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1. Introduction

The Korteweg-de Vries (KdV) equation with damping effect posed on T{
ut + uxxx + uux +GG∗u = 0,
u(x, 0) = u0(x),

x ∈ T, t ∈ R+,
x ∈ T(1.1)

has been investigated by many authors [4, 6, 7], where GG∗ is an operator
defined in [4], which is sketched here just for the sake of completeness. Suppose
that g is a given nonnegative smooth function such that {g > 0} = ω ⊂ T and

2π[g] =

∫
T
g(x)dx = 1,

where [·] denotes the mean value of the function g over T. Let

(Gϕ)(x) = g(x)
(
ϕ(x)−

∫
T
g(y)ϕ(y)dy

)
, ∀ ϕ ∈ L2(T),

and G∗ denotes its adjoint operator.
In this paper, we consider (1.1) with periodic forcing f ,{

ut + uxxx + uux +GG∗u = f,
u(x, 0) = u0(x),

x ∈ T, t ∈ R+,
x ∈ T,(1.2)
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Forced oscillations of a damped KdV equation 1028

where f = f(x, t) is a time-periodic function of period τ . In order to keep
volume or mass conserved, i.e.,

I(t) =

∫
T
u(x, t)dx

be invariant under motion, we assume f = Gh, where h = h(x, t) is a time-
periodic function of period τ . With this assumption, it is easy to see that

d

dt

∫
T
u(x, t)dt = 0.(1.3)

There have been many studies concerned with time-periodic solutions of
partial differential equations in the literature (see [3,5,9] ). In recent years, the
asymptotically time-periodic solutions of the KdV type equation attracted the
attention of many authors.

First, Zhang [10] considered a KdV equation on the finite interval (0, 1): ut + ux + uux + uxxx − αuxx − γu = 0,
u(x, 0) = 0,
u(0, t) = h(t), u(1, t) = 0, ux(1, t) = 0,

0 < x < 1, t > 0,
0 ≤ x ≤ 1,
t ≥ 0.

(1.4)

Assuming either α > 0 or γ > 0, Zhang showed that if the boundary forcing h
is a periodic function of period τ with small amplitude, then the solution u of
(1.4) is asymptotically time-periodic (of periodic τ), i.e.,

lim
t→∞

∥u(·, t+ τ)− u(·.t)∥L2(0,1) = 0.

Then, in [1], Bona, Sun and Zhang studied the KdV type equation posed in
a quarter plane{

ut + ux + uux + uxxx − αuxx − γu = 0,
u(x, 0) = 0, u(0, t) = h(t),

x > 0, t > 0,
x ≥ 0, t ≥ 0.

(1.5)

They obtained that if γ > 0 and h is a periodic function of period τ with small
amplitude, then the solution of (1.5) is asymptotically time-periodic satisfying

∥u(·, t+ τ)− u(·.t)∥L2(R+) ≤ Ce−βt for any t ≥ 0,(1.6)

where C and β are two positive constants.
Later, Usman and Zhang [8] considered an initial-boundary problem of the

KdV equation without damping effect posed on the finite interval (0, 1), namely, ut + ux + uxxx + uux = 0,
u(0, t) = h(t), u(1, t) = 0, ux(1, t) = 0,
u(x, 0) = ϕ(x),

0 < x < 1, t > 0,
t > 0,
0 < x < 1.

(1.7)

They proved that if h ∈ C1
b (R+) is a periodic function of period τ , and if

there exist β > 0 and δ > 0 such that if ∥ϕ∥L2(0,1) + ∥h∥C1(0,τ) ≤ δ, then
the corresponding solution u of (1.7) satisfies (1.6), where C > 0 is a constant
depending only on δ.
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Motivated by these results, it is natural to ask: Does the solution of (1.2)
have the similar property in some suitable space? Our main result in this paper
is a positive answer to this question.

