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GENERALIZED COVERING GROUPS AND DIRECT
LIMITS

B. MASHAYEKHY* AND H. MIREBRAHIMI

Abstract. M. R. R. Moghaddam [Monatsh. Math. 90 (1980) 37-
43.] showed that the Baer invariant commutes with the direct limit
of a directed system of groups. In this paper, using the general-
ization of Schur’s formula for the structure of a V-covering group
for a Schur-Baer variety V, we show that the structure of a V-
covering group commutes with the direct limit of a directed system,
in some senses. It has a useful application in order to extend some
known structures of V-covering groups for several famous products
of finitely many to an arbitrary family of groups.

1. Introduction

Historically, there have been several papers from the beginning of
the twentieth century trying to find some structures for the well-known
notion the covering group and its varietal generalization, the V-covering
group of some famous groups and products of groups, such as the direct
product, the nilpotent and the regular product [4, 5, 8, 11, 15, 21, 24].

It is known that any group has at least a covering group [21, 25]. Also
the number of covering groups for an arbitrary group has been studied
by Schur [22]. Moreover, it is proved that any group has a V-covering
group, where V is a Schreier variety [8, 10, 15].
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In 1971, Wiegold [24] found a structure of a covering group for the
direct product G = A × B so that the second nilpotent product of the
covering groups A∗ and B∗ is a covering group for G. In 1972, Haebich
[4] constructed a covering group for a finite regular product. Moreover
the structure of a covering group for the verbal wreath product of two
groups has been studied by Haebich [5], in 1977.

Naturally, it is of interest to know which class of groups does not
have a V-covering group. The first author [9, 10] gave some examples of
groups which do not have any generalized covering group with respect
to the variety Nc of nilpotent groups of class at most c ≥ 2. More pre-
cisely, he [10] proved that every nilpotent group of class n with nontrivial
c-nilpotent Schur multiplier does not have any Nc-covering group for
c > n. Thus the results of Wiegold and Haebich mentioned above can-
not be generalized to an arbitrary variety. Moreover the first author
[10] has given a complete answer to the existence of Nc-covering group
for finite abelian groups. Also in 2003, he in a joint paper [11] found a
structure for the Nc-covering group of a nilpotent product of a family
of cyclic groups.

Now in this paper, we intend to prove that the structure of V-covering
group commutes with the direct limit of a directed system of groups
in some senses (see Theorem 3.5). Furthermore, we give an example
showing that the hypothesis of being directed for the system of groups
is an essential condition (see Example 3.6). Finally, as an application,
we extend some of the previous formulas for the structure of V-covering
groups for finite direct and regular products of groups to infinite ones.

2. Notation and preliminaries

We shall assume that the reader is familiar with the notion of the
verbal subgroup V (G) and the marginal subgroup V ∗(G) of a group G,
associated with a variety V. Whenever varieties of groups are discussed,
we refer to Neumann [17] for notation and basic results.

Definition 2.1. Let V be a variety of groups defined by the set of laws
V , and let G be a group with a free presentation

1 → R→ F → G→ 1,
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where F is a free group. Then the Baer invariant of G, denoted by
VM(G), is defined to be

R ∩ V (F )/[RV ∗F ],

where V (F ) is the verbal subgroup of F and [RV ∗F ] is the least normal
subgroup N of F contained in R such that R/N ⊆ V ∗(F/N). Thus it
is the subgroup generated by the following set:

[RV ∗F ] = 〈v(f1, . . . , fi−1, fir, fi+1, . . . , fn)v(f1, . . . , fi, . . . , fn)−1 |

r ∈ R , fi ∈ F, v ∈ V , 1 ≤ i ≤ n , n ∈ N〉 .

