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Abstract. Let p be an analytic function defined on the open unit disc

D with p(0) = 1. The conditions on α and β are derived for p(z) to be
subordinate to 1 + 4z/3 + 2z2/3 =: φC(z) when (1 − α)p(z) + αp2(z) +
βzp′(z)/p(z) is subordinate to ez . Similar problems were investigated for

p(z) to lie in a region bounded by lemniscate of Bernoulli |w2 − 1| = 1
when the functions (1−α)p(z)+αp2(z)+βzp′(z) , (1−α)p(z)+αp2(z)+
βzp′(z)/p(z) or p(z) + βzp′(z)/p2(z) are subordinates to φC(z). Related
results for p to be in the parabolic region bounded by the Rew = |w− 1|
are investigated.
Keywords: convex and starlike functions, cardioid, parabolic starlike,
lemniscate of Bernoulli, subordination.
MSC(2010): Primary: 30C80; Secondary: 30C45.

1. Introduction

Let A be the class of all functions f analytic in the unit disc D := {z ∈ C :
|z| < 1} and normalized by the conditions f(0) = 0 and f ′(0) = 1. Let S be
the subclass of A consisting of univalent functions. For an analytic function φ
with positive real part in D with φ(0) = 1 and φ′(0) > 0, let

S∗(φ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ φ(z)

}
and

C(φ) :=
{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ φ(z)

}
.

These classes unify various classes of starlike and convex functions. Shanmugam
[18] studied the convolution properties of these classes when φ is convex while
Ma and Minda [8] investigated the growth, distortion and coefficient estimates
under less restrictive assumption that φ is starlike and φ(D) is symmetric with
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respect to the real axis. Notice that, for −1 ≤ B < A ≤ 1, the class S∗[A,B] :=
S∗((1 + Az)/(1 + Bz)) is the class of Janowski starlike functions [6, 13]. For
0 ≤ α < 1, the class S∗[1 − 2α,−1] =: S∗(α) is the familiar class of starlike
functions of order α, introduced by Robertson [16]. The classes S∗ := S∗(0)
and C := C(0) are the classes of starlike and convex functions respectively. If
the function φPAR : D → C is given by

(1.1) φPAR(z) := 1 +
2

π2

(
log

1 +
√
z

1−
√
z

)2

, Im
√
z ≥ 0

then φPAR(D) =
{
w = u+ iv : v2 < 2u− 1

}
= {w : Rew > |w − 1|} =: ΩP .

The class C(φPAR) is the class of uniformly convex functions introduced by
Goodman [4]. The corresponding class SP := S∗(φPAR) of parabolic starlike
functions, introduced by Rønning [17], consists of function f ∈ A satisfying

Re

(
zf ′(z)

f(z)

)
>

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ , z ∈ D.

Sokól and Stankiewicz [23] have introduced and studied the class S∗
L=S∗(

√
1 + z);

the class S∗
L consists of functions f ∈ A such that zf ′(z)/f(z) lies in the re-

gion bounded by the right-half of the lemniscate of Bernoulli given by ΩL :={
w ∈ C : |w2 − 1| < 1

}
. There has been several works [1, 3, 5, 14, 19, 21, 22]

related to these classes. Similarly, the class S∗
C := S∗(φC), where φC(z) =

1 + 4z/3 + 2z2/3 was introduced and studied recently in [15, 20]. Precisely,
f ∈ S∗

C provided zf ′(z)/f(z) lies in the region bounded by the cardioid

ΩC :=
{
w = u+ iv : (9u2 + 9v2 − 18u+ 5)2 − 16(9u2 + 9v2 − 6u+ 1) = 0

}
.

Another class S∗
e := S∗(ez), introduced recently by Mendiratta et al. [10],

consists of functions f ∈ A satisfying the condition | log(zf ′(z)/f(z))| < 1.
A convex function is starlike of order 1/2; analytically,

p(z) + zp′(z)/p(z) ≺ (1 + z)/(1− z) =⇒ p(z) ≺ 1/(1− z).

Similarly, a sufficient condition for a function p to be a function with positive
real part is that p(z)+ zp′(z)/p(z) ≺ R(z), where R is the open door mapping
given by

R(z) :=
1 + z

1− z
+

2z

1− z2
.

Several authors have investigated similar results for functions to belong to cer-
tain regions in right half plane. For example, Ali et al. [2] determined the
condition on β for p(z) ≺

√
1 + z when 1 + βzp′(z)/pn(z) with n = 0, 1, 2

or (1 − β)p(z) + βp2(z) + βzp′(z) is subordinate to
√
1 + z. For related re-

sults, see [1–3, 7, 12, 22]. We investigate a similar problem for regions that
were considered recently by many authors, including parabolic and lemnis-
cate regions associated with the classes SP and S∗

L, respectively. Precisely we
determine conditions on α and β so that p(z) ≺ φC(z) when (1 − α)p(z) +
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αp2(z) + βzp′(z)/p(z) ≺ ez. Conditions on α and β are also determined so
that (1− α)p(z) + αp2(z) + βzp′(z) or (1− α)p(z) + αp2(z) + βzp′(z)/p(z) or
p(z)+βzp′(z)/p2(z) ≺ φC(z) implies p(z) ≺

√
1 + z. We also find condition on

β so that 1+βzp′(z) is subordinate to φC(z) or
√
1 + z implies p(z) ≺ φPAR(z).

