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ABSTRACT. Let M be an R-module and 0 # f € M* = Hom(M, R).
We associate an undirected graph I'y(M) to M in which non-zero ele-
ments x and y of M are adjacent provided that zf(y) = 0 or yf(z) =
0. We observe that over a commutative ring R, I'y(M) is connected
and diam(T'y(M)) < 3. Moreover, if I'y(M) contains a cycle, then
gr(l'y(M)) < 4. Furthermore, if |I'y(M)| > 1, then I'y(M) is finite if
and only if M is finite. Also if I'y(M) = 0, then f is monomorphism
(the converse is true if R is a domain). If M is either a free module with
rank(M) > 2 or a non-finitely generated projective module, there exists
f € M* with rad(T'y(M)) = 1 and diam(I'y(M)) < 2. We prove that
for a domain R, the chromatic number and the clique number of T' (M)
are equal. Finally, we give answer to a question posed in [M. Baziar,
E. Momtahan and S. Safaeeyan, A zero-divisor graph for modules with
respect to their (first) dual, J. Algebra Appl. 12 (2013), no. 2, 11 pages].
Keywords: Zero-divisor graph, clique number, chromatic number,module.
MSC(2010): Primary: 05C25; Secondary: 05C38, 05C40, 16D10, 16D40.

1. Introduction

The main idea of the zero-divisor graph of a ring R was first posed by
Beck [3] in 1988. Then in [5], the authors continued the study of zero-divisor
graphs. In their definition, all elements of R allowed to be vertices and two
distinct elements = and y were adjacent if and only if zy = 0. Later on, in [4],
another conception of zero-divisor graph has been introduced which became
the accepted definition of the zero-divisor graph by many authors who wrote
in this field of research in recent decades. They associated a simple graph I'(R)
to R with vertices Z(R)* = Z(R) \ {0}, the set of nonzero zero-divisors of R,
and two distinct z,y in Z(R)* are adjacent if and only if xy = 0. Hence I'(R)
is the empty graph if and only if R is an integral domain. In this paper I'(R) is
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called the classic zero-divisor graph. As we have already said, in recent decades,
the zero-divisor graphs of commutative rings have been extensively studied by
many authors and become a major field of research for its own, see for exam-
ple [2-8,13,14] and [15]. S.P. Redmond replaced zero (ideal) in the definition
of the classic zero divisor graph by an arbitrary ideal (see [17]) to get a gener-
alization of the classic zero-divisor graph of a commutative ring. Some authors
have also tried to extend the classic graph of zero-divisors for non-commutative
rings see [1, 16]. In [10, 11], the classic graph of zero-divisors for commutative
rings has been generalized to the annihilating-ideal graph of commutative rings
(two ideals I and J are adjacent if IJ = (0)). It is also worth mentioning that
DeMeyer et al. in [12] defined the zero-divisor graph of a commutative semi-
group S with zero (0z = 0 for all x € S) and quite recently in [21], the authors
have defined zero-divisor graphs for partially ordered sets with a least element
0. The zero divisor graph for modules over a commutative ring, introduced
in [9], was one of the first attempts to generalize the classic zero-divisor graphs
in module theoretic context. According to [9], m,n € M are adjacent if and
only if (mR :g M)(nR :g M)M = 0 which is a direct generalization of the
classic zero divisor graphs. The present authors have studied and examined
other conceptions of the classic zero-divisor graph for modules in [0, 18] (see
also [7] for an application of zero-divisor graph of modules introduced in [18]
to the category of Z-modules). In this article we give a new interpretation of
zero-divisor graph for modules, which in some cases, coincides with the classic
zero-divisor graph of commutative rings. In Example 2.2 we will observe that
our definition and those introduced in [6,9, 18] are quite different.

We say that G is connected if there is a path between any two distinct
vertices. For distinct vertices = and y in G, the distance between = and y,
denoted by d(z,y), is the length of a shortest path connecting x and y (d(z, x) =
0 and d(z,y) = oo if no such path exists). The diameter of G is

diam(G) = sup{d(z,y) | = and y are vertices of G}.