Note that the Baer invariant of a group G is always abelian and inde-
pendent of the choice of the presentation of G and it might be possible
to regard VM(−) as the first left derived functor of the functor from
all groups to V taking G to G/V (G), see [8]. In particular, if V is the
variety of abelian groups, then the Baer invariant of the group G will be
R∩F ′/[R,F ], which is the well-known notion, the Schur multiplierM(G)
of G. Also, if V = N c is the variety of nilpotent groups of class at most
c, then the Baer invariant of the group G will be R ∩ γc+1(F )/[R, cF ],
where γc+1(F ) is the (c+ 1)-st term of the lower central series of F and
[R, 1F ] = [R,F ], [R, cF ] = [[R, c−1F ], F ], inductively. It is also called
the c-nilpotent multiplier of G.

Definition 2.2. A variety V is called a Schur-Baer variety if for any
group G for which the marginal factor group G/V ∗(G) is finite, then
the verbal subgroup V (G) is also finite and |V (G)| divides a power of
|G/V ∗(G)|.

Schur [21] proved that the variety of abelian group is a Schur-Baer
variety and Baer [2] proved that a variety defined by some outer com-
mutator words, for instance the variety Nc, has the above property. The
following theorem gives a useful property of Schur-Baer varieties.

Theorem 2.3 ([8]). A variety V is a Schur-Baer variety if and only if
for every finite group G, its Baer invariant VM(G) is of order dividing
a power of |G|.



50 Mashayekhy and Mirebrahimi

Definition 2.4. Let V be a variety of groups and let G be a group.
Then, by definition, a V-covering group of G (a generalized covering
group of G with respect to V) is a group G∗ with a normal subgroup
A such that G∗/A ∼= G, A ⊆ V (G∗)∩V ∗(G∗), and A ∼= VM(G) (see [8]).

Note that if V is the variety of abelian groups, then a V-covering
group of G will be an ordinary covering group (sometimes it is called a
representing group) of G. Also if V = Nc, then an Nc-covering group of
G is a group G∗ with a normal subgroup A such that

G∗

A
∼= G, A ⊆ Zc(G) ∩ γc+1(G), and A ∼= NcM(G) .

It is well-known that every group G has a covering group (see [7, 21,
25]). In general, for the existence of V-covering groups, we have the
following concepts and results. Let V be a variety of groups. Then a
group G is called V-free if it is a free object in the category of all groups
in the variety V. It is known that if F is a free group, then F/V (F ) is a
V-free group. By a well-known theorem of Schreier, every subgroup of
a free group is also free. Thus it is natural to define the following notion.

Definition 2.5. Let V be a variety of groups. Then V is called a
Schreier variety if and only if every subgroup of a V-free group is also
V-free.

It has been proved by P. M. Neumann and J. Wiegold [8, 18] that the
only Schreier varieties are the variety G of all groups, the variety A of
abelian groups, and the variety Ap of all abelian group of exponent p,
where p is a prime.

Note that the notion of Schreier varieties can be generalized to vari-
eties in which every subgroup of a V-free group is a V-splitting group,
i.e., a group G in the variety V which splits every short exact sequence
in V of the following form

1 → A→ B → G→ 1 .

Clearly every Schreier variety has the above property. In fact the only
varieties with the above property are G, A and Am, where m is square
free (see [8, 18]).

Leedham-Green and McKay [8], by a homological method, proved
that a sufficient condition for the existence of a V-covering group of G
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is that G/V (G) is a V-splitting group. Also in the following theorem we
give a similar sufficient condition for the existence of a V-covering group
of a group.

Theorem 2.6 ([8, 10, 15]). Let V be a variety in which every subgroup
of a V-free group is V-splitting. Then every group has a V-covering
group. In particular, if V is a Schreier variety, then every group has a
V-covering group.

Also the first author [10] showed that if G is a nilpotent group of class
n such that NcM(G) 6= 1 and c > n, then G has no Nc-covering group.
Moreover, this fact has been extended to the variety of polynilpotent
groups in some senses [12].

