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Abstract. There is a flatness property of acts over monoids called Con-
dition (PWP ) which, so far, has received much attention. In this paper,
we introduce Condition GP-(P ), which is a generalization of Condition

(PWP ). Firstly, some characterizations of monoids by Condition GP-
(P ) of their (cyclic, Rees factor) acts are given, and many known results
are generalized. Moreover, some possible conditions on monoids that
describe when their diagonal acts satisfy Condition GP-(P ) are found.

Finally, using some new types of epimorphisms, an alternative descrip-
tion of Condition GP-(P ) (resp., Condition (PWP )) is obtained, and
directed colimits of these new epimorphisms are investigated.

Keywords: S-act, Condition (PWP ), condition GP-(P ), generally left
annihilating right ideal, quasi G-2-pure epimorphism.
MSC(2010): Primary: 20M30; Secondary: 20M50.

1. Introduction and preliminaries

Throughout this paper, S always stands for a monoid and N the set of natural
numbers. A non-empty set A is called a right S-act, usually denoted by AS , if
there exists a mapping A × S → A, (a, s) 7→ as, such that (as)t = a(st) and
a1 = a for all a ∈ A and s, t ∈ S. Left S-acts SA are defined dually. Every
right (left) ideal I of S is in a natural way a right (resp. left) S-act. Let AS
and BS be two right S-acts. A mapping f : AS → BS is called an S-morphism
if f(as) = f(a)s for all a ∈ A and s ∈ S. Analogously, S-morphisms of left
S-acts are defined.

In 1970, Kilp [7] initiated a study of flatness of acts. A right S-act AS is
called flat if the functor AS ⊗ − preserves all monomorphisms. In 1983, Kilp
[9] further investigated the (principal) weak version of flatness under the name
of (principal) weak flatness. A right S-act AS is called (principally) weakly flat
if this functor AS ⊗− preserves all embeddings of (principal) left ideals into S.
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In 1987, Normark [13] studied Condition (P ), which was first considered by
Stenström [17]. A right S-act AS is said to satisfy Condition (P ) if for all
a, a′ ∈ A, s, t ∈ S, as = a′t implies that there exist a′′ ∈ A and u, v ∈ S such
that a = a′′u, a′ = a′′v and us = vt. As was shown in [13] that Condition
(P ) strictly implies flatness. Until 2001, Laan [11] defined Conditions (WP )
and (PWP ), which are the weak form and principal weak form of Condition
(P ), respectively. A right S-act AS satisfies Condition (WP ) if and only if, for
all elements s, t ∈ S, all S-morphisms f : S(Ss ∪ St) →SS, and all a, a′ ∈ A,
if af(s) = a′f(t) then there exist a′′ ∈ A, u, v ∈ S, s′, t′ ∈ {s, t} such that
f(us′) = f(vt′), a ⊗ s = a′′ ⊗ us′ and a′ ⊗ t = a′′ ⊗ vt′ in AS ⊗S (Ss ∪ St).
A right S-act AS satisfies Condition (PWP ) if and only if, for all a, a′ ∈ A,
s ∈ S, as = a′s implies that there exist a′′ ∈ A and u, v ∈ S such that a = a′′u,
a′ = a′′v and us = vs. Also, we know from [11] that Condition (WP ) strictly
implies weak flatness, and Condition (PWP ) strictly implies principal weak
flatness.

In 2012, Qiao et al. [15] defined GP-flatness of acts, which is a generalization
of principal weak flatness. Moreover, using this property, some new classes of
monoids are characterized, such as generally regular monoids, generally left
almost regular monoids and so on. A right S-act AS is called GP-flat, if for
any s ∈ S, a, a′ ∈ A, a⊗ s = a′ ⊗ s in AS ⊗SS implies that there exists n ∈ N
such that a⊗ sn = a′ ⊗ sn in AS ⊗SSsn. According to the above statements,
the relations of these properties are as follows:

Condition (P) ⇒ Condition (WP) ⇒ Condition (PWP)
⇓ ⇓ ⇓

flatness ⇒ w. flatness ⇒ p. w. flatness ⇒ GP-flatness

Motivated by the work of [15], in this paper, we naturally investigate a gen-
eralization of Condition (PWP ). Moreover, we prove that this generalization
can imply GP-flatness.

In Section 2, we first introduce Condition GP-(P ), and characterize monoids
by this new property of their acts. Furthermore, many unknown results for
Condition (PWP ) are obtained, such as Theorems 2.10, 2.11 and so on. From
[14, Theorem 2.4], we know that all torsion free right S-acts satisfy Condition
(PWP ) if and only if S is a right cancellative monoid. But the situation for
Condition GP-(P ) is slightly different.

In Section 3, we define a new ideal of a monoid S, and present an equivalent
description of Rees factor acts satisfying Condition GP-(P ). Moreover, we
determine the relationship between Condition GP-(P ) and GP-flatness.

In [4], Bulman-Fleming and Gilmour initiated the study of flatness properties
of diagonal acts, such as freeness, strongly flatness, Condition (P ) and so on.
In Section 4, similar to the techniques of [4], we continue to investigate the
diagonal acts satisfying Condition GP-(P ).
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In [17], Stenström proved that a right S-act AS is strongly flat if and only
if every epimorphism ψ : BS → AS is pure. Recently, Bailey and Renshaw
[1] defined a generalization of pure epimorphisms called n-pure epimorphisms
(n ∈ N), and gave a necessary characterization of Condition (P ) by 2-pure
epimorphisms (see [1, Proposition 3.12]). However, the situation for Condition
(PWP ) is presently unknown. In Section 5, we give some new generalizations
of 2-pure epimorphisms, and obtain an equivalent description of Condition GP-
(P ) (resp., Condition (PWP )). Moreover, we study directed colimits of these
new epimorphisms.

For more details about the notions used in this paper, we refer the reader to
[6, 10], and for an account of flatness properties of acts the reader is referred
to [3, 5, 11].

2. Acts satisfying Condition GP-(P )

In this section we give a characterization of monoids by Condition GP-(P )
of right acts.

Definition 2.1. We say a right S-act AS satisfies Condition GP-(P) if for any
a, a′ ∈ A and s ∈ S, as = a′s implies that there exist n ∈ N, a′′ ∈ A, u, v ∈ S
such that a = a′′u, a′ = a′′v and usn = vsn.