Our results yield several sufficient conditions for f ∈ A to belong to the class
SP , S∗

C or S∗
L.

We need the following lemmas to prove our results.

Lemma 1.1. [11, Corollary 3.4h, p.135] Let q be univalent in D, and let φ be
analytic in a domain D containing q(D). Let zq′(z)φ(q(z)) be starlike. If p is
analytic in D, p(0) = q(0) and zp′(z)φ(p(z)) ≺ zq′(z)φ(q(z)), then p ≺ q and
q is the best dominant.

Lemma 1.2. [11, Theorem 3.4i, p.134] Let q be univalent in D and let φ and
ν be analytic in a domain D containing q(D) with φ(w) ̸= 0 when w ∈ q(D).
Set Q(z) := zq′(z)φ(q(z)), h(z) := ν(q(z)) + Q(z). Suppose that (i) either h
is convex or Q(z) is starlike univalent in D and (ii) Re(zh′(z)/Q(z)) > 0 for
z ∈ D. Let p be analytic in D with p(0) = q(0) and p(D) ⊂ D. If p satisfies

(1.2) ν(p(z)) + zp′(z)φ(p(z)) ≺ ν(q(z)) + zq′(z)φ(q(z)),

then p ≺ q and q is the best dominant.

2. Results associated with starlikeness

Let p be an analytic function in D with p(0) = 1. In the first result, we find
the conditions on α and β so that p(z) ∈ ΩC , whenever (1−α)p(z)+αp2(z)+
βzp′(z)/p(z) ≺ ez.

Theorem 2.1. Let the function p be analytic in D with p(0) = 1. Let α, β ∈ R
such that either (i) 3(e− 3)/(2e) < α < (e− 3)/6, β > 9(e− 3− 6α)/8, or (ii)
(e− 3)/6 ≤ α ≤ 0, β > 0 holds. If the function p satisfies

(1− α)p(z) + αp2(z) + β
zp′(z)

p(z)
≺ ez

then p(z) ≺ φC(z).

Proof. The function q : D → C defined by q(z) = φC(z) = 1+ 4(z + z2/2)/3 is
univalent in D. Let h : D → C be defined by

h(z) := (1− α)q(z) + αq2(z) + β
zq′(z)

q(z)

= (1− α)

(
1 +

4z

3
+

2z2

3

)
+ α

(
1 +

4z

3
+

2z2

3

)2

+
4βz(1 + z)

3 + 4z + 2z2
.(2.1)

The proof is by showing that (a)

(2.2) (1− α)p(z) + αp2(z) + β
zp′(z)

p(z)
≺ (1− α)q(z) + αq2(z) + β

zq′(z)

q(z)
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implies that p(z) ≺ q(z) and (b) the subordination ψ(z) := ez ≺ h(z) holds.
(a) The subordination (2.2) is the same as (1.2) if we define the functions ν,

φ by ν(w) = (1 − α)w + αw2 and φ(w) = β/w. The function ν is analytic in
C. Since β > 0, φ is analytic in C \ {0} and φ(w) ̸= 0. Consider the functions
Q and h defined as follows:

(2.3) Q(z) := zq′(z)φ(q(z)) =
βzq′(z)

q(z)
=

4βz(1 + z)

3 + 4z + 2z2

and

(2.4) h(z) = ν(q(z)) +Q(z) = (1− α)q(z) + αq2(z) +Q(z).

The equation (2.3) gives

zQ′(z)

Q(z)
=

z

1 + z
+

3− 2z2

3 + 4z + 2z2
=: K(z).

Substituting x = cos t (t ∈ [−π, π]), we have

Re(K(eit)) =
1

2
+

5 + 4 cos t

29 + 40 cos t+ 12 cos 2t
=

1

2
+

5 + 4x

24x2 + 40x+ 17
≥ 11

18
> 0.

This together with the minimum principle for harmonic functions shows that
the function Q is starlike univalent in D. Using (2.3) and (2.4), we get

zh′(z)

Q(z)
=

1− α

β
q(z) +

2α

β
q2(z) +

zQ′(z)

Q(z)
=M(z) +K(z),

where
M(z) = ((1− α)/β)q(z) + (2α/β)q2(z).

We show that Re(zh′(z)/Q(z)) > 0, z ∈ D when α, β ∈ R satisfy the conditions
in (i) or (ii) in the hypothesis. For t ∈ [−π, π], we have

Re(M(eit)) = (9 + 9α+ 12(1 + 3α) cos t

+ (6 + 50α) cos 2t+ 32α cos 3t+ 8α cos 4t)/9β =: H(cos t).