Theorem 1.1 (Main Theorem). Let s ≥ 0 and θ ∈ R be given. Assume
that h ∈ C(R+;Hs(T)) is a time-periodic function of period τ , u0 ∈ Hs(T)
with [u0] = θ. Then there exist β = β(s, θ) > 0, δ1 = δ1(s, θ) > 0 and δ2 =
δ2(s, θ) > 0 such that if ∥u0∥s ≤ δ1 and ∥h∥C([0,τ ];Hs(T)) < δ2, the corresponding
solution u of{

ut + uxxx + uux +GG∗u = Gh,
u(x, 0) = u0(x),

x ∈ T, t ∈ R+,
x ∈ T(1.8)

satisfies

∥u(·, t+ τ)− u(·, t)∥s ≤ Ce−βt, for any t ≥ 0

where C > 0 is a constant depending only on s, θ, δ1 and δ2.

Throughout this paper, we assume that [u0] = 0. Then we can deduce that
the solution u of (1.8) satisfies

[u] = [u0] = 0.

For the case [u0] = θ ̸= 0, let v(x, t) = u(x, t) − θ. It is easily seen that v
solves {

vt + θvx + vxxx + vvx +GG∗v = Gh,
v(x, 0) = u0(x)− θ,

x ∈ T, t ∈ R+,
x ∈ T.(1.9)

The basic idea of the following proof in this case is similar to the case [u0] = 0
with minor change.

The rest of this paper is outlined as follows: In Section 2, we investigate the
linear system and provide some preliminary results in Bourgain spaces; Section
3 is devoted to the well-posedness of (1.8). The proof of our main result is
given in Section 4.

2. Preliminaries

2.1. The linear system. In this subsection, we consider the system{
ut + uxxx +GG∗u = 0,
u(x, 0) = u0(x),

x ∈ T, t ∈ R+,
x ∈ T.(2.1)

First, we introduce the space Hs(T).
For any s ≥ 0, Hs(T) denotes the Sobolev space

Hs(T) = {u : T → R; ∥u∥s := ∥(1− ∂2
x)

s
2u∥L2(T) < ∞}.

Its dual is denoted by H−s(T). Set

Hs
0(T) = {u ∈ Hs(T) : [u] = 0}
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let AG denote the operator

AGw = −w′′′ −GG∗w

on the domain D(AG) = H3
0 (T).

Clearly, AG is a densely defined closed operator in L2
0(T) = H0

0 (T). It is
easy to deduce that

(AGw,w)L2(T) = −∥G∗u∥20 ≤ 0 ∀ w ∈ D(AG).

Similarly, for any v ∈ D(A∗
G), (A

∗
Gv, v)L2(T) ≤ 0, where A∗

Gv = v′′′−GG∗v and

D(A∗
G) = H3

0 (T). This implies that both AG and its adjoint A∗
G are dissipative.

Thus the operator AG generates a strongly continuous semigroup {SG(t)}t∈R
on the space L2

0(T).
The following result is due to [4].

Proposition 2.1. ( [4, Proposition 2.3]) Let s ≥ 0 be given. There exists a
number α > 0 independent of s such that for any u0 ∈ Hs

0(T), the corresponding
solution of (2.1) satisfies

∥u(·, t)∥s = ∥SG(t)u0∥s ≤ Ce−αt∥u0∥s
for any t ≥ 0, where C > 0 is a constant depending only on s.

2.2. The Bourgain spaces and their properties. In this subsection, we
introduce the Bourgain space which was introduced in [2] briefly.

For given b, s ∈ R and a function u : T× R → R, we define the norms

∥u∥Xb,s
=

(∑
k∈Z

∫
R
⟨k⟩2s⟨ξ − k3⟩2b|̂̂u(k, ξ)|2dξ) 1

2

,

∥u∥Yb,s
=

(∑
k∈Z

(∫
R
⟨k⟩s⟨ξ − k3⟩b|̂̂u(k, ξ)|dξ)2) 1

2

,

where ⟨·⟩ =
√
1 + | · |2, and ̂̂u(k, ξ) denotes the Fourier transform of u with

respect to the space variable x and the time variable t. The Bourgain space
Xb,s (resp. Yb,s) associated to the KdV equation on T is the completion of the
space S(T× R) under the norm ∥u∥Xb,s

(resp. ∥u∥Yb,s
).