It is immediate from the above definition that, if n = 1, then Condition
GP-(P ) is in fact Condition (PWP ). So Condition GP-(P ) is a general form
of Condition (PWP ), but we will show that Condition GP-(P ) does not imply
Condition (PWP ) (at the end of Section 3).

We first present an equivalent description of Condition GP-(P ) by pullback
diagram.

Proposition 2.2. A right S-act AS satisfies Condition GP-(P ) if and only if,
for all a, a′ ∈ A, x, y, s ∈ S, and all S-morphisms f : SSs →SS, af(xs) =
a′f(ys) implies that there exist n ∈ N, a′′ ∈ A, u, v ∈ S such that f(usn) =
f(vsn), a⊗ xsn = a′′ ⊗ usn and a′ ⊗ ysn = a′′ ⊗ vsn in AS ⊗SSsn.

Proof. Necessity. This follows immediately from Definition 2.1.
Sufficiency. Let at = a′t for a, a′ ∈ A, t ∈ S. We consider the right

translation (by t) ρt : SS →SS, i.e., ρt(z) = zt for every z ∈ S. Then at = a′t
means that aρt(1) = a′ρt(1). By our assumption, there exist n ∈ N, a′′ ∈ A,
u, v ∈ S such that ρt(u1

n) = ρt(v1
n), a⊗1n = a′′⊗u1n and a′⊗1n = a′′⊗v1n

in AS ⊗S S. Using the definition of ρt and the standard isomorphism between
AS ⊗SS and AS , it follows that ut = vt, a = a′′u and a′ = a′′v. This shows
that AS satisfies Condition GP-(P ). □

The following proposition shows that right S-acts satisfying Condition GP-
(P ) are closed under directed colimits. For more information about directed
colimit of families of right S-acts, the reader is referred to [1].
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Proposition 2.3. Let S be a monoid. Then every directed colimit of a direct
system of right S-acts that satisfy Condition GP-(P ), satisfies Condition GP-
(P ).

Proof. Let (Ai, ϕi,j) be a direct system of right S-acts satisfying Condition GP-
(P ) over a directed index set I with directed colimit (AS , αi). Suppose that
as = a′s in AS for a, a′ ∈ A, s ∈ S. Then there exist i, j ∈ I, ai ∈ Ai, aj ∈ Aj
with a = αi(ai), a

′ = αj(aj). Since I is directed, by [1, Lemma 2.1], there exists
k ≥ i, j with ϕi,k(ai)s = ϕj,k(aj)s in Ak. Since Ak satisfies Condition GP-(P ),
there exist n ∈ N, a′′ ∈ Ak and u, v ∈ S such that ϕi,k(ai) = a′′u, ϕj,k(aj) =
a′′v and usn = vsn. We can calculate that a = αi(ai) = αkϕi,k(ai) = αk(a

′′)u.
In a similar way, a′ = αk(a

′′)v, and so AS satisfies Condition GP-(P ). □

Notice from the proof of Proposition 2.3 that we can also show that right
S-acts satisfying Condition (PWP ) are closed under directed colimits.

From [14, Lemma 2.1], we know that the S-act A(I) does not satisfy Con-
dition (PWP ). Even for Condition GP-(P ), the result is still valid.

Lemma 2.4. Let I be a proper right ideal of a monoid S. Then A(I) fails to
satisfy Condition GP-(P ).

Proof. The proof is similar to that of [14, Lemma 2.1]. □

Golchin et al. [5] investigated Condition (P ′) lying strictly between Condi-
tion (P ) and Condition (PWP ). A right S-act AS is said to satisfy Condition
(P ′) if for all a, a′ ∈ A, s, t, z ∈ S, as = a′t and sz = tz imply that there exist
a′′ ∈ A and u, v ∈ S such that a = a′′u, a′ = a′′v and us = vt. Also, according
to [3, Proposition 9], all right S-acts are weakly pullback flat if and only if S
is a group. Further, using Lemma 2.4, the following proposition is an evident
result for Condition GP-(P ).

Proposition 2.5. Let S be a monoid. Then the following statements are
equivalent:

(1) All right S-acts are weakly pullback flat;
(2) All right S-acts satisfy Condition (P );
(3) All right S-acts satisfy Condition (P ′);
(4) All right S-acts satisfy Condition (WP );
(5) All right S-acts satisfy Condition (PWP );
(6) All right S-acts satisfy Condition GP-(P );
(7) S is a group.

As we know that Condition (PWP ) implies principal weak flatness. Parallel
to this fact, we have the following result.

Proposition 2.6. If a right S-act AS satisfies Condition GP-(P ), then AS is
GP-flat.
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Proof. Suppose that AS satisfies Condition GP-(P ) and let a ⊗ s = a′ ⊗ s in
AS ⊗S S for a, a′ ∈ A and s ∈ S. Using the standard isomorphism between
AS⊗SS and AS , it follows as = a′s. By assumption, there exist n ∈ N, a′′ ∈ A
and u, v ∈ S such that a = a′′u, a′ = a′′v and usn = vsn. So we can compute
that

a⊗ sn = a′′u⊗ sn = a′′ ⊗ usn = a′′ ⊗ vsn = a′′v ⊗ sn = a′ ⊗ sn

in the tensor product AS ⊗SSsn. Hence AS is GP-flat. □
Notice that the implication in the above proposition is strict, we will give

an example to show this fact.
Now it is natural to consider monoids over which all GP-flat right acts satisfy

Condition GP-(P ). In what follows we need the following notions and results.
Recall that a monoid S is called a left PP monoid if every principal left

ideal of S is projective (as a left S-act). According to Kilp [8], a monoid S is
left PP if and only if for every s ∈ S there exists an idempotent e ∈ S such
that es = s and for all u, v ∈ S, us = vs implies ue = ve. By Liu and Yang
[12], a monoid S is called a left PSF monoid if every principal left ideal of S is
strongly flat (as a left S-act); Or, equivalently, a monoid S is left PSF if and
only if su = tu for s, t, u ∈ S there exists r ∈ S such that ru = u and sr = tr.
It is clear that every left PP monoid is left PSF .

Lemma 2.7. ([2]) Let I be a proper right ideal of a monoid S. Then the
following statements are equivalent:

(1) A(I) is flat;
(2) I is left stabilizing (that is, for every j ∈ I, j ∈ Ij).

