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Abstract. In this paper, we consider an inverse boundary value prob-
lem for two-dimensional heat equation in an annular domain. This prob-
lem consists of determining the temperature on the interior boundary

curve from the Cauchy data (boundary temperature and heat flux) on
the exterior boundary curve. To this end, the boundary integral equation
method is used. Since the resulting system of linear algebraic equations
is ill-posed, the Tikhonov first-order regularization procedure is employed

to obtain a stable solution. Determination of regularization parameter is
based on L-curve technique. Some numerical examples for the feasibility
of the proposed method are presented.
Keywords: Inverse boundary problem, heat equation, boundary integral

equation method, regularization.
MSC(2010): Primary: 65N21; Secondary: 65N38.

1. Introduction

In many scientific and engineering applications it is very important to esti-
mate some heat characteristics in places where their measurement is impossible.
Calculation of unknown heat parameters on the basis of temperature measure-
ments within or on accessible boundary parts of a body is the matter of inverse
heat conduction problems (IHCPs) [6, 11].

The inverse problems for heat conduction equation can be classified into
some classes with respect to the unknown parameters [22]. An inverse prob-
lem is called an inverse boundary problem, if it is required to determine the
unknown functions in the boundary conditions [22]. The IHCP which we are
interested in is to determine the temperature on an inaccessible boundary part
of a body from measurements of the temperature and heat flux on the rest part
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of the boundary; see, for example, [1, 16, 28]. This situation can be modeled
as Cauchy problem for the heat equation. These kind of inverse problems are
known as sideways heat equation too [5].

It is well-known that this IHCP is an ill-posed problem in the sense as
described by Hadamard [15], i.e. small errors in the input data (e.g. measured
temperatures) may lead to errors of catastrophic magnitude in the computed
solution.

Various methods for solving this class of inverse heat conduction problems
have been proposed; see, e.g. the boundary element method [21, 25], the fun-
damental solution method [19], the Laplace transform and the finite-difference
method [6] and the iterative methods [2,3,29]. Due to the advantages of bound-
ary integral equation method (BIEM), e.g. reduction of the dimension by one
and reduction of an unbounded exterior domain to a bounded boundary, this
method has been considered in the study of inverse problems by many re-
searchers [21].

The aim of this paper is to use the BIEM and the Tikhonov regularization
technique to solve an IHCP in two spatial dimensions. In this study, we seek
the solution of the heat equation in the form of a single-layer potential and
investigate whether this method works for our IHCP [20]. Our methodology
leads to a system of integral equations. For the numerical solution of the
integral equations, we proceed analogous to [7, 9]. Our approach is somewhat
similar to the one used by X. Z. Jia and Y. B. Wang [21] for one-dimensional
heat equation and the methods proposed by R. Chapko et al. [4, 9, 10] for
Laplace equation.

This paper is organized as follows. In Section 2, the mathematical model of
our inverse problem is presented. In Section 3, we will describe the applica-
tion of BIEM for solving the inverse problem, namely to transform the inverse
problem into a system of boundary integral equations and then discretisize
the resulting system of integral equations. In Section 4, we use the Tikhonov
regularization procedure to obtain a stable solution to the proposed inverse
problem. Some numerical experiments are presented in Section 5 to demon-
strate the efficiency of the proposed method. Finally, Section 6 is devoted to
some comments.

2. Problem formulation

The mathematical formulation of our IHCP can be described as follows.
Assume that D1 and D2 are two bounded simply-connected domains in R2

such that D1 ⊂ D2. The boundaries of D1 and D2 are assumed to be of class
C2 and we denote them by Γ1 and Γ2, respectively. Further let D := D2 \D1,
T > 0 and I = (0, T ). Figure 2 demonstrates a geometrical sketch of the
problem.
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Figure 1. An example of domain D and its boundary parts.

We consider the following heat equation

(2.1a)
∂u

∂t
−∆u = 0, in D × (0, T ),

subject to the homogeneous initial condition

(2.1b) u(., 0) = 0, in D,

and the boundary conditions

u = ψ, on Γ1 × [0, T ],(2.1c)

∂u

∂ν
= ϕ, on Γ2 × [0, T ].(2.1d)

Here ψ and ϕ are given functions on Γ1 and Γ2, respectively and ν is the
outward unit normal to Γ2. Our inverse problem is to reconstruct the sur-
face temperature ψ on the interior boundary Γ1 in the problem (2.1) from a
knowledge of the temperature on the exterior boundary Γ2 as

(2.2) u|Γ2×[0,T ] = φ.