For given b, s ∈ R, let
Zb,s = Xb,s ∩ Yb− 1

2 ,s

be endowed with the norm

∥u∥Zb,s
= ∥u∥Xb,s

+ ∥u∥Y
b− 1

2
,s
.

For a given interval I, let Xb,s(I) (resp. Zb,s(I)) be the restriction space of
Xb,s to the interval I with the norm

∥u∥Xb,s(I) = inf{ ∥ũ∥Xb,s
| ũ = u on T× I }
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resp. ∥u∥Zb,s(I) = inf{ ∥ũ∥Zb,s

| ũ = u on T× I }
)
.

For simplicity, we denote Xb,s(I) (resp. Zb,s(I)) by XT
b,s (resp. ZT

b,s) if I =

(0, T ).
Now we state some lemmas which can be found in [4].

Lemma 2.2. If b1 ≤ b2 and s1 ≤ s2, then the space Xb2,s2 is continuously
embedded in the space Xb1,s1 .

Lemma 2.3. Z 1
2 ,s

(I) ↪→ C(I;Hs(T)) for any s ∈ R.

Lemma 2.4. let s ≥ 0, T > 0 be given. Then there exists a constant C > 0
such that

(1) For any ϕ ∈ Hs(T),

∥SG(t)ϕ∥ZT
1
2
,s

≤ C∥ϕ∥s.

(2) For any f ∈ ZT
− 1

2 ,s
,∥∥∥∥∫ t

0

SG(t− ξ)f(ξ)dξ

∥∥∥∥
ZT

1
2
,s

≤ C∥f∥ZT

− 1
2
,s

.

(3) For any u, v ∈ ZT
1
2 ,s

, [u] = [v] = 0,∥∥∥∥∫ t

0

SG(t− ξ)(uv)x(ξ)dξ

∥∥∥∥
ZT

1
2
,s

≤ C∥u∥ZT
1
2
,s

∥v∥ZT
1
2
,s

.

3. Well-posedness of (1.8)

First, we need a proposition.

Proposition 3.1. Assume that h ∈ C(R+;Hs(T)) is a time-periodic function
of period τ , then∥∥∥∥∫ t

0

SG(t− σ)(Gh)(σ)dσ

∥∥∥∥
ZT

1
2
,s

≤ C∥h∥C([0,τ ];Hs(T)),

here (and elsewhere) C is a generic positive constant that may vary from place
to place.

Proof. According to Lemma 2.4,∥∥∥∥∫ t

0

SG(t− σ)(Gh)(σ)dσ

∥∥∥∥
ZT

1
2
,s

≤ C∥Gh∥ZT

− 1
2
,s

.

Let h̄ be the zero extension of hχ[0,T ], where χ[0,T ] is the characteristic function
of [0, T ].
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Then by definition of the space ZT
− 1

2 ,s
,

∥Gh∥ZT

− 1
2
,s

≤ ∥Gh̄∥Z− 1
2
,s
= ∥Gh̄∥X− 1

2
,s
+ ∥Gh̄∥Y−1,s .

It follows from Lemma 2.2 and Hölder inequality that

∥Gh̄∥X− 1
2
,s

≤ C∥Gh̄∥X0,s ,

∥Gh̄∥Y−1,s =

(∑
k∈Z

(

∫
R
⟨k⟩s 1

⟨ξ − k3⟩
|
̂̂
Gh̄(k, ξ)|dξ)2

) 1
2

≤

(∑
k∈Z

∫
R

1

1 + |ξ − k3|2
dξ

∫
R
⟨k⟩2s|

̂̂
Gh̄(k, ξ)|2dξ

) 1
2

≤ C

(∑
k∈Z

∫
R
⟨k⟩2s|

̂̂
Gh̄(k, ξ)|2dξ

) 1
2

= C∥Gh̄∥X0,s .