We need to prove that H(x) ≥ 0 in the interval −1 ≤ x ≤ 1 for cases (i) and
(ii), where

H(x) = (3− 33α+ 12(1− 5α)x+ 12(1 + 3α)x2 + 128αx3 + 64αx4)/9β.

Since, H(1) = (3+15α)/β and H(−1) = (3−α)/9β, H(1) and H(−1) both are
non- negative for −1/5 ≤ α ≤ 3, β > 0. A calculation shows that H ′(x) = 0 if

x = x0 = −1

2
− 1152α− 5760α2

4608(2
1
3α(16α3 +

√
2
√
α3 − 15α4 + 75α5 + 3α6)

1
3 )

+
(16α3 +

√
2
√
α3 − 15α4 + 75α5 + 3α6)

1
3

4(2
2
3α)

and
H ′′(x) = (768xα+ 8(−16 + 96x2)α+ 4(6 + 50α))/9β.
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Clearly for both the cases (i) and (ii), H ′′(x0) < 0, H(1) ≥ 0 and H(−1) ≥ 0.
Therefore, H(x) ≥ min(H(1),H(−1)) ≥ 0 for −1 ≤ x ≤ 1. This shows that
Re(zh′(z)/Q(z)) > 0, z ∈ D and therefore, h(z)− 1 is close-to-convex function
and hence univalent in D. If the subordination (2.2) holds, Lemma 1.2 shows
that p(z) ≺ q(z).

(b) We now show that ψ(z) := ez ≺ h(z) holds. The subordination ψ(z) ≺
h(z) holds if ∂h(D) ⊂ C\ψ(D) = {w ∈ C : | logw| > 1}. Set w = u+iv = h(eit),
where t ∈ [−π, π]. Then, the inequality | logw| > 1 reduces to

(2.5) f(t) := (log(u2 + v2))2 + 4(arg(u+ iv))2 − 4 > 0.

By definition of h given in (2.1), we get

u =
1

9(29 + 40 cos t+ 12 cos 2t)

(
537 + 372α+ 216β

+ 4(225 + 239α+ 81β) cos t+ 2(261 + 611α+ 54β) cos 2t

+ 96(2 + 11α) cos 3t+ 4(9 + 142α) cos 4t

+ 176α cos 5t+ 24α cos 6t
)

and

v =
1

9(29 + 40 cos t+ 12 cos 2t)

(
4(147 + 511α+ 45β

+ (225 + 907α+ 54β) cos t+ 8(12 + 77α) cos 2t

+ 2(9 + 148α) cos 3t+ 88α cos 4t+ 12α cos 5t) sin t
)
.

Since f(t) is an even function of t, it is enough to show that f(t) > 0 for
t ∈ [0, π]. It can be easily verified that for both the cases (i) and (ii), the
function f(t) attains its minimum value either at t = 0 or t = π. So, we need
to show that both f(0) and f(π) are positive in either cases. Note that

(2.6) f(0) = −4 + 4(arg(27 + 54α+ 8β))2 + (log((27 + 54α+ 8β)2/81))2

and

(2.7) f(π) = −4 + 4(arg(3− 2α))2 + (log((3− 2α)2/81))2.

For the case (i), the relation β > 9(e−3−6α)/8 gives 27+54α+8β > 9e so
that arg(27 + 54α+ 8β) = 0 and (log((27 + 54α+ 8β)2/81))2 > (2 log e)2 = 4.
Thus, the use of (2.6) yields f(0) > 0. The conditions α < (e− 3)/6 and 3(e−
3)/(2e) < α lead to 3− 2α > 4− e/3 > 0 and (3− 2α)2/81 < 1/e2 respectively
which further implies that arg(3 − 2α) = 0 and (log((3 − 2α)2/81))2 > 4
respectively. Hence, by using (2.7), we get f(π) > 0.

For the case (ii), the condition (e − 3)/6 ≤ α gives 27 + 54α + 8β > 8β +
9e > 9e. So, proceeding as in the case (i), we get f(0) > 0. Using the fact
that α ≤ 0, we get 3 − 2α > 0 and hence arg(3 − 2α) = 0. Observe that
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α ≥ (e − 3)/6 > 3(e − 3)/(2e). Thus, again proceeding as in the case (i), we
get f(π) > 0. This completes the proof. □

By taking p(z) = zf ′(z)/f(z), p(z) = z2f ′(z)/f2(z) and p(z) = f ′(z), the
above theorem gives the following:

Example 2.2. Let α, β ∈ R such that either (i) 3(e−3)/(2e) < α < (e− 3)/6,
β > 9(e− 3− 6α)/8, or (ii) (e− 3)/6 ≤ α ≤ 0, β > 0 holds.