A cycle of length n in G is a path of the form x1 —xy —z3—---—x, —x1, where
x; # x; when i # j. We define the girth of G, denoted by gr(G), as the length
of a shortest cycle in G, provided G contains a cycle; otherwise, gr(G) = oo.
A graph is complete if any two distinct vertices are adjacent. By a complete
subgraph we mean a subgraph which is complete as a graph. In this article, all
subgraphs are induced subgraphs, where a subgraph G’ of a graph G is an in-
duced subgraph of G if two vertices of G’ are adjacent in G’ if and only if they are
adjacent in G. A complete subgraph of G is called a clique. The clique number
of G, denoted by cl(G) = sup{|G’| : where G’ is a complete subgraph of G}.
The chromatic number of G, denoted by x(G), is the minimum (cardinal) num-
ber of colors needed to color the vertices of G so that no two adjacent vertices
have the same color. Clearly cl(G) < x(G).
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All rings in this paper are commutative with identity and modules assumed
to be unitary right modules. A ring R is said to be self-injective if every R-
homomorphism from an ideal I to R can be extended to an R-homomorphism
from R to R. By M* we mean M* =Hompg(M, R), i.e., its first dual of M.
The reader is referred to [19,20] for undefined terms and concepts.

2. Zero-divisor graphs of modules

We begin with the definition of the zero-divisor graph of modules and then
give some clarifications of the difference between this definition and those ap-
peared in the literature.

Definition 2.1. Let M be an R-module and f € M* = Homp(M, R). We
define Z;(M) to be the set of all x € M with the property that there exists a
non-zero y € M such that zf(y) =0 or yf(z) = 0.

Let M be an R-module and f € M*. We associate a simple graph I'¢(M) to
M with vertices Zy(M)* = Zy(M) \ {0} such that for distinct z,y € Z;(M)*
the vertices x and y are adjacent if and only if zf(y) = 0 or yf(z) = 0. Let
fyg € M* be two monomorphisms. If x,y € M with zf(y) = 0, then it can be
easily seen that yg(x) = 0. Hence for any two monomorphisms f,g € M*, we
have I'y(M) =T4(M). Now put M = R, and f = idg, where by idr we mean
the identity map of R, then the classic zero-divisor graph is just I';4, (R). In fact
for any monomorphism g € Hom(R, R), we have I'j(R) = I';q,(R) = I'(R).
For those modules M, with M* = 0, the graph I'y(M) is an empty graph;
however, the converse is not true. To see this, let R be a domain and M = R.
Then M* =2 R # 0 but I'y (M) is an empty graph, for all f € M*.

The next example and Figure 1, show that there is a sharp difference between
the zero-divisor graph of R (as a right R-module) and the classic zero-divisor
graph of R (as a ring). Furthermore this example shows that our graph is quite
different from the zero-divisor graph for modules, introduced in [9].

Example 2.2. (1) The graph of Z,, as a Z-module is an empty graph because
Homgy(Z,,7Z) = 0.

(2) The above figures are some examples of the zero-divisor graph of modules
and the classic zero-divisor graphs.
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Zg as ring Zg as Zg-module Zg as Zg-module
and f(z) = 2z and f(z) = 3z
Fiaure 1.

The next lemma will be used frequently in the sequel.

Lemma 2.3. Let M be an R-module and x,y be non-zero elements in M. Let
f € M*, then the followings hold.

(1) If xf(y) = 0 and yf(z) # 0, then yf(x) is adjacent to every non-zero
m € M.

(2) If x is adjacent to y in Ty (M), then xr # 0 is adjacent to ys #0, r,s € R.
(3) If x #£ 0 is in ker(f), then each non-zero element of M is adjacent to x.
(4) If = is the only element of Zy(M)* adjacent to every element of T'y(M),
then either ker(f) = {0,z} or f is a monomorphism.

Proof. (1) Suppose z,y € M \ {0} such that zf(y) = 0 and yf(x) # 0. Since
fyf(@) = fy)f(z) = f(x)f(y) = f(xf(y)) = f(0) =0, for every m € M we
have mf(yf(z)) = 0. Thus yf(z) is adjacent to every m € M \ {0}.

(2) Let zf(y) = 0. Then for all 7, s € R, xrf(ys) = 0.

(3) It is clear.

(4) Let ker(f) # 0, then there exists a non-zero element y € ker(f). By Part
(3), each element of I'y(M) is adjacent to y. Therefore y = x and hence
ker(f) = {0,z}. O

The next two results are generalizations of Theorem 2.3 and Theorem 2.4
in [4], respectively.