For simplicity, the initial data in this IHCP is assumed to be zero. The
general case can be reduced to this problem [3].

It is well-known that the Cauchy problem given by equations (2.1a), (2.1b),
(2.1d) and (2.2) is ill-posed and one can show that the solution of this problem
is unique [3, 30]. Furthermore we assume that data are given such that there
exists a solution to this Cauchy problem.

We introduce an operator A : L2(Γ1 × (0, T )) → L2(Γ2 × (0, T )) as

A(ψ) := u|Γ2×[0,T ] for ψ ∈ L2(Γ1 × (0, T )),

where u is the solution of the mixed boundary value problem (2.1). According
to this operator, our inverse problem consists of finding the function ψ from
the following equation

(2.3) A(ψ) = φ.



Boundary temperature reconstruction 1042

In the next section, a boundary integral formulation of our problem is in-
troduced and investigated numerically.

3. Boundary integral formulation

In this section, we describe the application of BIEM for solving the equation

A(ψ) = φ,

for the function ψ. Here φ is a given (measured) temperature on the boundary
curve Γ2. Solving this equation is equivalent to determining the unknown
function ψ in the initial-boundary value problem (2.1) from a knowledge of the
temperature φ on Γ2.

The solution of the equation (2.1a) is assumed to possess the form of a
single-layer potential

(3.1) u(x, t) =

∫ t

0

∫
∂D

G(x, y; t, τ) q(y, τ) ds(y) dτ, (x, t) ∈ D × I,

where q ∈ C(∂D× (0, T )) shows the density and G is the fundamental solution
to the heat equation defined as

G(x, y; t, τ) =
1

4π(t− τ)
exp

{
− |x− y|2

4(t− τ)

}
, t > τ.

The single-layer heat potential (3.1) satisfies the heat equation (2.1a) and
the homogeneous initial condition (2.1b). As x0 ∈ D tends non-tangentially to
x ∈ ∂D, this heat potential satisfies the jump relations [14]

lim
x0→x

u(x0, t) = u(x, t),

(3.2a)

lim
x0→x

∂u

∂ν(x)
(x0, t) =

1

2
q(x, t) +

∫ t

0

∫
∂D

∂G

∂ν(x)
(x, y; t, τ) q(y, τ) ds(y) dτ.

(3.2b)

By imposing the boundary conditions (2.1c), (2.1d) and (2.2) on the poten-
tial (3.1) and using the jump relations (3.2), we obtain a system of integral
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equations as follows

1

2
q(x, t) +

∫ t

0

∫
∂D

∂G

∂ν(x)
(x, y; t, τ) q(y, τ) ds(y) dτ = ϕ(x, t), (x, t) ∈ Γ2 × I,

(3.3a)

∫ t

0

∫
∂D

G(x, y; t, τ) q(y, τ) ds(y) dτ = ψ(x, t), (x, t) ∈ Γ1 × I,

(3.3b)

∫ t

0

∫
∂D

G(x, y; t, τ) q(y, τ) ds(y) dτ = φ(x, t), (x, t) ∈ Γ2 × I.

(3.3c)

We assume that the boundary curves have the smooth, regular and 2π-
periodic parametric representation as

(3.4) Γk = {xk(s) = (xk,1(s), xk,2(s)) : 0 ≤ s ≤ 2π}, k = 1, 2,

where xk : R → R2 are of class C2 such that the Jacobian |x′k(s)| is strictly
positive for all s. Using these parameterizations, we can transform the system
of equations (3.3) into the following parametric form

µ2(s, t) +

∫ t

0

∫ 2π

0

2∑
k=1

Hk(s, σ; t, τ) µk(σ, τ) dσ dτ = g1(s, t),(3.5a)

∫ t

0

∫ 2π

0

2∑
k=1

K1k(s, σ; t, τ)|x′k(σ)| µk(σ, τ) dσ dτ = f(s, t),(3.5b)

∫ t

0

∫ 2π

0

2∑
k=1

K2k(s, σ; t, τ)|x′k(σ)| µk(σ, τ) dσ dτ = g2(s, t),(3.5c)

for (s, t) ∈ [0, 2π]× I. Here we set µk(s, t) := q(xk(s), t) for k = 1, 2, f(s, t) :=
ψ(x1(s), t), g1(s, t) := 2ϕ(x2(s), t) and g2(s, t) := φ(x2(s), t). In addition, we
assume that the kernels are given by