Lemma 2.8. ([12]) The following statements on a monoid S are equivalent:

(1) Every proper right ideal I of S is not left stabilizing (that is, there exists
j ∈ I − Ij);

(2) For every infinite sequence (x0, x1, x2, · · · ) with xi = xi+1xi, xi ∈ S, i =
0, 1, · · · , there exists a positive integer n such that xn = xn+1 = · · · = 1.

Lemma 2.9. Let S be a left PSF monoid. A right S-act AS is GP-flat if and
only if, for every a, a′ ∈ A and s ∈ S, as = a′s implies that there exist n ∈ N,
u ∈ S such that au = a′u and usn = sn.

Proof. Necessity. Suppose that AS is a GP-flat right S-act. If as = a′s for
a, a′ ∈ A, s ∈ S, then we have a⊗s = a′⊗s in AS⊗SS. In view of [15, Lemma
2.2], there exist m,n ∈ N, s1, t1, · · · , sm, tm ∈ S and a1, · · · , am ∈ A such that

a = a1s1
a1t1 = a2s2 s1s

n = t1s
n

a2t2 = a3s3 s2s
n = t2s

n

...
...

amtm = a′ sms
n = tms

n.
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Since S is left PSF , from s1s
n = t1s

n we obtain u1 ∈ S such that u1s
n = sn

and s1u1 = t1u1. So we deduce s2u1s
n = s2s

n = t2s
n = t2u1s

n, and this
implies that there exists u2 ∈ S such that u2s

n = sn and s2u1u2 = t2u1u2.
Now letting u′ = u1u2 ∈ S, we have u′sn = sn, s1u

′ = t1u
′ and s2u

′ = t2u
′.

By induction we can find u ∈ S such that

usn = sn, siu = tiu, i = 1, 2, · · · ,m.
Hence we can deduce that

au = a1s1u = a1t1u = a2s2u = · · · = amsmu = amtmu = a′u.

Sufficiency. Let a⊗ s = a′ ⊗ s in AS ⊗SS for a, a′ ∈ A, s ∈ S. This means
as = a′s in AS , and so by assumption, there exist n ∈ N, u ∈ S such that
au = a′u and usn = sn. Now we can compute that

a⊗ sn = a⊗ usn = au⊗ sn = a′u⊗ sn = a′ ⊗ usn = a′ ⊗ sn

in AS ⊗SSsn. This completes the proof. □
Now we can establish the following result.

Theorem 2.10. Let S be a left PSF monoid. Then the following statements
are equivalent:

(1) All principally weakly flat right S-acts satisfy Condition GP-(P );
(2) All principally weakly flat right S-acts satisfy Condition (PWP );
(3) All GP-flat right S-acts satisfy Condition GP-(P );
(4) All GP-flat right S-acts satisfy Condition (PWP );
(5) Every proper right ideal I of S is not left stabilizing.

Proof. The implications (4) ⇒ (3) ⇒ (1) and (4) ⇒ (2) ⇒ (1) are obvious.
(1) ⇒ (5). This follows from Lemmas 2.4 and 2.7.
(5) ⇒ (4). Suppose that AS is a GP-flat right S-act. Let as = a′s for

a, a′ ∈ A and s ∈ S. In view of Lemma 2.9, there exist n ∈ N, u ∈ S such that
au = a′u and usn = sn. Since S is left PSF , from usn = sn we get x1 ∈ S such
that x1s

n = sn and ux1 = x1. Again, since S is left PSF , from ux1 = x1 we
obtain x2 ∈ S such that x2x1 = x1 and ux2 = x2. By continuing this process,
letting x0 = sn we can find an infinite sequence (x0, x1, · · · ), such that

xi+1xi = xi, uxi = xi, i = 0, 1, · · · .
By Lemma 2.8, there exists a positive integer m such that xm = xm+1 = · · · =
1. Thus, we have u = 1, and so a = a′. This shows that AS satisfies Condition
(PWP ). □

For the situation of idempotent monoids, we have the following

Theorem 2.11. Let S be an idempotent monoid. Then the following state-
ments are equivalent:

(1) All flat right S-acts satisfy Condition GP-(P );
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(2) All weakly flat right S-acts satisfy Condition GP-(P );
(3) All principally weakly flat right S-acts satisfy Condition GP-(P );
(4) All GP-flat right S-acts satisfy Condition GP-(P );
(5) S = {1}.

Proof. The implications (4) ⇒ (3) ⇒ (2) ⇒ (1) are obvious.
(1) ⇒ (5). Assume S ̸= {1}. If e ∈ S\{1}, then eS ̸= S. Since I = eS is a

left stabilizing proper right ideal of S, from Lemma 2.7, it follows that A(I) is
flat. By assumption, A(I) satisfies Condition GP-(P ), this contradicts Lemma
2.4. Thus, we have S = {1}.

(5) ⇒ (4). It is clear. □

From [14, Theorem 2.4], it follows that all torsion free right S-acts satisfy
Condition (PWP ) if and only if S is a right cancellative monoid. But, the
situation for Condition GP-(P ) is slightly different.

Theorem 2.12. Let S be a left PP monoid. Then the following statements
are equivalent:

(1) All flat right S-acts satisfy Condition GP-(P );
(2) All weakly flat right S-acts satisfy Condition GP-(P );
(3) All principally weakly flat right S-acts satisfy Condition GP-(P );
(4) All GP-flat right S-acts satisfy Condition GP-(P );
(5) All torsion free right S-acts satisfy Condition GP-(P );
(6) S is a right cancellative monoid.

Proof. The implications (5) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1) are obvious.
(1) ⇒ (6). If S is not right cancellative, then I = {s ∈ S|s is not right

cancellable} is a proper right ideal of S. Next we show that A(I) is flat. For
every i ∈ I, since S is a left PP monoid, there exists e ∈ E(S) such that ei = i
and for every u, v ∈ S, ui = vi implies ue = ve. If e ̸∈ I, then e is right
cancellable. So for every u, v ∈ S, ui = vi implies u = v. Therefore, i is right
cancellable, which is a contradiction. Thus e ∈ I and ei = i, from Lemma 2.7
it follows that A(I) is flat. By assumption, A(I) satisfies Condition GP-(P ),
this contradicts Lemma 2.4. Therefore, S is right cancellative.