We next attend to some concepts as well-known categorical objects,
the direct system and the direct limit which are defined [19, 20] for any
arbitrary category, if any. Note that in some famous categories, specially
the category of all groups, every direct system has a direct limit (see [19,
20]). In particular, in the category of all groups, the free product

∏∗
i∈I Gi

as a coproduct of {Gi}i∈I is a direct limit of this family which is the
trivial direct system and so is not directed (see [20]).

In our main results we deal with the particular case of direct systems
which are indexed with a directed set, called directed system. In fact,
we use one of the equivalent form of the definition of direct limit of a
directed system in the category of all groups, which is more simple and
useful for our goal, as we mention in following preliminaries. Note that
in all following points, we refer the reader to [14, 19, 20] for further
details.

Definition 2.7. Let {Gi} be a direct system of groups indexed by a
partially ordered set I, which is also directed, that is, for every i, j ∈ I
there exists k ∈ I such that i, j ≤ k. For i ≤ j, let there exists a
homomorphism λji : Gi → Gj such that
(i) λii : Gi → Gi is the identity map of Gi, for all i ∈ I;
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(ii) if i ≤ j ≤ k, then λjiλ
k
j = λki , as the following commutative diagram:

Gi
λj

i−→ Gj
λk

i↘ ↓λ
k
j

Gk.

In this case, we call the system {Gi;λji , I} a directed system. Now we
define an equivalence relation on the disjoint union

⋃
i∈I Gi by: if x ∈ Gi

and y ∈ Gj , then
x ∼ y if and only if xλki = yλkj for k ≥ i, j.

Let G denote the quotient set
⋃
i∈I Gi/ ∼ and use {x} for the equivalence

class of x. Also we define a multiplication on G as follows: if {x}, {y}
are elements of G, we choose i, j ∈ I such that x ∈ Gi and y ∈ Gj ; then

{x}{y} = {(xλki )(yλkj )}, for k ≥ i, j.

Clearly this is a well-defined multiplication, which makes G into a group
and it is called the direct limit of the directed system {Gi;λji , I}. It will
be denoted by

lim
−→

Gi =
⋃
i∈I

Gi/ ∼= G.

We need only the following well-known results of direct limits.

Lemma 2.8. Suppose that {Gi;λji , I} is a directed system of groups and
G = lim

−→
Gi. Then we have the following statements

(i) The group G has the universal property so that for a given group H
and homomorphisms τi : Gi → H, such that λji τj = τi for all i ≤ j, there
exists a unique homomorphism τ : G→ H such that all the diagrams

Gi
λi↓ ↘τi

G
τ−→ H

commute, that is λiτ = τi, for all i ∈ I.
(ii) Direct limit of exact sequences, indexed by a directed set, is exact,
and so in this case, the direct limit preserves injections.
(iii) if G is an arbitrary group, then G is the direct limit of its finitely
generated subgroups, under the obvious directed system arising from the
inclusion maps.
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Definition 2.9. Let C and D be two categories and let T1 : C → D,
T2 : D → C be two functors such that for any X ∈ C, Y ∈ D there is a
natural equivalence

HomD(T1X,Y ) ' HomC(X,T2Y ).

In this case, T2 is called a right adjoint functor to T1 and the pair (T1, T2)
is called an adjoint pair.

It is well-known fact that every functor which has a right-adjoint,
commutes with direct limits. So we have the following lemma (see [20]).

Lemma 2.10. Let {Xi;λ
j
i , I} be a direct system of sets indexed by a

partially ordered set I, and let C and G denote the categories of sets and
groups, respectively. If F : C → G is the free functor which associates
with every set the free group on that set as basis, then F commutes with
direct limit, that is,

F (lim
−→

Xi) = lim
−→

F (Xi).

Remark 2.11. As a corollary, suppose that {Gi;λji , I} is a directed
system of groups, and the sequence

1 → Ri → Fi → Gi → 1

is a free presentation for Gi, where Fi(= F (Gi)) is the free group on the
underlying set of Gi, for all i ∈ I. Now using lemma 2.8.(ii), the direct
limit of a directed set is an exact functor, and hence kernel-preserving,
so by Lemma 2.10, the sequence

1 → lim
−→

Ri → lim
−→

Fi → lim
−→

Gi → 1

is a free presentation for lim
−→

Gi.