Now it is sufficient to estimate ∥Gh̄∥X0,s .
Since it is not difficult to prove that G is a bounded linear operator from

Hs(T) to Hs(T), we have

∥Gh̄∥X0,s = ∥Gh̄∥L2(R;Hs(T)) =

(∫ T

0

∥(Gh)(t)∥2sdt

) 1
2

≤ C

(∫ T

0

∥h(t)∥2sdt

) 1
2

≤ C∥h∥C([0,τ ];Hs(T)).

Thus, we obtain∥∥∥∥∫ t

0

SG(t− σ)(Gh)(σ)dσ

∥∥∥∥
ZT

1
2
,s

≤ C∥h∥C([0,τ ];Hs(T)).

□

Now we can get the well-posednees of (1.8).

Theorem 3.2. Let s ≥ 0 be given, u0 ∈ Hs
0(T), and let h ∈ C(R+;Hs(T))

be a time-periodic function of period τ . Then there exist constants δ′1 > 0 and
δ′2 > 0 such that if

∥u0∥s ≤ δ′1 and ∥h∥C([0,τ ];Hs(T)) ≤ δ′2,

the system (1.8) admits a unique solution u ∈ ZT
1
2 ,s

∩ C([0, T ], L2
0(T)) for any

T > 0. Moreover, there exists a constant C0 > 0 independent of δ′1 and δ′2 such
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that
∥u(·, t)∥s ≤ C0δ

′
1, ∀ t > 0.

Proof. First, we establish the existence and uniqueness of a solution u ∈ ZT
1
2 ,s

,

where T > 0 will be determined later. Rewrite the system (1.8) in its integral
form

u(t) = SG(t)u0 −
∫ t

0

SG(t− ξ)(uux)(ξ)dξ +

∫ t

0

SG(t− ξ)(Gh)(ξ)dξ.

Define the map

Γ(u)(t) = SG(t)u0 −
∫ t

0

SG(t− ξ)(uux)(ξ)dξ +

∫ t

0

SG(t− ξ)(Gh)(ξ)dξ.

Define the closed ball BR in ZT
1
2 ,s

∩ C([0, T ];L2
0(T)):

BR = {u ∈ ZT
1
2 ,s

| [u] = 0, ∥u∥ZT
1
2
,s

≤ R},

where R > 0 is a constant to be determined later.
According to Lemma 2.3, Lemma 2.4 and Proposition 2.1, we can find con-

stants C1, · · · , C6 such that

∥Γ(u)∥ZT
1
2
,s

≤ C1∥u0∥s + C2∥h∥C([0,τ ];Hs(T)) + C3∥u∥2ZT
1
2
,s

≤ C1δ
′
1 + C2δ

′
2 + C3R

2,

∥Γ(u1)− Γ(u2)∥ZT
1
2
,s

≤ C3(∥u1∥ZT
1
2
,s

+ ∥u2∥ZT
1
2
,s

)∥u1 − u2∥ZT
1
2
,s

≤ 2C3R∥u1 − u2∥ZT
1
2
,s

,

∥Γ(u)(T )∥s ≤ C4e
−αT ∥u0∥s + C5∥h∥C([0,τ ];Hs(T)) + C6∥u∥2ZT

1
2
,s

≤ C4e
−αT δ′1 + C5δ

′
2 + C6R

2

for any u, u1, u2 ∈ BR, where C4 is independent of T .
Pick R = 2C1δ

′
1 and T > 0 such that 2C4e

−αT ≤ 1. Let

(3.1) δ′1 = min
{ 1

12C1C3
,
C4e

−αT

8C2
1C6

}
,

then, we have

2C3R ≤ 1

3
and C6R

2 ≤ 1

2
C4e

−αT δ′1.