(6) ⇒ (5). If S is right cancellative, then by [14, Theorem 2.4], all torsion
free right S-acts satisfy Condition (PWP ), and so all torsion free right S-acts
satisfy Condition GP-(P ). □

Note that in this theorem, if we replace “a left PP monoid” by “a regular
monoid”, then “a right cancellative monoid” will be replaced by “a group”.
And if we replace “a left PP monoid” by “a left PSF monoid”, “a left almost
regular monoid” or “there exists a regular left S-act”, then we have the same
result as for the left PP monoid.
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From [5, Theorem 2.6 (Theorem 2.7)], it follows that all right S-acts satis-
fying Condition (P ′) are free (projective generators) if and only if S = {1}. By
analogy with Condition (P ′), we give the following result.

Proposition 2.13. Let S be a monoid. Then the following statements are
equivalent:

(1) All right S-acts satisfying Condition GP-(P ) are free (projective genera-
tors);

(2) All finitely generated right S-acts satisfying Condition GP-(P ) are free
(projective generators);

(3) All cyclic right S-acts satisfying Condition GP-(P ) are free (projective gen-
erators);

(4) All monocyclic right S-acts satisfying Condition GP-(P ) are free (projective
generators);

(5) S = {1}.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious.
(4) ⇒ (5). Suppose that all monocyclic right S-acts satisfying Condition

GP-(P ) are free (projective generators). Then all monocyclic right S-acts sat-
isfying Condition (P ) are free (projective generators), and so by [10, Theorem
4.12.8], S = {1}.

(5) ⇒ (1). It is obvious. □

As we know monoids over which all right S-acts satisfying Condition (PWP )
are free (projective generators) are unknown since now. Here, from Proposition
2.13 we immediately get the following result as a corollary.

Corollary 2.14. Let S be a monoid. Then the following statements are equiv-
alent:

(1) All right S-acts satisfying Condition (PWP ) are free (projective genera-
tors);

(2) All finitely generated right S-acts satisfying Condition (PWP ) are free
(projective generators);

(3) All cyclic right S-acts satisfying Condition (PWP ) are free (projective gen-
erators);

(4) All monocyclic right S-acts satisfying Condition (PWP ) are free (projec-
tive generators);

(5) S = {1}.

3. Cyclic (Rees factor) acts satisfying Condition GP-(P )

In this section we give a classification of monoids by Condition GP-(P ) of
their cyclic (Rees factor) acts.

We first give a description for cyclic acts satisfying Condition GP-(P ).
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Proposition 3.1. Let ρ be a right congruence on a monoid S. The cyclic right
S-act S/ρ satisfies Condition GP-(P ) if and only if

(∀x, y, s ∈ S)[(xs)ρ(ys) =⇒ (∃n ∈ N)(∃u, v ∈ S)(xρu ∧ yρv ∧ usn = vsn)].

Proof. It is a routine matter. □

Recall from [15] that a monoid S is called generally regular, if for every
s ∈ S, there exist n ∈ N and x ∈ S such that sn = sxsn.

Theorem 3.2. Let S be a monoid. Then the following statements are equiva-
lent:

(1) All cyclic right S-acts satisfy Condition GP-(P );
(2) S is generally regular, and S satisfies the following condition:

for every x, y, s ∈ S, there exist n ∈ N and u, v ∈ S such that xρ(xs, ys)u,
yρ(xs, ys)v and usn = vsn.

Proof. (1) ⇒ (2). Suppose that all cyclic right S-acts satisfy Condition GP-
(P ). Then all cyclic right S-acts are GP-flat, and so by [15, Theorem 3.7], S
is generally regular. Now, let x, y, s ∈ S. By assumption, S/ρ(xs, ys) satisfies
Condition GP-(P ). Since (xs)ρ(xs, ys)(ys), from Proposition 3.1 we obtain
n ∈ N and u, v ∈ S such that xρ(xs, ys)u, yρ(xs, ys)v and usn = vsn, as
required.

(2) ⇒ (1). Let ρ be a right congruence on S and let (xs)ρ(ys) for x, y, s ∈
S. By assumption, there exist n ∈ N and u, v ∈ S such that xρ(xs, ys)u,
yρ(xs, ys)v and usn = vsn. Since (xs)ρ(ys), we have ρ(xs, ys) ⊆ ρ, and so
xρu and yρv. From Proposition 3.1, it follows that S/ρ satisfies Condition
GP-(P ). □

Recall that a proper right ideal K of a monoid S is called left annihilating,
if

(∀s ∈ S)(∀x, y ∈ S\K)(xs, ys ∈ K =⇒ xs = ys).

In order to depict Rees factor acts satisfying Condition GP-(P ), we need to
introduce the following

Definition 3.3. We say that a proper right ideal K of a monoid S is generally
left annihilating, if

(∀s ∈ S)(∀x, y ∈ S\K)[xs, ys ∈ K =⇒ (∃ n ∈ N)(xsn = ysn)].

It is obvious that, every left annihilating proper right ideal of a monoid S is
generally left annihilating. But, that the converse is not true follows from the
next example.

Example 3.4. Let S = {1, e, f, 0} denote the monoid with the Cayley table
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1 e f 0
1 1 e f 0
e e 0 0 0
f f 0 f 0
0 0 0 0 0

and let KS = {e, 0}. Then K is a proper right ideal of S. Since 1, f ∈ S\K,
1e, fe ∈ K, but 1e ̸= fe, so K is not left annihilating. However, we can verify
that K is generally left annihilating.

We will use the following result.

Lemma 3.5. ([15]) Let K be a proper right ideal of a monoid S. Then the
following conditions are equivalent:

(1) S/K is GP-flat;
(2) For every s ∈ S, if there exists r ∈ S\K such that rs ∈ K, then there exist

a natural number n ∈ N, and j ∈ K such that rsn = jsn.

For convenience, we say a proper right ideal K of a monoid S is generally
left stabilizing, if K satisfies the condition (2) of Lemma 3.5.

For a Rees factor act to satisfy Condition GP-(P ) we can now give the
following description.

Theorem 3.6. Let K be a proper right ideal of a monoid S. Then the right
Rees factor act S/K satisfies Condition GP-(P ) if and only if K is generally
left stabilizing and generally left annihilating.