Theorem 2.4. Let R be a ring, M an R-module and f € M*. Then I'f(M)
is connected and diam(I';(M)) < 3.

Proof. IfT'y(M) = 0, then there is nothing to say. Hence assume that I (M)| >
1. Let 2 and y be two distinct elements in Z;(M)*. If = is adjacent to y then
d(z,y) = 1. Assume that z is not adjacent to y. Then there exist a,b € Zy(M)*
such that x and y are adjacent to a and b, respectively. If a = b, then x —a —y
is a path between x and y of length 2. If @ # b and a is adjacent to b, then
x —a —b—yis a path between =z and y of length 3. Now suppose that a
and b are distinct vertices that are not adjacent. If zf(a) = 0 but af(z) # 0,
then by Lemma 2.3, af(z) € Zy(M)*\ {z,y,a,b} is adjacent to each element
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of Zy(M)*. Therefore, z — af(zx) — y is a path of length 2. If bf(y) = 0 and
yf(b) # 0, then similarly we can find a path of length 2 between z and y.
If the above cases do not appear, then af(z), f(a), bf(y) and yf(b) are zero.

If 2f(b) = 0, then  — b — y is a path between 2 and y of length 2. Suppose
that zf(b) # 0. Therefore,

af(xf(b)) =a(f(x)f(b)) = (af(z))f(b) =0
and
(@f(0)f(y) = =(f(y) [ (b)) = z(f(yf (b)) = zf(0) = 0.
These imply that x f(b) is adjacent to both a and y. Therefore, z—a—x f(b) —y
is a path of length less than or equal to 3. |

Theorem 2.5. Let R be a ring, M an R-module and f € M*. If T'y(M)
contains a cycle, then gr(I'y(M)) < 4.

Proof. Let 1 — 29 — ... — x,, — x1 be a cycle of length n > 5. Put x,,41 = 7.
If for some 1 < i < n, z;f(x;41) = 0 and x;41f(z;) # 0, then by Lemma
2.3, xiy1f(z;) is adjacent to each element of Z;(M)*. Since n > 5 there
exists 1 < j < n such that x;41f(z;) is different from both z; and x;41.
Therefore z; — x;41f(z;) — x;41 — z; is a cycle of length 3. We may suppose
that z; f(zi41) = Tip1f(x;) = 0 for every 1 < i < n. If 1 f(x3) = 0, then
x1 — a9 — x3 — 21 is a cycle of length 3. Now, assume that zf(z3) # 0.
Therefore,

za(f(w1f(23))) = (w2f(21))f(23) =0,

z1f(23)f(z4) = 21 f(z3f(24)) =0, and

z1f(x3)f(wn) = 21 f(25) f(23) =0

imply that x f(x3) is adjacent to xs, x4 and x,. One of the following cases
may hold.
(Case 1) If z1 f(x3) = 2, then 29 — x5 — x4 — 22 = x1 f(x3) is a cycle of length
3.
(Case 2) If 21 f(x3) = x4, then x4 — x5 — 22 — x4 = x1 f(x3) is a cycle of length
3.
(Case 3) If 1 f(x3) = w3, then z, — 1 — 29 — x3 = 21 f(x3) — z,, is a cycle of
length 4.
(Case 4) If x1 f(x3) ¢ {22, 23,24}, then zo — x5 — x4 — 1 f(x3) — x2 is a cycle
of length 4. O

The next theorem shows a connection between the cardinality of M and the
cardinality of Zy(M)*. It generalizes Theorem 2.2 in [4].

Theorem 2.6. Let R be a ring, M an R-module and f € M*.

(1) If | Zy(M)*| > 1, then T'y(M) is finite if and only if M is finite.

(2) Ty(M) =0 if and only if f is a monomorphism, ann(M) is a prime ideal
and Zy(M)* # M \ {0}.
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Proof. (1) Suppose that Zy(M)* is finite and nonempty. Then there are non-
zero z,y € M with zf(y) = 0. Put I =ann(f(y)). Then I C Z;(M) is finite
and zr € I for all r € R. If M is infinite, then there exists an ¢ € I with

Ji={meM|zf(m)=1i}

infinite since M = (J,¢; Ji. For any m,n € J;,

zf(m—n)=xf(m)—xf(n) =0.