Let

(3.2) δ′2 = min
{C4e

−αT δ′1
2C5

,
2C1δ

′
1

3C2

}
,

then, we have

C5δ
′
2 ≤ 1

2
C4e

−αT δ′1 and C2δ
′
2 ≤ 1

3
R.
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Consequently, we can deduce that for any u, u1, u2 ∈ BR,

∥Γ(u)∥ZT
1
2
,s

≤ R,

∥Γ(u1)− Γ(u2)∥ZT
1
2
,s

≤ 1

3
∥u1 − u2∥ZT

1
2
,s

,

∥Γ(u)(T )∥s ≤ 2C4e
−αT δ′1 ≤ δ′1.

Therefore, Γ is a contraction in BR. Its unique fixed point u is the desired
solution of (1.8) in ZT

1
2 ,s

∩ C([0, T ];L2
0(T)) which fulfills

∥u∥ZT
1
2
,s

≤ 2C1δ
′
1 and ∥u(·, T )∥s ≤ δ′1.

Proceeding as above on the intervals [T, 2T ], [2T, 3T ], · · · , we can obtain
that (1.8) admits a solution u in Z 1

2 ,s
(nT, (n+1)T )∩C([nT, (n+1)T ];L2

0(T))
and

(3.3) ∥u∥Z 1
2
,s
(nT,(n+1)T ) ≤ 2C1δ

′
1, ∥u(·, nT )∥s ≤ δ′1, ∀ n ∈ N+,

provided δ′1 and δ′2 are chosen according to (3.1) and (3.2).
For any t ≥ 0, there exists an integer k ∈ N+ such that kT ≤ t < (k + 1)T ,

it follows from Lemma 2.3 and (3.3) that

∥u(·, t)∥s ≤ ∥u∥C([kT,(k+1)T ];Hs(T)) ≤ C7∥u∥Z 1
2
,s
(kT,(k+1)T ) ≤ 2C1C7δ

′
1.

This completes the proof of Theorem 3.2. □

Next, we give a proposition which will be used in the next section.

Proposition 3.3. Let s ≥ 0, 0 ≤ a1 < a2 be given, u0 ∈ Hs
0(T), and let

h ∈ C(R+;Hs(T)) be a time-periodic function of period τ . For any ε > 0,
there exist constants δ1 > 0 and δ2 > 0 such that if

∥u0∥s ≤ δ1 and ∥h∥C([0,τ ];Hs(T)) ≤ δ2,

the solution u of (1.8) satisfies

∥u∥Z 1
2
,s
(a1,a2) ≤ ε,

where δ1, δ2 depend only on ε, s and |a2 − a1|.

Proof. Let us consider the map Γ1,

Γ1(u)(t) =SG(t− a1)u(·, a1)−
∫ t

a1

SG(t− ξ)(uux)(ξ)dξ

+

∫ t

a1

SG(t− ξ)(Gh)(ξ)dξ.
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It follows from Lemma 2.3 and Lemma 2.4 that

∥Γ1(u)∥Z 1
2
,s
(a1,a2) ≤ C8∥u(·, a1)∥s + C9∥h∥C([0,τ ];Hs(T)) + C10∥u∥2Z 1

2
,s
(a1,a2)

,

∥Γ1(u1)− Γ1(u2)∥Z 1
2
,s
(a1,a2)

≤ C10(∥u1∥Z 1
2
,s
(a1,a2) + ∥u2∥Z 1

2
,s
(a1,a2))∥u1 − u2∥Z 1

2
,s
(a1,a2),

where C8, C9 and C10 are positive constants depending only on s and |a2−a1|.
According to the proof of Theorem 3.2, for any δ1 ≤ δ′1, there exists a

constant δ′2(δ1) ≤ δ′2 such that if δ2 ≤ δ′2(δ1), we have

∥u(·, t)∥s ≤ C0δ1, ∀ t > 0.