Proof. Necessity. If S/K satisfies Condition GP-(P ), then S/K is GP-flat,
and so by Lemma 3.5, K is generally left stabilizing. So assume that xs, ys ∈ K
for x, y ∈ S\K, s ∈ S. Then we have (xs)ρK(ys). In view of Proposition 3.1,
there exist n ∈ N and u, v ∈ S such that usn = vsn, xρKu and yρKv. Now
x, y ̸∈ K yields x = u and y = v by the definition of ρK . Thus, we have
xsn = ysn, and this shows that K is generally left annihilating.

Sufficiency. Let K be a generally left stabilizing and generally left anni-
hilating, proper right ideal of S. We use Proposition 3.1 to check that S/K
satisfies Condition GP-(P ). Let (xs)ρK(ys) for x, y, s ∈ S. If xs = ys, then we
can take u = x and v = y. So we may assume that xs, ys ∈ K. We have the
following four cases to consider.

Case 1: x, y ∈ K. Then we can take u = v = x;
Case 2: x ∈ K, y ̸∈ K. Since K is generally left stabilizing, we can find for

ys ∈ K a natural number n ∈ N and an element k ∈ K such that ysn = ksn.
It remains to take u = k and v = y;

Case 3: This is analogous to the previous case;
Case 4: x, y ̸∈ K. Since K is generally left annihilating, there exists n ∈ N

such that xsn = ysn, so we take u = x and v = y.
As stated above, S/K satisfies Condition GP-(P ). □
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For the one-element act, we can easily prove

Corollary 3.7. For any monoid S, the one-element act ΘS always satisfies
Condition GP-(P ).

Our next task is to describe monoids for which all Rees factor acts satisfy
Condition GP-(P ).

Theorem 3.8. Let S be a monoid. Then the following statements are equiva-
lent:

(1) All right Rees factor acts of S satisfy Condition GP-(P );
(2) S is a generally regular monoid, and also for all x, y, s ∈ S, x, y ̸∈ xsS∪ysS

implies that xsn = ysn for some n ∈ N.

Proof. (1) ⇒ (2). Suppose that all right Rees factor acts of S satisfy Condition
GP-(P ). Then all right Rees factor acts of S are GP-flat, and so by [15,
Theorem 3.7], S is a generally regular monoid. Now let x, y ̸∈ xsS ∪ ysS for
x, y, s ∈ S and let KS = xsS ∪ ysS. By assumption, S/K satisfies Condition
GP-(P ), and so by Theorem 3.6, K is generally left annihilating. Since xs, ys ∈
K, we can find a natural number n such that xsn = ysn, exactly as needed.

(2) ⇒ (1). Suppose that K is a right ideal of S. If K is proper, since
S is generally regular, it is easy to verify that K is generally left stabilizing.
Now let xs, ys ∈ K for x, y ∈ S\K, s ∈ S. Then xsS ∪ ysS ⊆ K, and so
x, y ̸∈ xsS ∪ ysS. By assumption, there exists n ∈ N such that xsn = ysn, and
this shows that K is generally left annihilating. Thus, using Theorem 3.6, S/K
satisfies Condition GP-(P ). But if K = S, then by Corollary 3.7, S/K ∼= ΘS
satisfies Condition GP-(P ), and the proof is complete. □

As we will see that, for Rees factor acts Condition GP-(P ) does not imply
Condition (PWP ). So it is natural to consider the following

Theorem 3.9. Let S be a monoid. Then the following statements are equiva-
lent:

(1) All right Rees factor acts of S satisfying Condition GP-(P ) satisfy Condi-
tion (PWP );

(2) Every generally left stabilizing and generally left annihilating proper right
ideal of S is left stabilizing and left annihilating.

Proof. (1) ⇒ (2). If K is a generally left stabilizing and generally left annihi-
lating proper right ideal of S, then by Theorem 3.6, S/K satisfies Condition
GP-(P ). By assumption, S/K satisfies Condition (PWP ). Thus, from [11,
Theorem 10], it follows that K is left stabilizing and left annihilating.

(2) ⇒ (1). Suppose that K is a right ideal of S and S/K satisfies Condition
GP-(P ). If K is proper, then by Theorem 3.6, K is generally left stabilizing
and generally left annihilating. By assumption, K is left stabilizing and left
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annihilating, and so from [11, Theorem 10] it follows that S/K satisfies Con-
dition (PWP ). But if K = S, then by [11, Corollary 11], S/K ∼= ΘS satisfies
Condition (PWP ), and so we are done. □

For monoids over which every Rees factor act satisfying Condition GP-(P )
have other flatness property (where here, the property is stronger in general
than Condition GP-(P )), their characterizations are similar in nature to the
above theorem, and so here will be omitted.

As we will also see for Rees factor acts GP-flatness does not imply Condition
GP-(P ), so we naturally consider the following

Theorem 3.10. Let S be a monoid. Then the following statements are equiv-
alent:

(1) All GP-flat right Rees factor acts of S satisfy Condition GP-(P );
(2) Every generally left stabilizing proper right ideal of S is generally left an-

nihilating.

Proof. (1) ⇒ (2). Suppose that K is a generally left stabilizing proper right
ideal of S. In view of Lemma 3.5, S/K is GP-flat. By assumption, S/K satisfies
Condition GP-(P ), and so by Theorem 3.6, K is generally left annihilating.

(2) ⇒ (1). Suppose that K is a right ideal of S and S/K is GP-flat. If K
is proper, then by Lemma 3.5, K is generally left stabilizing. By assumption,
K is also generally left annihilating, and so using Theorem 3.6, S/K satisfies
Condition GP-(P ). But if K = S, then from Corollary 3.7, it follows that
S/K ∼= ΘS satisfies Condition GP-(P ). This completes the proof. □

At the end of this section, we present two examples to show that Condition
GP-(P ) lies strictly between Condition (PWP ) and GP-flatness. Meanwhile,
these two examples can also reveal that Condition GP-(P ) and principal weak
flatness (resp., weak flatness, flatness) are independent notions.

Example 3.11. ([11, Example 1]) [GP-flatness ̸⇒ Condition GP-(P)] Let S =
{1, e, f, 0} be a semilattice with ef = 0 and K = eS. It is clear that K is a
proper right ideal of S. It is shown in [11] that S/K is flat. Hence S/K is
GP-flat. On the other hand, since 1, f ∈ S\K, 1e, fe ∈ K, there is no natural
number n such that 1en = fen. Hence K is not generally left annihilating, and
so by Theorem 3.6, S/K does not satisfy Condition GP-(P ).