Therefore x is adjacent to (m —n) for each m,n € J;. This is a contradiction,
thus M must be finite. The converse is trivial.

(2) Let T'y(M) = 0 and = € ker f. Since mf(xz) = 0 for each m € M, hence
Zp(M)* = M \ {0} which is a contradiction. Assume that a,b € R such that
ab € ann(M) but a ¢ ann(M) and b ¢ ann(M). There exist m,n € M such
that ma # 0 and nb #. We know that

maf(nb) = mf(nb)a =mf(nba) =mf(0) =0.

Hence ma,nb € Z;(M)*, a contradiction. Conversely, let m € Zy(M)*. Then
there exists n € M such that either mf(n) = 0 or nf(m) = 0. Suppose
that mf(n) = 0. This implies that f(m)f(n) = 0 € ann(M). Therefore
0 # f(m) € ann(M) or 0 # f(n) € ann(M) which implies that either m or n
is adjacent to any nonzero element of M, a contradiction. O

The following corollary shows that for every simple faithful R-module M,
either I'f(M) is infinite or an empty graph.

Corollary 2.7. Let M be an R-module and f € M* with 1 < |T'y(M)| < oo.
Then M is finite and not a simple faithful R-module.

Proof. The finiteness of M is an immediate consequence of Theorem 2.6. Now,
suppose that M is a simple faithful R-module. Since |T's(M)| > 1, there exist
m,n € Zp(M)* such that mf(n) = 0. It is easy to see that

N={xe M|zf(n) =0}

is a non-zero submodule of M, therefore N = M. Since M is faithful, M f(n) =
0 implies that f(n) = 0 and hence n = 0 because M is simple. this is a
contradiction. 0

Proposition 2.8. Let M be a simple module and f € M*, then the followings
hold:
(1) If |Zg(M)*| > 1, then T'y(M) is a complete graph with Zy(M)* =
(2) If R is semiprime, then T'y(M) =0 for every 0 # f € M*.
(8) If R is a local ring which is not semiprime, then I'y(M) is a complete
graph with Zy(M)* = M \ {0} for every 0 # f € M*.
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Proof. (1) Since |T's(M)| > 1, there exist m,n € Zy(M)* such that mf(n) = 0.
Hence (mr)f(ns) = 0 for each r,s € R. The simplicity of M implies that any
two nonzero elements of M are adjacent in I'y(M).

(2) Suppose that I'y(M) # 0. By (1), f(M)f(M) = 0 and hence f(M) =0
due to R is semiprime, a contradiction.

(3) Suppose that J is the unique maximal ideal of R. It is clear that J =
ann(M). Since R is a local ring and f(M) # R (because M is simple and R is
not a field), we have f(M) C ann(M) which implies that = f(y) = 0 for every
z,y € M\ {0}. O

It is worth mentioning that when R is an integral domain, M is an R-module
and f is a nonzero monomorphism in M*, then I'f (M) = 0.

Corollary 2.9. For any right R-module M and f € M*, put Ky = ker f\ {0}.

Let M be an R-module. By Lemma 2.3 it is clear that every element of Ky
is adjacent to all non-zero element of M.

Proposition 2.10. Let M be a right R-module, f € M* and G be a maximal
complete subgraph of T'y(M). Then Ky C V(G), where V(G) is the set of all
vertices of G.

Proof. By contrary, assume that € Ky \ V(G), i.e., f(z) = 0. Hence z is
adjacent to any vertex of I' (M), in particular it is adjacent to any vertex of G.
Then the induced subgraph GU{z} is a complete subgraph of I';(M) properly
containing G, a contradiction. |

Corollary 2.11. Let M be a right R-module, f € M* and k = |K¢|. Then we
have the followings:

i) If 2 < k < |Z;(M)*|, then gr('y(M)) = 3.

i) If k=1 and Ty (M) contains a cycle, then gr(I'y(M)) = 3.

Proof. (i) According to our hypothesis there exist at least z,y € Ky and z €
Zp(M)*\ Ky. Now x and y are adjacent and both of them are adjacent to z.
(ii) Since I'y (M) contains a cycle, there exist at least z,y € Zy(M)*\ Ky which
are adjacent. On the other hand, the only member of Ky is adjacent to both
x and y. Therefore we have a cycle of length 3. ]

Proposition 2.12. Let R be a ring. If M 1is either a free R-module with
rank(M) > 2 or a non-finitely generated projective R-module, then for each
non-zero x € M there exists f € M* such that Zy(M)* = M\{0}, rad(I'y(M)) =
1 and diam(I'y(M)) < 2.

