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1. Introduction

Let R be a commutative ring with an identity, and let P(z,y) be a two
variable polynomial with coefficients in R. When a,b € R, we let axb = P(a,b)
denotes the binary operation obtained by evaluating the polynomial P(z,y) at
the point (a,b). Then (R,*) is a binary system that we call a polynomial
evaluation groupoid. When G is a finite group of order n, the authors in the
article [1] presented a proof that there exists a two variables polynomial P(z,y)
of degree at most 2n with coefficients in a field R such that the polynomial
evaluation groupoid (R, *) would have a subsystem isomorphic to the group
G. However, the proof in [1] does not yield a method for finding polynomials
P(x,y) of lower degree than 2n and having group G in (R,x). It was also
demonstrated in [1] that the dihedral group D, of order 2p, where p > 2 is
prime, could be found within the polynomial evaluation groupoid (R, *) when
R is the Galois field GF(p?) and P(z,y) = = +y + zy + 2y”.

2. Polynomial evaluation groupoid

In this article, R will denote a commutative ring with an identity 1, and
U(R) will denote the unit group in R. Moreover, we always assume that R has
finite characteristic p > 0. Let f be a polynomial with coefficients in R where
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Polynomial evaluation groupoids 988

f: R — U(R)U{0}. Obviously, such polynomials always exist. We then define
the polynomial P(x,y) € R[z,y] in two variables by

P(x,y) =y +zf(y)
We use the binary operation * : R x R — R defined by
axb= P(a,b)
to construct a polynomial evaluation groupoid (R, ).

Lemma 2.1. (The Associativity Lemma) Let G be a subset of R where G
contains at least one unit of R. Then * is associative on the set G if and only

if flyxz)= f(y)f(z) for ally and z in G.

Proof. Suppose that f(y*z) = f(y)f(z) for z,y € G. If z,y,2 € G we have
zx(yxz)=(y*2)+af(yx*-z)
=z+yf(z) +zf(y)f(2)
=24 (y+2f()f(2)
=z+ (zxy)f(2)
=(z*xy)xz
and it follows that * is associative on G.

On the other hand, suppose that * is associative on G. Then, if z,y,z € G, we
have

zyf(z) +aflyxz) = (y*2) +af(yx2)
=z (y*2)
=(xxy)*z
=z+ (zxy)f(2)
=z+W+af(y)f(z)
=z+yf(z) +f(y)f(2)

After canceling similar terms in the above equation, we obtain

zf(yx*z) =xf(y)f(z)

or equivalently,

(2.1) a[f(y*2)— f(y)f(z)] = 0.

Since G contains a unit element, we may select x in equation 2.1 to be a unit
without affecting the values of f(y*z) , f(y) and f(z). Consequently, equation
2.1 must imply that f(y*z) — f(y)f(z) =0 for all y,z € R. O
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Theorem 2.2. Let R denote a commutative ring with identity having finite
characteristic p > 0. Let f be a polynomial with coefficients in R where f :

R — U(R) U {0}, and let G = {x € R|f(z) # 0}. If fly*x2) = f(y)f(2) for
all y,z € G, then G = (G,*) is a group that is contained in the polynomial
evaluation groupoid (R, *).

Proof. (Closure) Let z,y € G. By definition, f: R — U(R) U {0}, so f(x) and
f(y) must be units in R, and their product f(z)f(y) must also be a unit in R.
Consequently

flexy) = f(2)f(y) # 0.
Therefore x xy € G.
(Associativity) The Associativity Lemma immediately implies that z* (y*z) =
(xxy)*z for all z,y,z € G.
(Left Identity) The following shows that 0 € G is a left identity for every y € G.
0xy=y+0f(y) =y+0=y.
(Left Inverse) Let y € G. Therefore, f(y) # 0 in the commutative ring R of

characteristic p, and it follows that f(y)~! = ﬁ exists since f(y) is a unit in
R. Let

therefore,

yr b xy=y+y fy)
p—1

=y+ ) yf(y)
=y+(-1y
=py

= 0.

Thus, all these prove that G = (G, *) is a group contained in the polynomial
evaluation groupoid (R, *). O

In view of Theorem 2.2, we will make the following;:

Definition 2.3. Let R be a commutative ring with identity having finite char-
acteristic p > 0, and let f be a polynomial with coefficients in R. We will call
f a group evaluation polynomial over R provided

(2.2) f:R—U(R)U{0}
and
(2.3) fly*2)=fy)f(2)

for every y,z € G = {z € R|f(x) # 0}.
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When the group evaluation polynomial f has no roots in R, then G = R and
the polynomial evaluation groupoid (R, x) will be a group.