Example 3.12. [Condition GP-(P) ̸⇒ Condition (PWP)] Let S = K ∪ {I}
with

K =

{(
0 a b
0 0 c
0 0 0

)∣∣∣∣∣a, b, c ∈ Z

}
, I =

(
1 0 0
0 1 0
0 0 1

)
.

Then S is a monoid and K is a generally left stabilizing and generally left
annihilating proper right ideal. In view of Theorem 3.6, S/K satisfies Condition
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GP-(P ). On the other hand, since l =

(
0 1 0
0 0 1
0 0 0

)
∈ K, there is no k ∈ K

such that kl = l. Hence K is not left stabilizing. From [11, Proposition 8], it
follows that S/K is not principally weakly flat, so S/K is not (weakly) flat,
and also fails to satisfy Condition (PWP ).

4. Diagonal acts satisfying Condition GP-(P )

In this section, our goal is to give some possible conditions on a monoid that
describe when its diagonal act satisfies Condition GP-(P ).

If S is a monoid, then the right S-act S × S, equipped with componentwise
S-action, that is (s, t)u = (su, tu) for s, t, u ∈ S, is called the diagonal right act
of S. This act will be denoted by D(S). If S is a semigroup without identity,
then the right S1-act (S×S)S1 is called deleted diagonal right act of S, usually
denoted by Dd(S). For more information about the diagonal acts the reader is
referred to [4, 16].

Let S be a monoid. For the diagonal right act D(S), we define

L(sn, sn) := {(u, v) ∈ D(S)| usn = vsn}

for any n ∈ N. Clearly, L(sn, sn) is a left S-act.
We first provide an alternative description for Condition GP-(P ) when it

comes to diagonal acts.

Theorem 4.1. Let S be a monoid. Then the following statements are equiva-
lent:

(1) D(S) satisfies Condition GP-(P );
(2) For every s ∈ S, L(s, s) is either empty or for each 2 elements (u, v),

(u′, v′) ∈ L(s, s), there exists (p, q) ∈ L(sn, sn) for some n ∈ N such that
(u, v), (u′, v′) ∈ S(p, q).

Proof. (1) ⇒ (2). Suppose that D(S) satisfies Condition GP-(P ). Let (u, v),
(u′, v′) ∈ L(s, s) for any s ∈ S. Then we have us = vs and u′s = v′s, from
which it follows that (u, u′)s = (v, v′)s. Since D(S) satisfies Condition GP-
(P ), there exist n ∈ N, (w,w′) ∈ D(S) and p, q ∈ S such that psn = qsn,
(u, u′) = (w,w′)p and (v, v′) = (w,w′)q. This translates into (p, q) ∈ L(sn, sn)
and (u, v), (u′, v′) ∈ S(p, q), as required.

(2) ⇒ (1). Let (a, b)s = (a′, b′)s for (a, b), (a′, b′) ∈ D(S), s ∈ S. Then we
see as = a′s and bs = b′s, these imply that (a, a′), (b, b′) ∈ L(s, s) ̸= ∅. By
assumption, we get (p, q) ∈ L(sn, sn) for some n ∈ N such that (a, a′), (b, b′) ∈
S(p, q), that is, there exist w,w′ ∈ S such that (a, a′) = w(p, q) and (b, b′) =
w′(p, q). It follows that psn = qsn, (a, b) = (w,w′)p and (a′, b′) = (w,w′)q.
Hence D(S) satisfies Condition GP-(P ). □

As an extension of Theorem 4.1, the following result is obtained.
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Theorem 4.2. Let S be a monoid. Then the following statements are equiva-
lent:

(1) (SI)S satisfies Condition GP-(P ) for every nonempty set I;
(2) For every s ∈ S, L(s, s) is either empty or there exists (p, q) ∈ L(sn, sn)

for some n ∈ N such that L(s, s) ⊆ S(p, q).

Proof. (1) ⇒ (2). Assume s ∈ S and L(s, s) ̸= ∅. Write L(s, s) = {(ui, vi)| i ∈
I}. Let u, v be the elements of SI whose ith components are ui, vi, respectively.
Then we see us = vs in SI . Since SI satisfies Condition GP-(P ), there exist
n ∈ N, w ∈ SI and p, q ∈ S such that u = wp, v = wq and psn = qsn.
So (p, q) ∈ L(sn, sn). Now let the ith component of w be wi (i ∈ I). Then
for each i ∈ I we have ui = wip and vi = wiq. From this it follows that
(ui, vi) = wi(p, q) for all i ∈ I, and so L(s, s) ⊆ S(p, q).

(2) ⇒ (1). Suppose that us = vs for u, v ∈ SI and s ∈ S. Let the ith
components of u and v be ui and vi (i ∈ I), respectively. Then we have
uis = vis for all i ∈ I, and so (ui, vi) ∈ L(s, s) ̸= ∅. By assumption, there
exists (p, q) ∈ L(sn, sn) for some n ∈ N such that L(s, s) ⊆ S(p, q). So for each
i ∈ I there exists wi ∈ S such that (ui, vi) = wi(p, q). Setting w = (wi)i∈I , we
have psn = qsn, u = wp and v = wq, exactly as needed. □

It is well-known that, for any monoid S the diagonal act D(S) is always
torsion free. From Theorem 2.12, it follows that if S is a right cancellative
monoid then D(S) satisfies Condition GP-(P ). So it is natural to consider the
following

Proposition 4.3. Let S be a monoid. Then the following statements are
equivalent:

(1) D(S) satisfies Condition (P ′) and |E(S)| = 1;
(2) D(S) satisfies Condition (PWP ) and |E(S)| = 1;
(3) D(S) satisfies Condition GP-(P ) and |E(S)| = 1;
(4) S is right cancellative.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (4) Suppose that D(S) satisfies Condition GP-(P ) and |E(S)| = 1.