Define the closed ball B̃R1 in Z 1
2 ,s

(a1, a2) ∩ C([a1, a2];L
2
0(T)):

B̃R1 = {u ∈ Z 1
2 ,s

(a1, a2) | [u] = 0, ∥u∥Z 1
2
,s
(a1,a2) ≤ R1},

where R1 > 0 will be determined later.
Then for any u, u1, u2 ∈ B̃R1 , if δ1 ≤ δ′1 and δ2 ≤ δ′2(δ1),

∥Γ1(u)∥Z 1
2
,s
(a1,a2) ≤ C0C8δ1 + C9δ2 + C10R

2
1,

∥Γ1(u1)− Γ1(u2)∥Z 1
2
,s
(a1,a2) ≤ 2C10R1∥u1 − u2∥Z 1

2
,s
(a1,a2),

Assume that R1 = 2C8C0δ1 and let

(3.4) δ1 ≤ 1

12C0C8C10
and δ2 ≤ 2C8C0δ1

3C9
,

then we can obtain that

∥Γ1(u)∥Z 1
2
,s
(a1,a2) ≤ R1,

∥Γ1(u1)− Γ1(u2)∥Z 1
2
,s
(a1,a2) ≤

1

3
∥u1 − u2∥Z 1

2
,s
(a1,a2).

Thus the map Γ1 is a contraction on B̃R1 provided δ1 and δ2 are chosen
according to (3.4). Let

δ1 = min
{
δ′1,

1

12C0C8C10
,

ε

2C0C8

}
,

δ2 = min
{
δ′2(δ1),

2C8C0δ1
3C9

}
.

If ∥u0∥s ≤ δ1 and ∥h∥C([0,τ ];Hs(T)) ≤ δ2, we have

∥u∥Z 1
2
,s
(a1,a2) ≤ R1 = 2C8C0δ1 ≤ ε.

□
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4. Proof of Theorem 1.1

For a given initial value u0 ∈ Hs
0(T), let u(x, t) be the corresponding solution

of (1.8) and w(x, t) = u(x, t+ τ)−u(x, t). Then w(x, t) solves the following the
system {

wt + wxxx + (aw)x +GG∗w = 0,
w(x, 0) = w0(x),

x ∈ T, t ∈ R+,
x ∈ T,(4.1)

where a(x, t) = 1
2 (u(x, t+ τ) + u(x, t)) and w0(x) = u(x, τ)− u0(x).

We first check the well-posedness of the system (4.1).

Proposition 4.1. Let s ≥ 0, T > 0 be given, and there exists a constant
µ1 = µ1(s, T ) > 0 such that if a ∈ ZT

1
2 ,s

, [a] = 0 and ∥a∥
ZT

1
2
,s

≤ µ1, then there

exists a unique solution w ∈ ZT
1
2 ,s

∩ C([0, T ], L2
0(T)). Moreover, there exists a

constant C independent of a and w0 such that

∥w∥ZT
1
2
,s

≤ C∥w0∥s.

Proof. The system (4.1) can be rewritten in an equivalent integral form

w(t) = SG(t)w0 −
∫ t

0

SG(t− ξ)(aw)x(ξ)dξ.(4.2)

We seek a solution w to (4.2) as a fixed point of the map

Γ2(w)(t) = SG(t)w0 −
∫ t

0

SG(t− ξ)(aw)x(ξ)dξ

in some closed ball BR2 in the space ZT
1
2 ,s

∩C([0, T ];L2
0(T)). It is easy to deduce

that for any w, z ∈ BR2 , there exist constants C11, C12 such that

∥Γ2(w)∥ZT
1
2
,s

≤ C11∥w0∥s + C12∥a∥ZT
1
2
,s

∥w∥ZT
1
2
,s

,

∥Γ2(w)− Γ2(z)∥ZT
1
2
,s

≤ C12∥a∥ZT
1
2
,s

∥w − z∥ZT
1
2
,s

.