(1) If the function f ∈ A satisfies the subordination

(1− α− β)
zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)

)2

+ β

(
1 +

zf ′′(z)

f ′(z)

)
≺ ez

then f ∈ S∗
C .

(2) If the function f ∈ A satisfies the subordination(
(1− α) + α

z2f ′(z)

f2(z)

)
z2f ′(z)

f2(z)
+ β

(
(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)

)
≺ ez

then z2f ′(z)/f2(z) ≺ φC(z).
(3) If the function f ∈ A satisfies the subordination

((1− α) + αf ′(z))f ′(z) + β
zf ′′(z)

f ′(z)
≺ ez

then f ′(z) ≺ φC(z).

In the next two theorems, we compute the conditions on β so that p(z) ∈ ΩL,
whenever

(1− α)p(z) + αp2(z) + βzp′(z) or (1− α)p(z) + αp2(z) + β
zp′(z)

p(z)
∈ ΩC ,

where p is an analytic function defined on D with p(0) = 1.

Theorem 2.3. Let α, β ∈ R satisfying −1/(2
√
2 − 1) ≤ α ≤ 1 and β >

−2(2− 3
√
2− 2α+2

√
2α). If the function p is analytic in D with p(0) = 1 and

satisfies (1− α)p(z) + αp2(z) + βzp′(z) ≺ φC(z) then p(z) ≺
√
1 + z.

Proof. Let q be the convex univalent function defined by q(z) =
√
1 + z. Then

it is clear that βzq′(z) is starlike. We will prove the result by showing that (a)

(2.8) (1− α)p(z) + αp2(z) + βzp′(z) ≺ (1− α)q(z) + αq2(z) + βzq′(z)

implies that p(z) ≺ q(z) and (b)

φC(z) := 1 +
4z

3
+

2z2

3
≺ (1− α)q(z) + αq2(z) + βzq′(z)

= (1− α)
√
1 + z + α(1 + z) +

βz

2
√
1 + z

=: h(z).

(2.9)
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(a) To prove (2.8), define ν(w) = (1 − α)w + αw2 and φ(w) = β. The
function ν is analytic in C. Since β > 0, φ is analytic in C \ {0} and φ(w) ̸= 0.
The function Q defined by

(2.10) Q(z) := zq′(z)φ(q(z)) = βzq′(z) =
βz

2
√
1 + z

is starlike of order 3/4 and for the function h defined by

(2.11) h(z) := ν(q(z)) +Q(z) = (1− α)q(z) + αq2(z) +Q(z),

we have
zh′(z)

Q(z)
=

1− α

β
+

2α

β
q(z) +

zQ′(z)

Q(z)
.

Using the fact that 0 < Re q(z) <
√
2, z ∈ D, we have the following two cases:

Case 1: 0 ≤ α ≤ 1. In this case, we have

Re

(
zh′(z)

Q(z)

)
>

1− α

β
+

3

4
> 0.

Case 2: −1/(2
√
2− 1) ≤ α < 0. In this case, we have

Re

(
zh′(z)

Q(z)

)
>

1− α

β
+

2
√
2α

β
+

3

4
> 0.

This shows that Re(zh′(z)/Q(z)) > 0, z ∈ D and therefore, h(z) − 1 is close-
to-convex function and hence univalent in D. If the subordination (2.8) holds,
Lemma 1.2 shows that p(z) ≺ q(z).

(b) We now show that (2.9) holds. Clearly,

φC(D) =
{
w ∈ C : | − 2 +

√
6w − 2| < 2

}
.

The subordination φC(z) ≺ h(z) holds if ∂h(D) ⊂ C \ φC(D). Thus, by using
the definition of h as given in (2.9), the subordination φC(z) ≺ h(z) holds if
for t ∈ [−π, π], we have

(2.12)

∣∣∣∣∣
√
−2 + 6(1− α)

√
1 + eit + 6α(1 + eit) +

3βeit√
1 + eit

− 2

∣∣∣∣∣ > 2.

By writing

(2.13) w = −2 + 6(1− α)
√
1 + eit + 6α(1 + eit) + 3βeit(1 + eit)−

1
2 ,

we see that the condition (2.12) holds if |
√
w − 2| > 2 or equivalently if |w| >

4Re(
√
w). On further simplification after substituting w = u+ iv, (2.12) holds

if

(2.14) (u2 + v2 − 8u)2 − 64(u2 + v2) > 0.
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Using (2.13), we get

u = −2 + 6(1− α)
√

2 cos(t/2) cos(t/4) + 6α(1 + cos t)

+ 3β cos(3t/4)(2 cos(t/2))−
1
2

(2.15)

and

v = 6(1− α)
√
2 cos(t/2) sin(t/4) + 6α sin t

+ 3β sin(3t/4)(2 cos(t/2))−
1
2 .