Let sz = tz, for s, t, z ∈ S. Then we have (1, s)z = (1, t)z, and by assumption,
we obtain n ∈ N, (c, d) ∈ D(S) and u, v ∈ S such that uzn = vzn, (1, s) =
(c, d)u and (1, t) = (c, d)v. Further, (1, s) = (c, d)u and (1, t) = (c, d)v imply
that 1 = cu = cv, and so we can deduce uc, vc ∈ E(S). From the condition
|E(S)| = 1, it follows uc = vc. Then we may compute that u = ucu = vcu = v.
Thus, s = du = dv = t, and we are done.

(4) ⇒ (1). Assume S is a right cancellative monoid. It is easy to see that
|E(S)| = 1. Since D(S) is torsion free, by [5, Theorem 2.2], D(S) satisfies
Condition (P ′). □
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The next result gives a nice characterization of inverse monoids whose diag-
onal acts satisfies Condition GP-(P ).

Proposition 4.4. Let S be an inverse monoid. Then the following statements
are equivalent:

(1) D(S) satisfies Condition (P ′);
(2) D(S) satisfies Condition (PWP );
(3) D(S) satisfies Condition GP-(P );
(4) S is a group.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (4). Note that S is an inverse and a right cancellative monoid if and

only if S is a group. So we only need to prove that S is a right cancellative
monoid. Assume sz = tz for s, t, z ∈ S. Then we have (s, 1)z = (t, 1)z.
Applying Condition GP-(P ) to this equality, obtaining n ∈ N, x, y, u, v ∈ S
such that (s, 1) = (x, y)u, (t, 1) = (x, y)v and uzn = vzn. It then follows that
yu = 1 = yv, and so yuy = y and uyu = u, this shows u is an inverse of y.
Similarly, we get v is also an inverse of y. Since S is an inverse monoid, we
have u = v. Thus, we can deduce that s = xu = xv = t, proving that S is right
cancellative.

(4) ⇒ (1). It is clear. □
For a commutative monoid S, the following result gives a useful description

of when D(S) satisfies Condition GP-(P ).

Proposition 4.5. Let S be a commutative monoid. Then the following state-
ments are equivalent:

(1) D(S) satisfies Condition (P ′);
(2) D(S) satisfies Condition (PWP );
(3) D(S) satisfies Condition GP-(P );
(4) S is cancellative.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (4) Suppose that D(S) satisfies Condition GP-(P ). Let sz = tz,

for s, t, z ∈ S. From the equality (1, s)z = (1, t)z, it follows that there exist
n ∈ N, (c, d) ∈ D(S) and u, v ∈ S such that (1, s) = (c, d)u, (1, t) = (c, d)v and
uzn = vzn. From (1, s) = (c, d)u and (1, t) = (c, d)v we see 1 = cu = cv. Since
S is commutative, we can calculate that u = cuu = cvu = cuv = v. Therefore,
s = du = dv = t, we obtain the desired result.

(4) ⇒ (1). It follows directly from [5, Theorem 6.1]. □
Proposition 4.6. Let S be a semigroup. Then D(S1) satisfies Condition GP-
(P ) if and only if S is right cancellative.

Proof. In view of Proposition 4.3, it suffices to show |E(S1)| = 1. Suppose, by
way of contradiction, that there exists e ∈ S such that e is idempotent. Then
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we have (e, 1)e = (1, e)e. If D(S1) satisfies Condition GP-(P ), then we could
find n ∈ N, (s, t) ∈ D(S1) and u, v ∈ S such that uen = ven, (e, 1) = (s, t)u
and (1, e) = (s, t)v. So we see tu = 1 and then because 1 is isolated, t = u = 1.
But if t = 1, then from the equality (1, e) = (s, t)v we must get that v = e,
which would make it impossible for sv = 1. Thus, we have |E(S1)| = 1. □

Observing the proof of Proposition 4.6, we know that if a monoid S with
an isolated identity 1 has any non-trivial idempotent, then D(S) will fail to
satisfy Condition GP-(P ). But, completely 0-simple semigroups surely contain
a non-trivial idempotent namely 0. This means that, all completely 0-simple
semigroups with an identity adjoined fail to have diagonal acts satisfying Con-
dition GP-(P ). In such situation, it is somewhat natural to consider deleted
diagonal acts of completely (0-)simple semigroups, represented here as regular
Rees matrix semigroups (with zero).

A left group is a semigroup of the form L×G, where L is a left zero semigroup
(that is, st = s for all s, t ∈ L) and G is a group. It is not hard to check that
if S = M(G; I,Λ;P ) is a completely simple semigroup and |Λ| = 1 then S is
in fact a left group.

Proposition 4.7. Let S = M(G; I,Λ;P ) be a completely simple semigroup
that is not a group. Then Dd(S) satisfies Condition GP-(P ) if and only if S
is a left group.

Proof. Necessity. Suppose that Dd(S) satisfies Condition GP-(P ), and let
i ∈ I, λ, µ ∈ Λ. If e denotes the identity element of G, then

((i, e, λ), (i, e, µ))(i, e, µ) = ((i, PλiP
−1
µi , µ), (i, PµiP

−1
λi , λ))(i, e, µ)

and so, by Condition GP-(P ), there exist a natural number n and elements
a ∈ S × S, u, v ∈ S1 such that

((i, e, λ), (i, e, µ)) = au, (1)
((i, PλiP

−1
µi , µ), (i, PµiP

−1
λi , λ)) = av, and (2)

u(i, e, µ)n = v(i, e, µ)n.

From the equality (1) or (2), we can easily deduce that λ = µ. Hence, |Λ| = 1
and S is a left group.

Sufficiency. If S is a left group, then by [4, Proposition 25] Dd(S) satisfies
Condition (P ), and hence Dd(S) satisfies Condition GP-(P ). □

As mentioned above, for any completely 0-simple semigroup with an identity
adjoined, its diagonal acts fail to satisfy Condition GP-(P ). But even for any
completely 0-simple semigroup, its deleted diagonal acts is also not true.

Proposition 4.8. Let S = M0(G; I,Λ;P ) be a completely 0-simple semigroup.
Then Dd(S) does not satisfy Condition GP-(P ).

Proof. Apply the technique used in [4, Proposition 26(2)]. □
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From Sections 2 and 3, we know that Condition GP-(P ) implies GP-flatness
but not conversely, even for diagonal acts the two properties are distinct. We
shall give an example of a monoid over which its diagonal act is GP-flat but
does not satisfy Condition GP-(P ). Let S denote the monoid {0, x, 1| x2 = 0}.
It is clear to check that S is a generally regular monoid. From [15, Theorem
3.4], it follows that the diagonal act D(S) is GP-flat. On the other hand, since
S is commutative but not cancellative, using Proposition 4.5, D(S) fails to
satisfy Condition GP-(P ).