Lemma 2.12. With the above assumption and notation, we have the
following relations
(i) (lim

−→
Ri) ∩ V (lim

−→
Fi) = lim

−→
(Ri ∩ Fi);

(ii) [(lim
−→

Ri)V ∗(lim−→ Fi)] = lim
−→

[RiV ∗Fi].
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Theorem 2.13 ([14]). Let {Gi;λji , I} be a directed system of groups.
Then for a given variety V, the Baer invariant commutes with direct
limit, that is,

VM(lim
−→

Gi) = lim
−→

VM(Gi).

3. The main result

In order to deal with V-covering groups of a group G, it is useful to
know more relationship between the Baer invariant VM(G) and the V-
covering groups of G. In this aspect, to prove our main theorem, first of
all we need to point the following notes which are the generalization of
some parts of an important theorem of Schur [7, Theorem 2.4.6].

Lemma 3.1. Let V be a variety of groups and G be a group with a free
presentation 1 → R → F → G → 1. If S is a normal subgroup of F
such that

R

[RV ∗F ]
∼=
R ∩ V (F )
[RV ∗F ]

× S

[RV ∗F ]
, (3.1)

then G∗ = F/S is a V-covering group of G.

Proof. Setting A = R/S, so G∗/A ∼= F/R ∼= G and using (3.1), we
have

A =
R

S
∼=
R/[RV ∗F ]
S/[RV ∗F ]

∼=
R ∩ V (F )
[RV ∗F ]

∼= VM(G).

Since [RV ∗F ] ⊆ S, we have A = R/S ⊆ V ∗(F/S) = V ∗(G∗). Also we
have

A =
R

S
=
RS

S

by(∗)
⊆ V (F )S

S
= V (

F

S
) = V (G∗) .

Hence G∗ is a V-covering group of G. �

Lemma 3.2. Let V be a variety of groups, let G be a group with a free
presentation 1 → R → F → G → 1, and let G∗ be a V-covering group
of G. Then G∗ is a homomorphic image of F/[RV ∗F ].

Proof. Let F be free on X and let π : F → G be an epimorphism
such that R = ker(π). Since G∗ is a V-covering group of G, we have the
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following exact sequence

1 → A −→ G∗
Φ−→ G→ 1 ,

where A ⊆ V ∗(G∗) ∩ V (G∗) and A ∼= VM(G). Since Φ is surjective,
there exists lx in G∗ such that Φ(lx) = π(x), for all x ∈ X. Therefore
we have

G∗ = 〈A, lx|x ∈ X〉 = AN,

where N = 〈lx|x ∈ X〉. Now, by a result of Hekster [6],

A ⊆ V (G∗) = V (AN) = V (N)[AV ∗G∗] ⊆ V (N) ⊆ N .

(Note that since A ⊆ V ∗(G∗), we have [AV ∗G∗] = 1.) Hence we have

G∗ = N = 〈lx|x ∈ X〉.
Now consider the homomorphism Ψ : F → G∗ defined by Ψ(x) = lx,
x ∈ X. Then Ψ is surjective and π = Φ◦Ψ. Since 1 = π(R) = Φ(Ψ(R)),
we have Ψ(R) ⊆ A, so that

Ψ([RV ∗F ]) ⊆ [Ψ(R)V ∗G∗] ⊆ [AV ∗G∗] = 1 .

It follows that Ψ induces an epimorphism Ψ : F/[RV ∗F ] −→ G∗. �

Theorem 3.3. Let V be a Schur-Baer variety and let G be a finite group
with a free presentation 1 → R → F → G → 1. If G∗ is V-covering
group of G, then there exists a normal subgroup S of F such that

R

[RV ∗F ]
∼=
R ∩ V (F )
[RV ∗F ]

× S

[RV ∗F ]
,

and so G∗ ∼= F/S.