Choose R2 = 2C11∥w0∥s and C12∥a∥ZT
1
2
,s

≤ 1
2 , then Γ2 is a contraction in

BR2 . Furthermore, its fixed point w satisfies

∥w∥ZT
1
2
,s

≤ R2 = 2C11∥w0∥s.

□

Lemma 4.2. Let s ≥ 0, and there exist T0 > 0, 0 < γ < 1 and µ2 > 0 such
that if ∥a∥

Z
T0
1
2
,s

≤ µ2, then the solution w of the system (4.1) satisfies

∥w(·, T0)∥s ≤ γ∥w0∥s.
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Proof. We proceed as in the proof of Proposition 4.1 (T = T0) to obtain a

solution w of (4.1) in ZT0
1
2 ,s

provided ∥a∥
Z

T0
1
2
,s

≤ µ1(T0), where µ1(T0) is µ1 in

Proposition 4.1 when T = T0. Moreover, there exist constants C13, C14 such
that

∥w(·, T0)∥s ≤ ∥SG(T0)w0∥s +

∥∥∥∥∥
∫ T0

0

SG(T0 − ξ)(aw)(ξ)dξ

∥∥∥∥∥
s

≤ C13e
−αT0∥w0∥s + C14∥a∥ZT0

1
2
,s

∥w0∥s,

here we have used Proposition 2.1, Lemma 2.3, Lemma 2.4 and Proposition
4.1.

Fix T0 > 0 such that 0 < 2C13e
−αT0 = γ < 1, and set

∥a∥
Z

T0
1
2
,s

≤ µ2 := min
{C13C14

e

−αT0

, µ1(T0)
}
.

We can obtain

∥w(·, T0)∥s ≤ γ∥w0∥s.

□

Now, we can prove our main result.

Proof of Theorem 1.1. For any t ≥ 0, there exists an integer k ∈ N such
that kT0 ≤ t < (k + 1)T0.

Proceeding as in the proof of Proposition 4.1 on the interval [kT0, (k+1)T0],
we can obtain that

(4.3) ∥w∥Z 1
2
,s
(kT0,(k+1)T0) ≤ C(T0)∥w(·, kT0)∥s,

when ∥a∥Z 1
2
,s
(kT0,(k+1)T0) ≤ µ1(T0), where C(T0) and µ1(T0) are C and µ1 in

Proposition 4.1.
Then proceed as in the proof of Lemma 4.2 on [0, T0], [T0, 2T0], · · · , [(k −

1)T0, kT0]. We can deduce that for ∥a∥Z 1
2
,s
(nT0,(n+1)T0) ≤ µ2, ∀ n ∈ N+,

(4.4) ∥w(·, kT0)∥s ≤ γk∥w0∥s.

Since a = a(x, t) = 1
2 (u(x, t+τ)+u(x, t)), according to Proposition 3.3, there

exist constants δ1 > 0 and δ2 > 0 depending only on s, T0 and min{µ1(T0), µ2}
such that if ∥u0∥s ≤ δ1 and ∥h∥C([0,τ ];Hs(T)) < δ2, we can obtain that

∥a∥Z 1
2
,s
(nT0,(n+1)T0) ≤ min{µ1(T0), µ2}, ∀ n ∈ N+.
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It follows from Lemma 2.3, (4.3) and (4.4) that

∥w(·, t)∥s ≤ ∥w∥C([kT0,(k+1)T0];Hs(T)) ≤ C∥w∥Z 1
2
,s
(kT0,(k+1)T0)

≤ C∥w(·, kT0)∥s ≤ Cγk∥w0∥s ≤ Cγ
t

T0
−1∥w0∥s

≤ C

γ
e

t
T0

ln γ∥w0∥s = Ce−βt∥w0∥s

≤ Ce−βt.

This ends the proof of Theorem 1.1. □
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