Hk(s, σ; t, τ) =
ν(x2(s)).[xk(σ)− x2(s)]|x′k(σ)|

4π(t− τ)2
exp

{
−|x2(s)− xk(σ)|2

4(t− τ)

}
,

for k = 1, 2 and t > τ , and

Kqk(s, σ; t, τ) = G(xq(s), xk(σ); t, τ),

for q, k = 1, 2 and s ̸= σ.
For the numerical solution of the system of integral equations (3.5), we

proceed analogous to the algorithm described in [7, 9]. For this purpose, we
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choose equidistant meshes on [0, T ] and [0, 2π] by setting

tn = nht, n = 0, . . . , N, ht =
T

N
,

sj :=
jπ

M
, j = 0, . . . , 2M − 1, M ∈ N.

Then by applying a collocation method with respect to the time and space
variables, we obtain the sequence of the linear systems for approximate values
µ̃k,n;j ≈ µk(sj, tn) and f̃n,j ≈ f(sj, tn) as follows

µ̃2,n;i +
2M−1∑
j=0

2∑
k=1

bk,ij µ̃k,n;j = F̃2,n;i,(3.6a)

2f̃n,i −
2M−1∑
j=0

2∑
k=1

a1k;ij µ̃k,n;j = F̃1,n;i,(3.6b)

2M−1∑
j=0

2∑
k=1

a2k;ij µ̃k,n;j = G̃n,i,(3.6c)

for i = 0, . . . , 2M − 1, n = 1, . . . , N , with the matrix elements

bk,ij :=
π

M
H

(0)
k (si, sj),

aqk;ij :=


(
−R|i−j| +

1

2M
K

(0,1)
qq (si, sj)

)
|x′k(sj)|; q = k,

|x′k(sj)|
2M

K
(0)
qk (si, sj); q ̸= k,

for q, k = 1, 2, and the right-hand sides

F̃2,n;i := g1(si, tn)−
π

M

n−1∑
m=1

2∑
k=1

2M−1∑
j=0

µ̃k,m;j H
(n−m)
k (si, sj),

F̃1,n;i :=
1

2M

n−1∑
m=1

2∑
k=1

2M−1∑
j=0

µ̃k,m;j K
(n−m)
1k (si, sj) |x′k(sj)|,

G̃n,i := 2g2(si, tn)−
1

2M

n−1∑
m=1

2∑
k=1

2M−1∑
j=0

µ̃k,m;j K
(n−m)
2k (si, sj) |x′k(sj)|.

For more details about the method used for numerical solution of the system
of integral equations (3.5), including discretization process and an error and
convergence analysis see [7–9,23].

4. Method of solution

The application of BIEM for our proposed inverse problem results in the
systems of algebraic equations (3.6) by 3(2M) linear equations with 3(2M)
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unknowns. These systems of equations need to be solved recursively for n =
1, . . . , N . By using the equations (3.6a) and (3.6b), the discretized densities
µ̃k,n;j for k = 1, 2, j = 0, . . . , 2M − 1 can be expressed as a function of the

discretized temperatures f̃n,i for i = 0, . . . , 2M − 1 and the densities µ̃k,m;j for
m = 1, . . . , n − 1. Then, the aforementioned elimination in equations (3.6a)
and (3.6b) leads to the linear systems for approximate values µ̃k,n;j as follows

µ̃2,n;i +
2M−1∑
j=0

2∑
k=1

bk,ij µ̃k,n;j = F̃2,n;i,(4.1a)

2M−1∑
j=0

2∑
k=1

a1k;ij µ̃k,n;j = 2f̃n,i − F̃1,n;i,(4.1b)

for i = 0, . . . , 2M−1, n = 1, . . . , N . We assume that Q is the coefficient matrix
in the linear system (4.1) and P = (prc)4M×4M is its inverse. Substituting
the resulting expressions for the solution of the system of equations (4.1) into
equation (3.6c) yields a sequence of linear systems of 2M linear equations with
2M unknowns. This systems can be written in the generic form as

(4.2) Af̃n = bn, n = 1, . . . , N,

where A = (Aij) for i, j = 0, . . . , 2M − 1 is a matrix with the elements

Aij = 2

2M−1∑
k=0

(
a21;ik pk,(j+2M) + a22;ik p(k+2M),(j+2M)

)
,

f̃n = (f̃n,0, . . . , f̃n,2M−1)
T is the unknown vector and bn = (bn,i) for i =

0, . . . , 2M−1 is a known vector that its elements are dependent on the densities
µ̃k,m;j for k = 1, 2, j = 0, . . . 2M −1, m = 1, . . .n−1. For this reason, for every
time step, the linear systems (4.2) and (4.1) respectively, need to be solved.