Proof. By the proof of Lemma 3.2 and its notation, for every a ∈ A,
there exists x ∈ F such that a = Ψ(x). Hence π(x) = Φ ◦ Ψ(x) =
Φ(Ψ(x)) = Φ(a) = 1, so x ∈ R and thus A ⊆ Ψ(R). Also in the proof of
Lemma 3.2 we showed that Ψ(R) ⊆ A, so A = Ψ(R). Next we observe
that

Ψ(R ∩ V (F )) ⊆ Ψ(R) ∩Ψ(V (F )) = A ∩ V (G∗) = A .

To prove the other inclusion, assume that z = Ψ(x) = Ψ(y) for some
x ∈ V (F ) and y ∈ R. Then x−1y ∈ kerΨ, so π(x−1y) = 1, and therefore
x−1y ∈ R. It follows that x ∈ R and z ∈ Ψ(R ∩ V (F )). Thus

A = Ψ(R ∩ V (F )) .
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Now Ψ defines an epimorphism

Ψ1 :
R ∩ V (F )
[RV ∗F ]

−→ A .

Since V is a Schur-Baer variety, A ∼= VM(G) = R ∩ V (F )/[RV ∗F ], and
G is finite, and hence by Theorem 1.3, A is also finite. Thus the above
epimorphism is isomorphism. Now, put S = ker(Ψ) ∩ R. Then clearly
S �F and S/[RV ∗F ] is the kernel of the restriction of Ψ to R/[RV ∗F ],
i.e.,

Ψ2 :
R

[RV ∗F ]
−→ A .

Now we may consider the following short exact sequence

1 → S

[RV ∗F ]
−→ R

[RV ∗F ]
Ψ2−→ A→ 1. (3.2)

Since Ψ1 is an isomorphism, we have Ψ2 ◦ Ψ1
−1 = 1A, and hence the

above short exact sequence splits. Therefore we have

R

[RV ∗F ]
∼= A�<

S

[RV ∗F ]
∼=
R ∩ V (F )
[RV ∗F ]

�<
S

[RV ∗F ]
.

But clearly R ∩ V (F )/[RV ∗F ] � R/[RV ∗F ], so the above semidirect
product is actually a direct product. Now, by Lemma 3.1, F/S is a
V-covering group of G.

Let θ : F/S −→ G∗ be the homomorphism induced by Ψ. Since Ψ
is surjective and Ψ(R) = A, θ is surjective and θ(R/S) = A. However
|F/S| = |G∗|, so θ becomes an isomorphism, i.e., G∗ ∼= F/S. �

Note that this generalization of the Schur theorem, has been posed
and proved by Moghaddam and Salemkar [16], but it seems that there
are some missing points in their proof, specially the splitting of the exact
sequence (3.2), and so the condition of being Schur-Baer for the variety
V.

Lemma 3.4. The direct limit with a directed index set, as we mentioned
in Definition 2.5, preserves the finite direct product, that is, for any two
directed systems of groups {Ai;λji , I} and {Bi;µji , I}, we have

lim
−→

(Ai ×Bi) = lim
−→

Ai × lim
−→

Bi.
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Proof. Firstly, for any i ∈ I, we have the following split exact sequence
with natural homomorphisms

1 → Ai → Ai ×Bi → Bi → 1.

Now using Lemma 2.8(ii), the direct limit preserves exactness and so we
have the following exact sequence which is also split

1 → lim
−→

Ai → lim
−→

(Ai ×Bi) → lim
−→

Bi → 1.