We will make no distinction between isomorphic copies of groups or rings.
If G = (G,+) is a finite abelian group, the Fundamental Theorem of Finite
Abelian Groups implies that G is the direct sum of cyclic groups of prime power
orders; i.e.,
G= Zplnl & ZP2”2 & - Zpk"k

where each summand Z,,»; denotes the ring of integers modulo p;":. Conse-
quently, the above direct sum is in fact a commutative ring with an identity
having finite characteristic p > 0. We then take R = Z, n1 @ Zp,n2 @ - -+ Zp, ni
and let f be the constant polynomial f(y) = 1 over R. It is obvious that f is
a group evaluation polynomial over R, and xxy =y + 2 f(y) = x + y for every
z,y € R. We have just shown the following result:

Theorem 2.4. FEvery finite abelian group can be obtained as a polynomial
evaluation groupoid.

Lemma 2.5. Let R be a finite field with p*>™ elements, where p is a prime.
The polynomial f(y) = y*" +y + 1 is a group evaluation polynomial over R.

Proof. Since the field R has finite characteristic p, we observe that
(FE)" = )"
=" + 27" 41
=242 +1
= f(2).
Whenever y, z € R, we have
fly*z)=f(z+yf(2))
= (2 +yf()) + (2 +yf(2) +1
=2y () +yf(z) +2+1
=+ f(2) +yf(2) + 2+ 1
=y () +yf(2) + 2 + 2+ 1
=y f(2) +yf(2) + f(2)
= (W +y+1)f(2)
= fy)f(2).

It now follows that f is a group evaluation polynomial on the field R with p?"
elements. g



991 Allen, Kim and Neggers

Our first example will involve the finite field R with 16 elements, and we
must first briefly discuss several basic facts from elementary abstract algebra.
We know that g(w) = w? 4w+ 1 is an irreducible polynomial over the field
Z5 of integers modulo 2, and that we can construct the unique field R with 16
elements as

R = Zsw]/(w* + w + 1).
Consequently, we can write the elements of R as
R = {aw® + bw? + cw + d}

where a,b,c,d € Zs. Since the non-zero elements in any finite field form a
cyclic group under multiplication, it is easy to observe that the units in our
finite field R can also be written as powers of w; that is,

UR)={w, w?,?, - w® =1}

The above powers bigger than 3 can, of course, be rewritten as
w=w+1, w® =w?+w, etc.

It is also well known that any finite field having p™ elements with p a prime
will have one and only one subfield with p™ elements if and only if the integer
m divides n. So, our field R with 16 = 2% elements must have a unique subfield
K with 4 = 22 elements. Since the non-zero elements in K form a cyclic group
of order 3 under multiplication, and since the only elements in U(R) of order
3 are w® and w'Y, it is immediately obvious that

K={0,u,w? w®=1}
Since (K, +) is an abelian 2-group, it is elementary to show that
1+ w +w'?=0.

Example 2.6. Let f(y) = y* +y + 1 be a polynomial in R[y], where R is the
field with 16 elements. Then

(2.4) f is a group evaluation polynomial over R,
and
(2.5) G = (G, ) is isomorphic to the alternating group Ay.

In fact, after rewriting f(y) as f(y) = y2 +y + 1, it follows immediately
from Lemma 2.5 (by using n = 1) that f is a group evaluation polynomial over
R.

It is straightforward to show that

w,w?, w+1,andw?+1

are roots of f in the field R. Since f is a polynomial of degree 4, the above four
roots are all of the roots of f in R. Therefore, G = {g € R | f(g9) # 0} must
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have precisely 12 elements. Theorem 2.2 implies that G = (G, %) is a group of
order 12.

Let 1 denote the restriction of f to the group G = (G,x*). It follows from
Lemma 2.5 and the definition of a group evaluation polynomial that 7 is a
homomorphism of the group G = (G, %) onto G, where G is the image of 7 in
the unit group U(R) = (U(R),-). The set N = {g € R| n(g) = 1} is the kernel
of the group homomorphism 7, and is therefore a normal subgroup of G. It is
straightforward to show that

N:{O,ws,wlo,wlszl}

Moreover, the Fundamental Theorem of Homomorphisms implies that G/N is
isomorphic to G.