Due to the large value of the condition number of the matrix A, using
the usual analytical and iterative methods to solve the system of linear al-
gebraic equations (4.2) may produce a highly unstable solution. To stabilize
the results, the first-order Tikhonov regularization method is employed. The
Tikhonov method is a famous approach for regularizing ill-posed problems,
wherein a regularization parameter needs to be determined. To remedy the
sensitivity to noise, the regularization procedures is often used. Intensive stud-
ies on the applications, stability and convergence of the Tiknohov regulariza-
tion method in terms of the noise level can be found in the literature, see,
e.g. [12, 13, 17, 18, 24, 27, 31]. Furthermore the determination of optimal values
for the regularization parameter plays a vital role in the regularization theory.
After the pioneering work of Tikhonov and Arsenin [31], a number of methods
have been established to determine a suitable regularization parameter such
as the L-curve method proposed by Hansen et. al. [17, 18], the discrepancy
principles [12], and the iterative technique [24]. Here in order to regularize the
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obtained linear system, we replace (4.2) by the following least-squares problem
to minimize the penalized residual

R(f̃n) := min
{
∥Af̃n − bn∥22 + α∥Lf̃n∥22

}
,

where α > 0 denotes the regularization parameter and L is the roughening
matrix where defined as

L =


−1 1

−1 1
. . .
−1 1

−1 1

 .

Remark 4.1. In Section 5 the values of u on Γ2, where u is the solution of the
initial-boundary value problem (2.1), need to be computed. To this end, we
seek the solution of (2.1a) in the form of a single-layer potential and match the
boundary conditions. With discretization of the resulting integral equations, we
obtain the sequence of linear systems (4.1) where (µ̃1,n;0, . . . , µ̃1,n;2M−1, µ̃2,n;0,
. . . , µ̃2,n;2M−1) is the vector of the unknown discretisized densities on Γ1 and
Γ2.

From the jump relation (3.2a) and using the solution of the linear systems
(4.1), we conclude the approximate values

u(x2(si), tn) =
1

4M

n∑
m=1

2M−1∑
j=0

2∑
k=1

K̃
(n−m)
k,ij µ̃k,m;j,

where K̃
(0)
k,ij := 2Ma2k;ij, k = 1, 2 with a2k;ij such as defined in (3.6c) and

K̃
(p)
k,ij := K

(p)
2k (si, sj)|x′k(sj)| for p = 1, . . . , N − 1 and k = 1, 2.

5. Numerical experiments and discussions

In this section, some numerical results are presented to show how our pro-
posed numerical procedure works. To this end, some test problems are investi-
gated. In these problems, we consider a mixed initial-boundary value problem
in the form (2.1) and try to reconstruct the temperature on the interior bound-
ary curve from temperature measurements on the exterior boundary Γ2.

To solve the linear systems (3.6) with the procedure introduced in Section
4, first we solve the linear system (4.2) to calculate the approximate values of

temperature f̃n,i on Γ1. To calculate the temperature values on Γ1 at time
t = tn, the temperature and heat flux values on Γ2 at time t = tn and the
values µ̃k,m;j for m = 1, . . . ,n − 1 are needed. After calculating the values of

temperature on Γ1 at time t = tn, i.e. f̃n,i, the linear system (4.1) is solved to
compute the approximate values µ̃k,n;j. Therefore, for n = 1, . . . , N the linear
systems (4.2) and (4.1) respectively, need to be solved.
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Figure 2. Solution domains in the numerical examples

In each of the following examples, the absolute errors

Ea := ∥ψapprox − ψexact∥L2(Γ1),

and the relative errors

Er :=
∥ψapprox − ψexact∥L2(Γ1)

∥ψexact∥L2(Γ1)
,

of the temperatures at different time steps are presented. In addition, the
regularization parameters α at different time steps are presented. These regu-
larization parameters are chosen by using the L-curve function from the Reg-
ularization Tools

In the following examples, we use [0, T ] = [0, 1] as time interval and the
discretization parameters are chosen as M = 32, N = 10.