Proof. Let M = @,.; R with |I| > 2 and {z; };c; be a non-zero element of M.
Then there exists iy € I such that z;, # 0. Fix an iy # j € I. Now we define

the map
f : M — R with f({ak}ke[) = ATy — QjuTj.
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It is easy to see that f is a non-zero R—homomorphism with the property that
f({xi}icr) = 0. Therefore {z;};cr € K¢. By Lemma 2.3, {;};cr is adjacent to
any element of M\ {0}. Consequently, rad(I's(M)) = 1 and diam(I's(M)) < 2.

Now suppose that M is a non-finitely generated projective R-module. By
the Dual Basis Lemma there exists an infinite set of elements {a; };c; € M and
an infinite set of elements {f;};c;r € M™* such that for each a € M, fi(a) =0
for almost all i € I and a =}, a;fi(a). Now for each non-zero a € M, there
exists at least j € I such that f;(a) = 0. Similarly, by Lemma 2.3, a is adjacent
to any element of M \ {0}. Putting f = f; one conclude that rad(I's(M)) =1
and diam(I'y(M)) < 2. O

The above proposition is not true anymore if we replace “non-finitely gen-
erated projective” by “finitely generated projective”. Let R be a domain
and M = R. Since for every f € M*, I'y(M) is an empty graph we have
diam(I'y(M)) = rad(I'f(M)) = oo.

The following proposition is motivated by [3, Theorem 2.5].

Proposition 2.13. Let R be a domain which is not a field, S be a simple
R-module, M = S ® R and f € M*. Then the followings hold.

(1) Ky =S®0\{(0,0)} and diam(T's(M)) = 2.

(2) If |S| > 3, then gr(T's(M)) =3 .

(3) The graph T'¢(M) contains a mazimal complete subgraph of order |K¢|+1.
In particular, (T y(M)) = |Ky| + 1.

Proof. (1) Let 0 # = € S and f be a non-zero element of M*. Since R is a
domain which is not a field, ann(z) # 0. Therefore f((x,0))ann(z) = 0 and
hence f((z,0)) = 0. Now, assume that (a,b) € Ky. Then

0= f((a,0)) = f((a,0)) + £((0,b)) = f((0,0)) = f((0,1))b.

Since f # 0, b =0, thus Ky = S®0\{(0,0)}. For the second part, assume that
m,n € Zy(M)*. If m or n belong to Ky, then they are adjacent. Otherwise,
for each x € K¢, both m and n are adjacent to x. Thus there exists a path of
length 2 between m and n.
(2) By hypothesis, there exist two non-zero elements z,y in Ky. Therefore
clearly x — (0,1) —y — x is a cycle in 'y (M).
(3) R being a domain, we have for every m,n € Z;(M)*, m is adjacent to n if
and only if either m € Ky or n € Ky. Hence Ky U {(0,1)} are the vertices of
a maximal complete subgraph of I';(M).

O

The following theorem shows the importance of cardinal number of K in
determination of the clique number of I'f(M).

Theorem 2.14. Let R be a domain and M be an R-module. Then for each

non-zero element f € M*, cl(I'y(M)) is either k or k+1, where Ky = ker f\{0}
and k = |Ky|.
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Proof. We have three cases to discuss:

(Case 1) If Zy(M)* = Ky, then I'y(M) is a complete graph because every two
vertices in Ky are adjacent and hence cl(I'y(M)) = k.

(Case 2) Now suppose that Zy(M)* # Ky and Ky is finite. In this case
we claim that cl(T'y(M)) = k + 1. Since Z;(M)* # Ky, there exists = €
Zp(M)* \ Ky and hence K;|J{z} is a complete subgraph of I';(M), which
implies that cI(I'f(M)) > k+1. Now we show that cl(T's(M)) < k+1, otherwise
there exists a maximal complete subgraph B such that |V(B)| > k + 2. Since
Ky C V(B), there exist z,y € V(B) \ Ky. But = and y are adjacent, i.e.,
xf(y) = 0 or yf(x) = 0. Then f(z)f(y) = 0 and this implies that either
x € Ky or y € Ky, a contradiction.