In order to distinguish between powers of g in (G, ) and powers of g in (U(R), -)
we will use the notation g** = g*g*---*¢g and the usual notation ¢g* = gg---g¢
for powers in (U(R), ) The elements g € N with g # 0 all have order 2 since

g =gxg=9+gflg)=g+gl=g+g=0.
Next, let g € G where g ¢ N. The coset g * N € G/N = G must have order 3;
and consequently,
(gxN)" = (gxgxg)x N=0%N

which implies that g g% g € N. Therefore, 1 =n(g*g*g) =n(g)-n(g) - n(g)-
So, n(g) must be an element of order 3 in G C U(R) and we have

n(g) =w® or nlg) =w'".

In either case,
L+n(g) +n(9)* =0
from the remark immediately preceding this example. We now have
M =(gxg)xg=g+(9*9)n(9)
=g+ (9+9n(9))n(9)
= g(1+n(9) +n(9)*)
=0

9

Therefore, every element in G that is not in N must have order 3. There are
only three non-abelian groups of order 12 (see Hungerford [2], page 99), and
these three groups (using standard group notation) are Ay,

Dg =< a,b|a®=1,0>=1,and ba = a"'b >

and
T =< a,bla®=1,b>=a® andba =a b > .
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Since our group G = (G, x) does not contain elements of order 6, we have shown
that G must be the alternating group Ay.

Our next three examples will involve a commutative ring R with identity
1 having characteristic p = 4 that is constructed using the following standard
techniques of elementary abstract algebra. Notice that the polynomial g(w) =
w? + 1 is irreducible over the ring Z4 = { 0, 1, 2, 3 } of integers modulo 4.
Therefore, our ring R will be

(2.6) R = Zyw]/(w? +1)
and we can write the 16 elements in R as

R={aw+blabe Z }.

Example 2.7. Let f(y) = 1+ 2wy? be a polynomial in R[y], where R =
Z4w]/(w? + 1) is the commutative ring with identity having 16 elements de-
scribed above. Then

(2.7) f is a group evaluation polynomial over R
and
(2.8) G = (G, *) is isomorphic to the group Qg x Cy

where Qg is the quaternion group of order 8. Notice that f(y)? = (1+2wy2)2 =
1+ 4wy? + 4w?y* = 1. This immediately implies that f(y) # 0 for all y € R
and that the polynomial f has no roots in R. It also implies that f(y) is a unit
in U(R); and if f(y) # 1, then f(y) is a unit of order 2 in U(R). Next, suppose
that y, z € R and observe that
flyx2)=f(z+yf(2))

=1+2w(z+ yf(z))2

=14 2w2? +dwzyf(2) + 2wy f(2)?

=1+ 2wz? + 2wy?

=14 2wz? + 2wy? + dw?y? 2>

= (1+2wy?) (1 4 2wz?)

=1 /(=)

and it follows that f is a group evaluation polynomial over R.

Since f has no roots in R we have

G={geR|fl9g#0}=R
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so Theorem 2.2 implies that G = (G, %) is a group of order 16. We let a = 1,
b=3w+1 and ¢ = 2w. It is straightforward to show that

fla)=2w+1, f(b)=1, and f(c) =1
and we calculate the powers
o> =axa=a+af(a)=1+12w+1) =2w+2
o =a"xa=a+a*fla)=1+2w+2)(2w+1) =2w+3
a* =a>*xa=a+a*fla) =14+ 2w+3)2w+1)=0
and likewise, b*>* = 2w +2 =a?** |, V* =w+3 and b* = 0. Moreover,
bxa=a+bf(a)
=1+ @Bw+1)2w+1)
=w
=Q@Bw+1)+ 2w+3)f(Bw+1)
=a® xb.
Since the quaternion group (s can be described, using standard notation, as
Qs =< a,b|a*=b*"=1,a>=0% and ba =a"'b >

we have shown that the elements ¢ = 1,and b = 3w + 1 generate Qg as a
subgroup of G = (G, ). Finally, observe that ¢ = 2w is an element of order 2
in GG, and that ¢ commutes with both ¢ and b. We have now established that
G= Qg X CQ.