On the other hand, we know that the direct limit is kernel-preserving
and so preserves normal subgroups. Hence lim

−→
Bi is a normal subgroup

of lim
−→

(Ai ×Bi) and so the result holds. �

Now in order to state and prove the main result of the paper, we
need to explain the concept of an induced directed system of V-covering
groups which we use in the main theorem. Let V be a Schur-Baer va-
riety, and let {Gi;λji , I} be a directed system of finite groups. suppose
that G∗i is a V-covering group for Gi, for all i ∈ I. Now if we consider
the sequence

1 → Ri → Fi → Gi → 1

as a free presentation, then using Theorem 3.3 there exists a normal
subgroup Si of Fi in such a way that G∗i = Fi/Si and specially satisfies
the following relation

Ri
[RiV ∗Fi]

∼=
Ri ∩ V (Fi)
[RiV ∗Fi]

× Si
[RiV ∗Fi]

. (3.3)

By these notations, for any i ≤ j in I, there exists an induced homomor-
phism λ̂ji commutes the following diagram

1 −→ Ri −→ Fi −→ Gi −→ 1

↓λ̂
j
i ↓λ

j
i

1 −→ Rj −→ Fj −→ Gj −→ 1.

The commutativity of this diagram implies that the homomorphism λ̂ji
maps Ri into Rj and so λ̂ji (Ri ∩V (Fi)) ⊆ Rj ∩V (Fj). Hence if λ̂ji maps
Si into Sj , we will have the following induced homomorphism, for any
i ≤ j

λ̃ji : G∗i =
Fi
Si

−→ G∗j =
Fj
Sj
,
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which forms the directed system {G∗i ; λ̃
j
i , I}, called an induced directed

system of covering groups.
Note that in general, any family of covering groups of a directed sys-

tem of groups is not necessarily an induce one. For example we consider
the group Z2×Z2 with two non-isomorphic covering groups D8 and Q8.
So it takes the trivial directed system {Gi;λji ,N} which Gi = Z2 × Z2

and λji to be identity, for any i, j ∈ N. Now if we take the family of
covering groups {G∗i ; i ∈ N} such that G∗2i = D8 and G∗2i+1 = Q8. Then
{G∗i ; i ∈ I} does not form an induced directed system.

Theorem 3.5. Suppose that V is a Schur-Baer variety. If {Gi;λji , I} is
a directed system of finite groups with an induced system of V-covering
groups {G∗i ; λ̃

j
i , I}, as we mentioned above, then the group G∗ = lim

−→
G∗i

is a V-covering group for G = lim
−→

Gi.

Proof. Using the isomorphism (3.3) and Lemma 3.4, we have

lim
−→

Ri
[RiV ∗Fi]

∼= lim
−→

Ri ∩ V (Fi)
[RiV ∗Fi]

× lim
−→

Si
[RiV ∗Fi]

. (3.4)

Also by Lemma 2.8(ii), we have

lim
−→

Ri
[RiV ∗Fi]

=
lim
−→

Ri

lim
−→

[RiV ∗Fi]
, (3.5)

lim
−→

Ri ∩ V (Fi)
[RiV ∗Fi]

=
lim
−→

(Ri ∩ V (Fi))

lim
−→

[RiV ∗Fi]
and lim

−→
Si

[RiV ∗Fi]
=

lim
−→

Si

lim
−→

[RiV ∗Fi]
.

(3.6)

Therefore using Lemma 2.12 and (3.4), (3.5), (3.6) we conclude that

(lim
−→

Ri)

[(lim
−→

Ri)V ∗(lim−→ Fi)]
∼=

(lim
−→

Ri) ∩ V (lim
−→

Fi)

[(lim
−→

Ri)V ∗(lim−→ Fi)]
×

(lim
−→

Si)

[(lim
−→

Ri)V ∗(lim−→ Fi)]
.

Now by the above relation, Corollary 2.8 and Lemma 3.1, lim
−→

Fi/ lim
−→

Si

and so the group

G∗ = lim
−→

G∗i = lim
−→

Fi
Si

=
lim
−→

Fi

lim
−→

Si
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will be a V-covering group of G = lim
−→

Gi. �

We end this section by an example showing that the condition of be-
ing directed for index set of the direct system in our study is essential.