(2.16)

Using (2.15) and (2.16) in (2.14), we get

g(t) := −64
((

− 2 + 6
√
2(1− α) cos(t/4)

√
cos(t/2) +

3β cos(3t/4)√
2
√
cos(t/2)

+ 6α(1 + cos t)
)2

+
(
6
√
2(1− α)

√
cos(t/2) sin(t/4) +

3β cos(3t/4)√
2
√
cos(t/2)

+ 6α sin t
)2)

+
(
− 8

(
− 2 + 6

√
2(1− α) cos(t/4)

√
cos(t/2)

+
3β cos(3t/4)√
2
√
cos(t/2)

+ 6α(1 + cos t)
)

+
(
− 2 + 6

√
2(1− α) cos(t/4)

√
cos(t/2) +

3β cos(3t/4)√
2
√

cos(t/2)

+ 6α(1 + cos t)
)2

+
(
6
√
2(1− α)

√
cos(t/2) sin(t/4)

+
3β sin(3t/4)√
2
√
cos(t/2)

+ 6α sin t
)2)2

> 0.

Observe that g(t) = g(−t) for all t ∈ [−π, π] and g(t) attains its minimum
value at t = 0. A calculation shows that

g(0) =
3

16
(4− 12

√
2 + 12(−2 +

√
2)α− 3

√
2β)3

× (12− 4
√
2 + 4(−2 +

√
2)α−

√
2β).

(2.17)

Note that the condition β > −2(2 − 3
√
2 − 2α + 2

√
2α) is equivalent to 12 −

4
√
2+4(−2+

√
2)α−

√
2β < 0 and 4−12

√
2+12(−2+

√
2)α−3

√
2β < 0. Thus,

the use of (2.17) yields g(0) > 0 which implies that g(t) > 0 for all t ∈ [0, π].
Hence the result follows. □

Theorem 2.4. Let α, β ∈ R satisfying 0 ≤ α ≤ 1 and β > 4(3−
√
2 + (

√
2−

2)α). If p is an analytic function defined on D with p(0) = 1 satisfying

(1− α)p(z) + αp2(z) + β
zp′(z)

p(z)
≺ φC(z)

then p(z) ≺
√
1 + z.
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Proof. Define the function q : D → C by q(z) =
√
1 + z. Proceeding as in

Theorem 2.3, the result is proved by showing that (a)

(2.18) (1− α)p(z) + αp2(z) + β
zp′(z)

p(z)
≺ (1− α)q(z) + αq2(z) + β

zq′(z)

q(z)

implies that p(z) ≺ q(z) and (b)

φC(z) := 1 +
4z

3
+

2z2

3
≺ (1− α)q(z) + αq2(z) +

βzq′(z)

q(z)

= (1− α)
√
1 + z + α(1 + z) +

βz

2(1 + z)
=: h(z).

(2.19)

(a) Let us define ν(w) = (1 − α)w + αw2 and φ(w) = β/w. Clearly β > 0.
The functions ν and φ are analytic in C\{0} which includes q(D) and φ(w) ̸= 0.
Next, define the functions Q and h by

(2.20) Q(z) := zq′(z)φ(q(z)) =
βzq′(z)

q(z)
=

βz

2(1 + z)

and

(2.21) h(z) := ν(q(z)) +Q(z) = (1− α)q(z) + αq2(z) +Q(z).

Since Q is a Möbius transformation, the function Q is convex. Further us-
ing (2.20) and (2.21), we get

zh′(z)

Q(z)
=

1− α

β
q(z) +

2α

β
q2(z) +

zQ′(z)

Q(z)
.

Since 0 < Re q(z) <
√
2 and 0 < Re q2(z) < 2, z ∈ D, we have

Re

(
zh′(z)

Q(z)

)
>

√
2

(
1− α

β

)
+

4α

β
> 0.

Therefore, h(z)− 1 is close-to-convex function and hence univalent in D. If the
subordination (2.18) holds, Lemma 1.2 shows that p(z) ≺ q(z).

(b) We now claim that (2.19) holds. Note that

φC(D) =
{
w ∈ C : | − 2 +

√
6w − 2| < 2

}
.

The subordination φC(z) ≺ h(z) holds if ∂h(D) ⊂ C \ φC(D). Using the
definition of h given in (2.19), the subordination φC(z) ≺ h(z) holds if for
t ∈ [−π, π], the following condition holds

(2.22)

∣∣∣∣∣
√
−2 + 6(1− α)

√
1 + eit + 6α(1 + eit) +

3βeit

1 + eit
− 2

∣∣∣∣∣ > 2.

Let

(2.23) w = u+ iv = −2 + 6(1− α)
√
1 + eit + 6α(1 + eit) +

3βeit

1 + eit
.
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Proceeding as in Theorem 2.3, the condition (2.22) holds if (2.14) holds. From
(2.23), we get

u = −2 + 6(1− α)
√
2 cos(t/2) cos(t/4) + 6α(1 + cos t) +

3β

2

and

v = 6(1− α)
√
2 cos(t/2) sin(t/4) + 6α sin t+

3β

2
tan t/2.