Example 2.8. Let f(y) = 1+ 2y + 2y? be a polynomial in R[y|, where
R = Z4[w]/(w? + 1) is the commutative ring with identity having 16 elements
described in (8) above. Then

(2.9) f is a group evaluation polynomial over R

and

(2.10) G is the group generated by a,b, ¢

where (using standard group notation) a* = b*, a®> = v?, ¢* = 1, ba =

a3bc, ca = ac, cb = be. After showing that f(y)? = 1, it follows that f(y) is a
unit in U(R) and it also follows that f(y) # 0 for all y € R. By calculations
similar to those in Example 2.7, we can show that f(y * z) = f(y)f(z) for all
Y,z € R and it will follow that f(y) is a group evaluation polynomial. Theorem
2.2 now implies that G = (G, *) is a group of order 16. Let a = 1, b = w, and
¢ = 2w. We leave it to the reader as an exercise to show that

a>*=2,a>*=3,ad"=4=0,

b2*:2:a2*,b3*:w+2,b4*=0,
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cxa=2w+1=axc, cxb=3w=axc,
and
bxa=w+1=0a>* xbxc.

Example 2.9. Let f(y) = 1+ 2y? be a polynomial in R[y], where R =
Z4[w]/(w?® 4 1) is the commutative ring with identity having 16 elements de-
scribed in (10). Then G = (G, %) is isomorphic to the group Dy x Ca, where
Dy is the dihedral group of order 8. The elements a = w + 1 and b = 1 will
generate Dy and ¢ = 2 will generate the cyclic group of order 2. We will leave
all the details as an easy exercise for the reader.

The reader may have already suspected that only metabelian groups (G, )
can be obtained when the binary operation * : R x R — R is defined by
zxy=y+af(y)
and f is a group evaluation polynomial. This result will be proven in the

following:

Theorem 2.10. Let R denote any commutative ring with identity having finite
characteristic p > 0. Let f be a group evaluation polynomial over R, and let
G={g] f(g) #0}. If the set G contains at least one unit in R, then the group
G = (G, ) is metabelian.

Proof. We let n be the restriction of f to the group G. Since
n(x*y) = n(x)n(y), we know that 7 is a group homomorphism from (G, *) into
(U (R), -), and consequently,

N = ker(n) ={g € G|n(g) =1}
is a normal subgroup of G. Let z,y € N. Clearly, n(z) = n(y) = 1 immediately
implies that
zxy=y+an(y)
=z +yn(z)
=y x T
We have shown that N is an abelian subgroup of G. Finally, let [a,b] =

a~ '+ b~ ! % a % b denote the commutator of a,b € G. Then

n([a, b]) = (afl xb~ ' xaxb)

a” ) ( ) (@)n(®)
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Consequently, [a,b] € N and it follows that the commutator subgroup [G,G] C
N which establishes the theorem. O

The reader should observe that the key element in the proof of Theorem 2.10
is the fact that f restricted to G = (G, %) must be a group homomorphism since
the binary operation * is associative, when defined by axb = P(a,b) = b+af(b),
if and only if f is a homomorphism (see Lemma 2.1.).

3. Concluding remarks

At this point, several natural questions arise. Can all metabelian groups be
found using polynomial evaluations of the form

(3.1) Pla,y) =y +xf(x)

where f is a group polynomial evaluation over a finite commutative ring
R with identity having characteristic p > 0 7 If not, then what types of
metabelian groups can be found ?

Suppose that the polynomial P(z,y) is defined by a more general expression;
namely,

(3.2) P(z,y) = zf(y) +yg(x)

where both f(y) and g(x) are polynomials with coefficients in R and hav-
ing constant coefficient 1. If both f and g are group evaluation polynomials,
then the argument within the proof of Theorem 2.10 when extended to the
normal abelian subgroup N = ker(f) N ker(g) will show that any group (G, )
found within the polynomial groupoid (R, *) must be metabelian. However, for
P(z,y) defined by (12), it is possible to obtain groups even though neither f or
g is a group evaluation polynomial. In fact, we can produce the dihedral group
Dy by using f(y) = 1+ (w+1)y and g(z) = 1+ (w+ 1)z? as polynomials in R,
where R = Zw]/(w?+1) is our ring used in the last three examples. Should the
reader be interested in checking this fact, take a = w + 2 and b = 2, and it will
be straightforward to show that Dy =< a,b | a* = b* =1 and ba = a™'b >.
Moreover, neither polynomial f or g will be a homomorphism on G = Dy.
We also leave it to the reader to show that f(a * a) # f(a)f(a) and that
gla xa) # g(a)g(a) when a = w + 2. This discovery makes it plausible that
a group (G, x) which is not metabelian could still be found within some suf-
ficiently large type of polynomial groupoid (R, ). Can one find a polynomial
P(z,y) having a suitable polynomial groupoid that contains the symmetric
group Sy ?
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