Example 3.6. If we omit the condition of being directed, then the free
product of any two groups A, B as a particular direct limit of groups
whose index set is not directed (see [20]), should have a covering group
with the structure A∗ ∗ B∗, where A∗ and B∗ are the covering groups
of A and B, respectively. But this is a contradiction, when we choose
A with nontrivial Schur multiplier. Since in this case, if A∗ ∗ B∗ is a
covering group of A ∗B, then by Definition 2.4, we will have

M(A ∗B) ∼= N with N ⊆ Z(A∗ ∗B∗) ∩ (A∗ ∗B∗)′ = 1.

But using a result of Miller [13], we have M(A∗B) ∼= M(A)×M(B) 6= 1,
which is a contradiction.

4. Applications

As we mentioned in the introduction, we have the structure of cover-
ing or generalized covering groups for some famous products of finitely
many groups, such as finite direct and finite regular products of finite
groups [4, 24]. In this section, as an important application of the main
result, we present a generalized covering group for the above products
when their index sets are arbitrary. Also the main result of this note
may have an application in the sense that if one wants to find a gener-
alized covering group for an arbitrary group, one only needs to find a
generalized covering group for every finitely generated subgroups of it.

Firstly, by a result of Schur [22], for a finite nilpotent group G, we
have

M(G) ∼= M(S1)×M(S2)× · · · ×M(Sn),

where S1, S2, . . . , Sn are all sylow subgroups of G.
Using this property and the definition of covering group, we deduce the
following straightforward fact.
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Corollary 4.1. Let G be a finite nilpotent group and let S1, S2, . . . , Sn
be its sylow subgroups. If S∗i is a covering group for Si, Then the group
G∗ = S∗1 × S∗2 × · · · × S∗n is a covering group of G.

Now using the main result of this paper, we conclude a generalization
of the above note as follows.

Corollary 4.2. Let G be a torsion nilpotent group and let {Si}i∈I be
the set of its Sylow subgroups. If S∗i is a covering group of Si, for all
i ∈ I, then the group G∗ =

∏×
i∈I S

∗
i is a covering group for G.

Proof. First, note that every torsion nilpotent group, is the direct
product of its Sylow subgroups and so G =

∏×
i∈I Si. Now if we consider

the system {
∏×
j∈J Sj ;λ

K
J }, where J ⊆ K are finite subsets of I and λKJ

is the inclusion map, then the group G =
∏×
i∈I Si is the direct limit of

this system which is obviously a directed system.
Clearly we have the induced directed system on the covering groups

of
∏×
j∈J Sj ’s with the morphisms λ̃KJ as follows

{
×∏
j∈J

S∗j ; λ̃KJ }
J

finite

⊆ I
.

Note that the morphisms λ̃KJ are clearly inclusion maps and so the di-
rect product G∗ =

∏×
i∈I S

∗
i will be considered as the direct limit of this

system and hence, using Theorem 3.5, the proof is completed. �

Also by a result of Ellis [3], for a finite nilpotent group G with Sylow
subgroups P1, P2, . . . , Pn, we have

NcM(G) ∼= NcM(P1)×NcM(P2)× · · · × NcM(Pn).

Using this property and similar arguments, we deduce the similar corol-
lary for an Nc-covering group of a torsion nilpotent group as follows.

Corollary 4.3. Let G be a torsion nilpotent group and let {Si}i∈I be
the set of its Sylow subgroups Pi, for i ∈ I. If P ∗i is an Nc-covering
group of Pi for all i ∈ I, then the group G∗ =

∏×
i∈I P

∗
i is an Nc-covering
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group for G.

We next establish the structure of a covering group for the direct and
regular products of arbitrary many of groups which are generalizations
of results of Wiegold [24] and Haebich [4].

Corollary 4.4. Let {Ai}i∈I be an arbitrary family of finite groups and
suppose that A∗i is a covering group of Ai for any i ∈ I. Then the second
nilpotent product of Ai’s is a covering group of

∏×
i∈I Ai.