Using these above expressions for u and v, the condition (2.14) takes the fol-
lowing form

k(t) := −64
((

− 2 + (3β)/2 + 6
√
2(1− α) cos(t/4)

√
cos(t/2)

+ 6α(1 + cos t)
)2

+
(
6
√
2(1− α)

√
cos(t/2) sin(t/4) + 6α sin t

+ (3/2)β tan(t/2)
)2)

+
(
− 8

(
− 2 + (3β)/2

+ 6
√
2(1− α) cos(t/4)

√
cos(t/2) + 6α(1 + cos t)

)
+

(
− 2 + (3β)/2

+ 6
√
2(1− α) cos(t/4)

√
cos(t/2) + 6α(1 + cos t)

)2
+
(
6
√
2(1− α)

√
cos(t/2) sin(t/4) + 6α sin t+ (3/2)β tan(t/2)

)2)2

> 0.

Note that k(t) = k(−t), so it is enough to show that k(t) > 0 for t ∈ [0, π].
Also note that k(t) is an increasing function of t. A calculation shows that

k(0) =
3

16
(4− 12

√
2 + 12(−2 +

√
2)α− 3β)3

× (12− 4
√
2 + 4(−2 +

√
2)α− β).

(2.24)

Consider the given relation β > 4(3 −
√
2 − 2α +

√
2α) which is same as

12− 4
√
2 + 4(−2 +

√
2)α− β < 0 and 4− 12

√
2 + 12(−2 +

√
2)α− 3β < 0. By

using (2.24), we get k(0) is positive which implies that k(t) is positive for all
t ∈ [0, π]. This completes the proof. □

Next result depicts the condition on β so that p(z) ∈ ΩL, whenever p(z) +
βzp′(z)/p2(z) ∈ ΩC .

Theorem 2.5. Let β ∈ R satisfying β > 4(−2 + 3
√
2). If p is an analytic

function defined on D with p(0) = 1 satisfying

p(z) + β
zp′(z)

p2(z)
≺ φC(z)

then p(z) ≺
√
1 + z.
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Proof. Define the function q : D → C by q(z) =
√
1 + z. Proceeding as in

Theorem 2.3, we will prove the result by showing that (a)

(2.25) p(z) + β
zp′(z)

p2(z)
≺ q(z) + β

zq′(z)

q2(z)

implies that p(z) ≺ q(z) and (b)

φC(z) := 1 +
4z

3
+

2z2

3
≺ q(z) + β

zq′(z)

q2(z)

=
√
1 + z +

βz

2(1 + z)
3
2

=: h(z).

(2.26)

(a) The subordination (2.25) is same as (1.2) if we define ν(w) = w and
φ(w) = β/w2. Clearly, the functions ν and φ are analytic in C \ {0} which
includes q(D) and φ(w) ̸= 0. Consider the functions Q and h defined as follows:

(2.27) Q(z) := zq′(z)φ(q(z)) =
βzq′(z)

q2(z)
=

βz

2(1 + z)
3
2

and

(2.28) h(z) := ν(q(z)) +Q(z) = q(z) +Q(z).

Since z/(1 − z)2−2α ∈ S∗(α), the function Q is starlike in D. Using (2.27)
and (2.28), we get

zh′(z)

Q(z)
=

1

β
q2(z) +

zQ′(z)

Q(z)

which further gives

Re

(
zh′(z)

Q(z)

)
>

1

4
> 0.

Hence, h is univalent in D. If the subordination (2.25) holds, then from
Lemma 1.2, it follows that p(z) ≺ q(z).

(b) We now show that (2.26) holds. Proceeding as in Theorem 2.3 and by
using the definition of h given in (2.26), the subordination φC(z) ≺ h(z) holds
if for t ∈ [−π, π], the following condition holds

(2.29)

∣∣∣∣∣
√
−2 + 6

√
1 + eit +

3βeit

(1 + eit)
3
2

− 2

∣∣∣∣∣ > 2.

Set

w = u+ iv = −2 + 6
√
1 + eit +

3βeit

(1 + eit)
3
2

so that

(2.30) u = −2 + 6
√

2 cos(t/2) cos(t/4) + 3β cos(t/4)(2 cos(t/2))−
3
2

and

(2.31) v = 6
√
2 cos(t/2) sin(t/4) + 3β sin(t/4)(2 cos(t/2))−

3
2 .
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Proceeding as in Theorem 2.3, the condition (2.29) holds if (2.14) holds. After
using (2.30) and (2.31) in (2.14), we get

g(t) := −64
((

− 2 +
3β cos(t/4)

2
√
2(cos(t/2))

3
2

+ 6
√
2 cos(t/4)

√
cos(t/2)

)2

+
( 3β sin(t/4)

2
√
2(cos(t/2))

3
2

+ 6
√
2
√
cos(t/2) sin(t/4)

)2)
+

(
− 8

(
− 2 +

3β cos(t/4)

2
√
2(cos(t/2))

3
2

+ 6
√
2 cos(t/4)

√
cos(t/2)

)
+

(
− 2 +

3β cos(t/4)

2
√
2(cos(t/2))

3
2

+ 6
√
2 cos(t/4)

√
cos(t/2)

)2

+
( 3β sin(t/4)

2
√
2(cos(t/2))

3
2

+ 6
√
2
√
cos(t/2) sin(t/4)

)2)2

> 0.