Example 5.1. In the first test problem, the exterior boundary curve Γ2 is
given by a circle of radius 1.5 and center at the origin as

Γ2 = {x2(s) = (1.5 cos s, 1.5 sin s) : 0 ≤ s ≤ 2π},
and the boundary curve Γ1 is considered as bean-shaped with the parametric
representation of the form

(5.1) x1(s) = r(s)(cos s,− sin s), 0 ≤ s ≤ 2π,

with the radial function (see Figure 2(a))

r(s) =
1.0 + 0.9 cos s+ 0.1 sin 2s

2.0 + 1.5 cos s
.

In addition, the boundary conditions assumed as

ψ(x, t) = 0, (x, t) ∈ Γ1 × [0, T ],

ϕ(x, t) = t2 exp(−4(t+ |x|2) + 2), (x, t) ∈ Γ2 × [0, T ].

We solve this direct initial-boundary value problem to calculate the value of
the trace of the solution u on the exterior boundary Γ2, i.e. φ = u|Γ2 . Our
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inverse problem is to reconstruct the temperature ψ on the boundary Γ1 from
the Cauchy data

u = φ(x, t), (x, t) ∈ Γ2 × [0, T ],

∂u

∂ν
= ϕ(x, t), (x, t) ∈ Γ2 × [0, T ].

(5.2)

We apply the proposed procedure to solve this inverse problem to determine
the temperature on Γ1. The reconstructed temperature on Γ1 is plotted in
Figure 3 at four different time steps and in Figure 4 at two positions π/4 and
3π/4 on Γ1.

From Figure 3 and Table 1 it can be observed that the numerical results are
in good agreement with exact data. In Figure 3 one may see that the accuracy
of the numerical results in the interval [1350, 1800] on the interior boundary
Γ1, compared with the other parts of the boundary, is lower. This behavior
may result from this fact that at this interval the distance between the interior
boundary where the unknowns are located and the exterior boundary where
measurements are taken is maximum.

Figure 3. The numerical results for the boundary tempera-
ture on Γ1 at four different times for Example 5.1. ”∗”shows
the approximate temperature and ”—” shows the exact tem-
perature data.
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Figure 4. The numerical results for the boundary tempera-
ture at two positions on Γ1 for Example 5.1. ”∗” shows the
approximate temperature and ”—” shows the exact tempera-
ture data.

Table 1. The absolute errors Ea at different times for Exam-
ple 5.1.

Time α Absolute errors Ea

0.1 E−13 0.2251E−8
0.2 E−11 0.3120E−8
0.3 3E−12 0.2280E−7
0.4 4E−13 0.1721E−6
0.5 5E−14 0.1316E−5
0.6 3E−14 0.9851E−5
0.7 4E−15 0.7519E−4
0.8 4E−15 0.5640E−3
0.9 4E−15 0.4249E−2
1 4E−15 0.3198E−1

Example 5.2. We consider the case when the boundary curve Γ2 is the same
as in the Example 5.1 and the interior boundary Γ1 is a peanut-shaped curve
given in the form (5.1) with with the radial function (see Figure 2(b))

r(s) =

√
cos2 s+ 0.26 sin2(s+ 0.5).

The boundary conditions are

ψ(x, t) = −t2 exp(−t) cos(|x|), (x, t) ∈ Γ1 × [0, T ],

ϕ(x, t) = 0, (x, t) ∈ Γ2 × [0, T ].
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First we solve this direct mixed boundary value problem to obtain the value
of φ = u|Γ2 and consider an inverse problem with the Cauchy data as follows

u = φ(x, t), (x, t) ∈ Γ2 × [0, T ],

∂u

∂ν
= 0, (x, t) ∈ Γ2 × [0, T ].

The comparison between the exact temperature and the numerical results
for the boundary temperature is illustrated in Figure 5 at four different time
steps and in Figure 6 at two different positions on Γ1.

Figure 6 shows that the numerical results of the proposed method have good
accuracy even at higher time steps. The errors presented in Table 2 can confirm
our observations. As can be seen from Table 2, the absolute and the relative
errors of the temperatures, respectively, remain below 2E−3 and 3E−3.

Figure 5. The numerical results for the boundary tempera-
ture on Γ1 at four different times for Example 5.2. ”∗” shows
the approximate temperature and ”—” shows the exact tem-
perature data.
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Figure 6. The numerical results for the boundary tempera-
ture at two positions on Γ1 for Example 5.2. ”∗” shows the
approximate temperature and ”—” shows the exact tempera-
ture data.

Table 2. The absolute errors Ea and the relative errors Er

at different times for Example 5.2.