Proof. First, we recall that the second nilpotent product of a family of
groups as {A∗i }i∈I , is defined to be

2
∗∏
i∈I

A∗i =
∏∗
i∈I A

∗
i

γ3(
∏∗
i∈I A

∗
i ) ∩ [A∗i ]∗

,

where the subgroup [A∗i ]
∗ is the kernel of the natural epimorphism

π :
∏∗
i∈I A

∗
i →

∏×
i∈I A

∗
i , which has also the following structure

[A∗i ]
∗ = 〈 [Ai, Aj ] ; i 6= j 〉

∏∗
i∈I

A∗i .

Now similar to the proof of Corollary 4.2, we consider the directed system
{
∏×
j∈J Aj ; λKJ } of finite direct products and the inclusion maps, with

the group A =
∏×
i∈I Ai as the direct limit of this system.

By a result of Wiegold [24], the group
∏2
∗
i∈J A

∗
i is a covering group of∏×

j∈J Aj , where J is finite. Consider {
∏2
∗
i∈J A

∗
i ; λ̃KJ } as a directed

system, where the morphism λ̃KJ is clearly the inclusion map, λ̃KJ :∏2
∗
j∈J A

∗
j ↪→

∏2
∗
k∈K A

∗
k. Clearly A∗ =

∏2
∗
i∈I A

∗
i is the direct limit of the

last induced directed system and so using Theorem 3.5 is a covering
group for

∏×
i∈I Ai. �

Notation and Corollary 4.5. Let G be a regular product of its finite
subgroups Ai, i ∈ I, where I is considered as an ordered set. For each
i ∈ I, Li denotes a fixed covering group for Ai and consider the exact
sequence 1 →Mi → Li

νi→ Ai → 1 such that

Mi ⊆ Z(Li) ∩ L′i and Mi
∼= M(Ai),
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where Mi is a normal subgroup of Li, and M(Ai) is the Schur multiplier
of Ai. Assume that A =

∏∗
i∈I Ai and L =

∏∗
i∈I Li are free products of

Ai’s and Li’s, respectively. We denote by ν the natural homomorphism
from L onto A induced by the νi’s. Also, if ψ is the natural homomor-
phism from A onto G induced by the identity map on each Ai,

L =
∗∏
i∈I

Li
ν−→ A =

∗∏
i∈I

Ai
ψ−→ G→ 1 ,

then we denote by H the kernel of ψ and set

J = ν−1(H) ∩ [LLi ], N =
n∏

i,j=1

i6=j

[Mi, Lj ]L, M = (
n∏
i=1

Mi)J.

Finally, L̄ and M̄ denote the images of L and M under the natural
homomorphism L → L/N [J, L], respectively. Then there is an exact
sequence

1 → M̄ → L̄→ G→ 1,

such that M̄ ⊆ Z(L̄) ∩ [L̄, L̄] and M̄ ∼= M(G). In particular, L̄ is a
covering group of G.

Proof. First of all, we note that the group G is called the regular
product of its subgroups Ai’s, with the ordered set I, whenever the
following two conditions hold

G = 〈Ai ; i ∈ I〉, Ai ∩ Âi = 1 (∀i ∈ I),

where Âi is defined to be the group

Âi =
∏

j∈J,j 6=i
AGj .

Now similar to the previous notes and using the definition, we clearly
consider the directed system on finite regular products of Ai’s, with
inclusion maps. As we saw before, it induces a directed system on their
covering groups, with induced homomorphisms which are also inclusion.

By a result of Haebich [4], the corollary holds for any finite index set I.
Now, using Theorem 3.5, it is easy to check that the group L̄ as a direct
limit of the induced system is a covering group of the regular products
of Ai’s which is considered as a direct limit of the first system. �
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Note that the above theorem is in fact a generalization of the Hae-
bich’s formula for a covering group of any finite regular product of finite
groups [4]. However the main proof of Haebich could be easily gen-
eralized to the regular product of infinitely many of finite groups, but
our proof as an application of the main result is another proof to this
generalization.
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