(Case 3) Suppose that K is infinite and Z;(M)* # Ky. Then we observe that
cl(I'y(M)) = k. We must show that

sup{|V(B)| : B is a complete subgraph} =k

We know that Ky C V(B), ie.,, & < [V(B)|. On the other hand if B is a
maximal complete subgraph, then V(B) can have at most one element more
than Ky, i.e., [V(B)| = k+ 1. But k is an infinite cardinal, hence k = |[V(B)|.
Since B is an arbitrary complete subgraph, we have cl(I'y(M)) = k. O

I. Beck in [8] conjectured that the clique number and chromatic number of
the graph of zero-divisors are equal for a commutative ring. This conjecture
has been refuted by Anderson and Naseer in [5]. However, along this line, some
positive results has been obtained by Z. Xue and S. Liu in the zero-divisor graph
of partially ordered sets (see [21]). The following corollary is a counter-part of
the corresponding result in [21].

Corollary 2.15. Let R be a domain, M be an R-module and f € M*. Then
X(Lp(M)) = cl(I's(M)).

Proof. When Z¢(M)* = Ky, it is evident that cl(I'y(M)) is equal to x(I's(M)).
In other cases, all vertices in Ky should be colored differently and those which
are not in Ky need to be colored with only one color, because they are not
adjacent due to R is a domain. O

Proposition 2.16. Let M, N € R—MOD and R be a self-injective ring. If M
is embedded in N, then for each f € M*, there exists h € N* such that 'y (M)
is embedded in T'y(N).

Proof. Let 8 : M — N be an R-monomorphism. If m; is adjacent to mo with
respect to f € M*, then my f(ma) = 0. Now, we have the following diagram
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M——— N

/
3 h

R

such that hof = f. Now we observe that 6(my)h(6(ms)) = 0, for
0(m1)h(6(m2)) = 6(m1)h o 0(mz) = 6(m1) f(m2) = 6(my f(m2)) = 6(0) = 0.
This implies that I'y (M) is embedded in I', (N). O

3. AN ANSWER TO A QUESTION

Let R be a commutative ring and M an R-module. In [6], the authors asso-
ciated a graph to the module M which can be considered as a generalization of
the classic zero-graph as well. For each z,y € M we say that z*y = 0 provided
that xf(y) = 0 for some non-zero R-homomorphism f € M* = Hom(M, R).
For an R-module M, by Z(M) we mean the set of all x € M such that there
exists a non-zero y € M such that z xy = 0. Put Z(M)* = Z(M) \ {0}. We
associate an undirected graph I'(M) to M with vertices Z(M)* such that for
distinct z,y € Z(M)* the vertices x and y are adjacent if and only if either
x*xy =0ory*xx=0. In [6] some algebraic aspects of I'(M) have been studied
and the following open question was asked. Inasmuch as I'(M) is very related
to those graphs we studied in this paper, here we provide an answer to the
aforementioned open problem.

Open Question: Is there an R-module M with diam(T'(M)) = 3 ? Is there
an R-module M with gr(I'(M)) =47

As we see in the sequel, the answer is negative.

Answer. Let M be an R-module with gr(T(M))=4anda—b—c—d—a
be a cycle in I'(M). If there exists z € (Jy, e p-Kerf, then z —a —b—z is
a cycle, a contradiction. So suppose that (J, sepr-Kerf = {0} (every f € M~
is a monomorphism). There exists f € M™* such that af(b) = 0, so that
f(a)f(b) =0, f(a) # 0 and f(b) # 0. We define a homomorphism g : M — R
via g(m) = f(m)f(b). It is easy to observe that ¢ is in M* and

a € Kerg C U Kerf = {0}.
0£feM*
Thus g = 0 which implies that M f(b) = 0 and hence b —c —d — b is a cycle in

I'(M), a contradiction. The proof for diam(I'(M)) = 3 is similar to the above
case.
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If we ask the same question about I';(M), the answer is positive as we see

in the next example.

Example 3.1. Consider M = Zi5 as a Zjs-module and f := idz,,. We may
show that diam(I'y(M)) = 3 and gr(I'¢(M)) = 4.

(1]
2]

(3]
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