof. To prove this result, we take a subsequence {xnk
} of {xn} so that

lim sup
n→∞

⟨(I − V )x∗, xn − x∗⟩ = lim
k→∞

⟨(I − V )x∗, xnk
− x∗⟩.(4.4)

By Lemma 4.3, {xn} is bounded. Without loss of generality, we may further
assume that {xnk

} converges weakly to a point x̄, Since {Sn} and {Tn} satisfy
the condition (Z), Lemma 4.3 implies that x̄ ∈ F . Noting that Tnxn−xn → 0,
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(4.4) and applying Lemma 2.1, we arrive at

lim sup
n→∞

⟨(I − V )x∗, Tnxn − x∗⟩ = lim sup
n→∞

(⟨(I − V )x∗, Tnxn − xn⟩

+ lim sup
n→∞

⟨(I − V )x∗, xn − x∗⟩)

= lim
k→∞

⟨(I − V )x∗, xnk
− x∗⟩

= ⟨(I − V )x∗, x̄− x∗⟩ ≥ 0.

□

By Lemma 4.2 - Lemma 4.4, we finally prove Theorem 4.1.

Proof. Set Vn = αn(1 − λn)V + αnλnI + (1 − αn)Tn, for every n ∈ N. Since
x∗ ∈ F , and both Sn and Tn are nonexpansive, it is easy to verify that

∥xn+1 − x∗∥2 ≤ βn∥xn − x∗∥2 + (1− βn)∥SnVnxn − x∗∥2

≤ βn∥xn − x∗∥2

+ (1− βn)[∥(1− αn)(Tnxn − x∗) + αnλn(xn − x∗)∥2

+ 2αn(1− λn)⟨V (x∗)− x∗, Vnxn − x∗⟩]
≤ [1− αn(1− βn)(1− λn)]∥xn − x∗∥2

+ 2αn(1− βn)(1− λn)⟨V (x∗)− x∗, Vnxn − x∗⟩.

By Lemma 4.2 and Lemma 4.4, we obtain

lim sup
n→∞

⟨V x∗ − x∗, Vnxn − x∗⟩ = lim sup
n→∞

(⟨V x∗ − x∗, Tnxn − x∗⟩

+ αn⟨V x∗ − x∗, λnxn+(1− λn)V x∗−Tnxn⟩)
= lim sup

n→∞
⟨V x∗ − x∗, Tnxn − x∗⟩ ≤ 0.

(4.5)

Hence,

∥xn+1 − x∗∥2 ≤ (1− γn)∥xn − x∗∥2 + γnσn,

where

γn = αn(1− βn)(1− λn), σn = 2⟨V x∗ − x∗, Vnxn − x∗⟩.

It is easily check that γn → 0,
∑∞

n=0 γn = ∞ by conditions (D1) and (D2), and
lim supn→∞ σn ≤ 0 by (4.5). By Lemma 2.6, we conclude that xn → x∗, and
the proof is finished. □

Remark 4.5. If V (x) = u ∈ C, a given point, for any x ∈ C, then Theorem
4.1 is induced to Aoyama and Kimura’s result [1].

As a direct result of Theorem 4.1, we can find the minimum-norm common
fixed point of {Sn} and {Tn} whether 0 ∈ C or 0 /∈ C via the following corollary:
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Corollary 4.6. Let H be a Hilbert space, C a nonempty closed convex subset of
H, and {Sn} and {Tn} sequences of nonexpansive self-mappings of C. Suppose
that F = Fix({Sn})∩Fix({Tn}) is nonempty, both {Sn} and {Tn} satisfy the
conditions (R) and (Z), and {Sn} or {Tn} is a strongly nonexpansive sequence.
Let {λn}, {αn} and {βn} are sequences in [0, 1] satisfy the following conditions

(D1) αn → 0;
(D2)

∑∞
n=1 αn(1− λn)(1− βn) = ∞;

where λn = s(xn), n = 1, 2, . . .. Let {xn} be sequence in C defined by x1 ∈ C
and

xn+1 = βnxn + (1− βn)Sn(αnλnxn + (1− αn)Tnxn)(4.6)

for n ∈ N. Then {xn} defined by (4.6) converges strongly to the minimum-norm
common fixed point PF (0) of {Sn} and {Tn}.

5. Conclusions

This paper presents the definition of boundary point function for non-self
contraction and further develops an iterative scheme based on boundary point
method for finding the common fixed point of a pair strongly nonexpansive
sequences. Our algorithm overcomes the shortcoming of u /∈ C in Aoyama and
Kimura’s iterative scheme and does not involve the computation of the met-
ric projection PC , so it is easy to realize in the actual computational process.
In addition, strong convergence theorem of the iterative scheme (4.1) is ob-
tained under some appropriate conditions. In particular, we do not require any
additional conditions on parametric sequence {λn} except available condition∑∞

n=1 αn(1−λn)(1−βn) = ∞. As a special result, our proposed algorithm can
find the minimum-norm common fixed point of a pair of strongly nonexpansive
sequences {Sn} and {Tn} whether 0 ∈ C or 0 /∈ C.
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