Since g(t) is an even function of t, we will consider g(t) for t ∈ [0, π]. It can be
easily seen that the function g(t) attains its minimum value at t = 0. A simple
calculation shows that

(2.32) g(0) =
3

256
(8(−3 +

√
2) +

√
2β)(−8 + 24

√
2 + 3

√
2β)3.

The relation β > 4(−2 + 3
√
2) gives 8(−3 +

√
2) +

√
2β > 0 and −8 + 24

√
2 +

3
√
2β > 0 so that (2.32) yields g(0) > 0. Hence, we conclude that g(t) > 0 for

t ∈ [0, π]. □

By taking p(z) = zf ′(z)/f(z) in Theorems 2.3, 2.4, and 2.5, we obtain the
following example.

Example 2.6. Let f ∈ A. Then the following are sufficient conditions for
f ∈ S∗

L.

(1) Let −1/(2
√
2 − 1) ≤ α ≤ 1 and β > −2(2 − 3

√
2 − 2α + 2

√
2α). The

function f satisfies the subordination(
(1− α) + (α− β)

zf ′(z)

f(z)

)
zf ′(z)

f(z)
+ β

zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)

)
≺ φC(z).

(2) Let 0 ≤ α ≤ 1 and β > 4(3−
√
2+(

√
2−2)α). The function f satisfies

the subordination(
1− α− β + α

zf ′(z)

f(z)

)
zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
≺ φC(z).

(3) Let β > 4(−2 + 3
√
2). The function f satisfies the subordination

zf ′(z)

f(z)
− β + β

(
1 +

zf ′′(z)

f ′(z)

)
/

(
zf ′(z)

f(z)

)
≺ φC(z).
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By taking p(z) = f ′(z) in Theorems 2.3, 2.4, and 2.5 respectively, we obtain
the following example.

Example 2.7. Let f ∈ A. Then the following are sufficient conditions for
f ′(z) ≺

√
1 + z.

(1) Let −1/(2
√
2 − 1) ≤ α ≤ 1 and β > −2(2 − 3

√
2 − 2α + 2

√
2α). The

function f satisfies the subordination

(1− α)f ′(z) + α(f ′(z))2 + βzf ′′(z) ≺ φC(z).

(2) Let 0 ≤ α ≤ 1 and β > 4(3−
√
2+(

√
2−2)α). The function f satisfies

the subordination

(1− α)f ′(z) + α(f ′(z))2 + β
zf ′′(z)

f ′(z)
≺ φC(z).

(3) Let β > 4(−2 + 3
√
2). The function f satisfies the subordination

f ′(z) + β
zf ′′(z)

(f ′(z))2
≺ φC(z).

In the following theorem, condition on β is obtained so that 1+βzp′(z) ∈ ΩC

implies p(z) ∈ ΩP , where p is an analytic function in D with p(0) = 1.

Theorem 2.8. Let β ∈ R satisfying β < −2π. If the function p is analytic in
D with p(0) = 1 satisfies

1 + βzp′(z) ≺ φC(z)

then p(z) ≺ φPAR(z), where the function φPAR(z) is defined by (1.1).

Proof. Define the function q : D → C as q(z) = φPAR(z) with q(0) = 1. Let
us define φ(w) = β and Q(z) = zq′(z)φ(q(z)) = βzq′(z). Since q is the convex
univalent function, Q is starlike in D. It follows from Lemma 1.1 that the
subordination

1 + βzp′(z) ≺ 1 + βzq′(z)

implies p(z) ≺ q(z). The theorem is proved by showing that

φC(z) := 1 +
4z

3
+

2z2

3
≺ 1 + βzq′(z)

= 1− 4β

π2

√
z

z − 1
log

1 +
√
z

1−
√
z
=: h(z).

(2.33)

Proceeding as in Theorem 2.3 and by using the definition of h given in (2.33),
the subordination φC(z) ≺ h(z) holds if for t ∈ [−π, π], the following condition
holds

(2.34)

∣∣∣∣∣∣
√

4− 24β

π2

eit/2

eit − 1
log

1 + eit/2

1− eit/2
− 2

∣∣∣∣∣∣ > 2.
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Set

w = u+ iv = 4− 24β

π2

eit/2

eit − 1
log

1 + eit/2

1− eit/2
= 4 +

12βi

π2
csc

t

2
log

(
i cot

t

4

)
.

Clearly,

(2.35) u = 4− 1

π2

(
12β csc

t

2
arg

(
i cot

t

4

))
and

(2.36) v =
1

π2

(
12β csc

t

2
log

∣∣∣∣cot t4
∣∣∣∣) .