Time α Absolute errors Ea Relative errors Er

0.1 3E−14 0.4797E−5 0.2942E−3
0.2 3E−14 0.2624E−4 0.4447E−3
0.3 3E−14 0.6006E−4 0.4998E−3
0.4 3E−14 0.4868E−4 0.2518E−3
0.5 3E−14 0.1552E−3 0.5680E−3
0.6 3E−14 0.2516E−3 0.7067E−3
0.7 3E−14 0.2314E−3 0.5276E−3
0.8 3E−14 0.5511E−3 0.1063E−2
0.9 E−13 0.5977E−3 0.1007E−2
1 3E−14 0.1925E−2 0.2904E−2

Example 5.3. In this example, the boundary curves Γ1 and Γ2 are the same
as in the Example 5.2 and the boundary conditions ψ and ϕ are given by

ψ(x, t) = −t2 exp(−t) cos(|x|), (x, t) ∈ Γ1 × [0, T ],

ϕ(x, t) = 4t2 exp(−4t+ 2), (x, t) ∈ Γ2 × [0, T ].

After calculating the value φ = u|Γ2
, where u is the solution of the above

direct problem, we solve an inverse problem with the following Cauchy data
u = φ(x, t), (x, t) ∈ Γ2 × [0, T ],

∂u

∂ν
= 4t2 exp(−4t+ 2), (x, t) ∈ Γ2 × [0, T ],
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to retrieve the boundary temperature ψ.
The spatial distribution of the temperature data on Γ1, obtained using the

proposed method in this paper are displayed in Figure 7 at four different time
values. Also, Figure 8 displays the time plot for the boundary temperature at
four different spatial positions on the interior curve Γ1. From these figures, one
can observe that up to the final time of interest T = 1, the numerical results
obtained from the our proposed method provide a good estimate of the exact
temperature data.

In comparison with the results obtained in Example 5.2, it can be seen that
the numerical results when ϕ(x, t) = 0 on the exterior boundary Γ2 become
slightly better than the results with nonhomogeneous Neumann boundary con-
dition ϕ(x, t) on Γ2.

Figure 7. The numerical results for the boundary tempera-
ture on Γ1 at four different times for Example 5.3. ”∗” shows
the approximate temperature and ”—” shows the exact tem-
perature data.

6. Conclusion

In this study, determination of the unknown boundary temperature on an in-
accessible boundary part of a 2D domain in an inverse heat conduction problem



1053 Garshasbi and Hassani

Figure 8. The numerical results for the boundary tempera-
ture at four positions on Γ1 for Example 5.3. ”∗” shows the
approximate temperature and ”—” shows the exact tempera-
ture data.

Table 3. The absolute errors Ea and the relative errors Er

at different times for Example 5.3.

Time α Absolute errors Ea Relative errors Er

0.1 9E−14 0.2535E−4 0.1555E−2
0.2 3E−14 0.9896E−4 0.1677E−2
0.3 3E−14 0.5041E−3 0.4195E−2
0.4 2E−13 0.1509E−3 0.7807E−3
0.5 3E−14 0.8164E−3 0.2988E−2
0.6 4E−14 0.1710E−2 0.4802E−2
0.7 3E−14 0.9826E−3 0.2241E−2
0.8 2E−13 0.2146E−2 0.4142E−2
0.9 E−13 0.5461E−2 0.9201E−2
1 E−13 0.1442E−1 0.2176E−1
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through measurements of the temperature on the rest part of the boundary has
been considered. For solving this inverse problem, the boundary integral equa-
tion method is used accompanied by the Tikhonov first-order regularization
procedure. As mentioned, the boundary integral equation method is used to
solve a Cauchy problem in [21] for one-dimensional heat equation and [4,9,10]
for Laplace equation. In these papers, the solution of the equation is repre-
sented as a single-layer potential with unknown density and to find this density,
the representation of the solution is matched up with the given Cauchy data.
Once the discrete densities have been obtained, they can be used to find an
approximation to the solution and its normal derivative on the inaccessible part
of the boundary of the solution domain. The implementation of the method in
this paper is slightly different. In this paper, after representing the solution as
a single-layer potential and matching it with the given Cauchy data, the trace
on the interior boundary of the solution have been taken. This approach has
resulted in a system of three boundary integral equations. With discretization
of these integral equations and doing some simple calculations on the result-
ing discrete system, we have obtained two systems of linear equations for the
discrete approximate values of the temperature on the inner boundary and the
densities which in each time step, respectively, have been solved. The accuracy
of the numerical results obtained from the proposed method in this paper show
the feasibility of this method.
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