Proceeding as in Theorem 2.3, the condition (2.34) holds if (2.14) holds. Sub-
stituting the values of u and v given by (2.35) and (2.36) respectively in (2.14),
we get

f(t) := −16π4((π2 − 3β arg(i cot(t/4)) csc(t/2))2

+ 9β2 csc2(t/2)(log | cot(t/4)|)2) + csc4(t/2)(π4(−1 + cos t)

+ 18β2((arg(i cot(t/4)))2 + (log | cot(t/4)|)2))2 > 0.

(2.37)

Note that f(t) is an even function of t so we will take t ∈ [0, π]. Since for
t ∈ [0, π], we have arg(i cot(t/4)) = π/2 and log | cot(t/4)| = log cot(t/4), the
condition (2.37) further reduces to

f(t) = −16π4((π2 − 3β(π/2) csc(t/2))2 + 9β2 csc2(t/2)(log(cot(t/4)))2)

+ csc4(t/2)(π4(−1 + cos t) + (9/2)β2(π2 + 4(log(cot(t/4)))2))2 > 0.

It can be easily verified that f is decreasing function of t. The relation β < −2π
implies 2π−3β > 0 and 2π+β < 0 so that f(π) = −3π4(2π−3β)3(2π+β)/4 >
0. Therefore, we conclude that f(t) > 0 for t ∈ [0, π]. □

We close this section by obtaining the conditions on β so that p(z) ∈ ΩP ,
whenever 1 + βzp′(z) ∈ ΩL.

Theorem 2.9. Let p be an analytic function defined on D and p(0) = 1. Let

|β − π| >
√
2π. If the function p satisfies the subordination

1 + βzp′(z) ≺
√
1 + z,

then the function p satisfies the subordination

p(z) ≺ φPAR(z)

where the function φPAR(z) is defined by (1.1).

Proof. Let q be the convex univalent function φPAR(z) defined by (1.1). Pro-
ceeding as in Theorem 2.8, the result is proved by showing that

(2.38)
√
1 + z ≺ 1 + βzq′(z) = 1− 4β

π2

√
z

z − 1
log

1 +
√
z

1−
√
z
=: h(z).
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Set ψ(z) =
√
1 + z. The subordination ψ(z) ≺ h(z) holds if ∂h(D) ⊂ C\ψ(D) ={

w ∈ C : |w2 − 1| > 1
}
. For t ∈ [−π, π], let

w = u+ iv = h(eit) = 1− 4β

π2

eit/2

eit − 1
log

1 + eit/2

1− eit/2

= 1 +
2βi

π2
csc

t

2
log

(
i cot

t

4

)
.

(2.39)

The subordination ψ(z) ≺ h(z) holds if |h2(eit)− 1| > 1 which holds if

(2.40) u2 + v2 − 2 > 0.

From (2.39), we get

u = 1− 2β

π2
csc(t/2) arg(i cot(t/4)) and v =

2β

π2
csc(t/2) log | cot(t/4)|.

After substituting these values of u and v in (2.40), we get

f(t) := −2 +
(
1− 2β

π2
arg(i cot(t/4)) csc(t/2)

)2
+

4β2

π4
csc2(t/2)(log | cot(t/4)|)2 > 0.

(2.41)

Since f(t) = f(−t), we will consider t ∈ [0, π]. Therefore, the condition (2.41)
further reduces to

f(t) := −2 + (−1 +
β

π
csc(t/2))2 +

4β2

π4
csc2(t/2)(log(cot(t/4)))2 > 0.

Note that

f ′(t) =
β csc3(t/2)

2π4

(
π3 sin t− β

(
8 log(cot(t/4))

+ 2 cos(t/2)(π2 + 4(log(cot(t/4)))2)
))
.

Since f ′(t) < 0 and f(π) = −2 + (−1 + β/π)2 > 0, we conclude that f(t) > 0
for t ∈ [0, π]. □

As applications of Theorems 2.8 and 2.9, we have the following examples.

Example 2.10. Let f ∈ A. Then the following are sufficient conditions for
f ∈ SP .

(1) Let β < −2π. The function f satisfies the subordination

1 + β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ φC(z).

(2) Let |β − π| >
√
2π. The function f satisfies the subordination

1 + β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺

√
1 + z.
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Example 2.11. Let f ∈ A. Then the following are sufficient conditions for
f ′(z) ≺ φPAR(z), where the function φPAR(z) is given by (1.1).

(1) Let β < −2π. The function f satisfies the subordination

1 + βzf ′′(z) ≺ φC(z).

(2) Let |β − π| >
√
2π. The function f satisfies the subordination

1 + βzf ′′(z) ≺
√
1 + z.
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[12] E. Paprocki and J. Sokó l, The extremal problems in some subclass of strongly starlike

functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 20 (1996) 89–94.
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