5. Purity and epimorphisms

In this section, we give a new generalization of 2-pure epimorphisms, and
obtain an equivalent characterization of Condition GP-(P ). Moreover, we study
directed colimits of this new epimorphism.

We say that an epimorphism ψ : BS → AS is n-pure [1], if for every family
a1, · · · , an ∈ A and relations

aαisi = aβiti (i = 1, · · · ,m),

there exist b1, · · · , bn ∈ B such that ψ(br) = ar for all 1 ≤ r ≤ n and bαisi =
bβiti for all 1 ≤ i ≤ m. In particular, when n = 2, we say ψ is 2-pure.

Definition 5.1. Let ψ : BS → AS be an epimorphism. We say ψ is quasi
G-2-pure if for any a1, a2 ∈ A, s ∈ S, a1s = a2s implies that there exist n ∈ N
and b1, b2 ∈ B such that ψ(b1) = a1, ψ(b2) = a2 and b1s

n = b2s
n. In the case

n = 1, we call the ψ quasi 2-pure.

Clearly, every 2-pure epimorphism is quasi G-2-pure, but the converse is not
true. Indeed, let S be the monoid (N; +). We consider the one-element act
ΘS = {θ} over S and the epimorphism ψ : SS → ΘS . Note that θ · 0 = θ · 0
and θ · 0 = θ · 1, but there cannot exist m,n ∈ S such that m + 0 = n + 0
and m+ 0 = n+ 1. Hence ψ is not 2-pure. But, we can verify that ψ is quasi
G-2-pure.

Proposition 5.2. For any right S-act AS, the following statements are equiv-
alent:

(1) AS satisfies Condition GP-(P );
(2) Every epimorphism BS → AS is quasi G-2-pure;
(3) There exists a quasi G-2-pure epimorphism BS → AS with BS satisfies

Condition GP-(P ).

Proof. (1) ⇒ (2). Suppose that ψ : BS → AS is an epimorphism and suppose
that a1, a2 ∈ A, s ∈ S are such that a1s = a2s in AS . Since AS satisfies
Condition GP-(P ), there exist n ∈ N, u, v ∈ S and a ∈ A such that a1 = au,
a2 = av and usn = vsn. Applying surjectivity of ψ, there exists b ∈ B
with ψ(b) = a. Then we have busn = bvsn in BS , a1 = au = ψ(bu) and
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a2 = av = ψ(bv). Taking b1 = bu, b2 = bv, we see that we have reached the
desired conclusion.

(2) ⇒ (3). It is clear.
(3) ⇒ (1). Let AS be a right S-act. By hypothesis there exists a quasi G-

2-pure epimorphism ψ : BS → AS with BS satisfies Condition GP-(P ). Now
suppose that a1, a2 ∈ A, s ∈ S are such that a1s = a2s in AS . Then there exist
a natural number n ∈ N and elements b1, b2 ∈ B such that b1s

n = b2s
n in B,

ψ(b1) = a1 and ψ(b2) = a2. Also, since BS satisfies Condition GP-(P ), from
equality b1s

n = b2s
n, we obtain m ∈ N, b ∈ B and u, v ∈ S such that b1 = bu,

b2 = bv and u(sn)m = v(sn)m. Consequently, a1 = ψ(b)u and a2 = ψ(b)v in
AS , and us

nm = vsnm for nm ∈ N, as required. □
Using an argument similar to that of Proposition 5.2, we have the following

result.

Proposition 5.3. For any right S-act AS, the following statements are equiv-
alent:

(1) AS satisfies Condition (PWP );
(2) Every epimorphism BS → AS is quasi 2-pure;
(3) There exists a quasi 2-pure epimorphism BS → AS with BS satisfies Con-

dition (PWP ).

Applying Propositions 5.2 and 5.3, the following two conclusions hold.

Corollary 5.4. Let S be a monoid and let ψ : BS → AS be an epimorphism,
where BS satisfies Condition GP-(P ). Then AS satisfies Condition GP-(P ) if
and only if ψ is quasi G-2-pure.

Corollary 5.5. Let S be a monoid and let ψ : BS → AS be an epimorphism,
where BS satisfies Condition (PWP ). Then AS satisfies Condition (PWP ) if
and only if ψ is quasi 2-pure.

At last, we discuss directed colimits of quasi G-2-pure epimorphisms of right
S-acts.

By [1], suppose that (Xi, ϕi,j) and (Yi, θi,j) are direct systems of right S-
acts and S-morphisms. Suppose that for each i ∈ I there exists an S-morphism
ψi : Xi → Yi and suppose that (X,βi) and (Y, αi), the directed colimits of these
systems are such that the diagrams

Xi
ψi //

βi

��

Yi

αi

��
X

ψ
// Y

Xi

ϕi,j //

ψi

��

Xj

ψj

��
Yi

θi,j

// Yj

commute for all i ≤ j ∈ I. Then we shall refer to ψ as the directed colimit of
the ψi.
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Proposition 5.6. Let S be a monoid. Directed colimits of quasi G-2-pure
epimorphisms of right S-acts are quasi G-2-pure.

Proof. Suppose that (Xi, ϕi,j) and (Yi, θi,j) are direct systems of right S-acts
and S-morphisms. Suppose that for each i ∈ I there exists a quasi G-2-pure
S-morphism ψi : Xi → Yi, and suppose that (X,βi) and (Y, αi), the directed
colimits of these systems are such that the diagrams

Xi
ψi //

βi

��

Yi

αi

��
X

ψ
// Y

Xi

ϕi,j //

ψi

��

Xj

ψj

��
Yi

θi,j

// Yj

commute for all i ≤ j ∈ I.
Assume that y1s = y2s for y1, y2 ∈ Y , s ∈ S. Then there exist i, j ∈ I,

yi ∈ Yi, yj ∈ Yj with αi(yi) = y1 and αj(yj) = y2. So we deduce αi(yis) =
αi(yi)s = αj(yj)s = αj(yjs). Since I is directed, there exists some k ≥ i, j
such that θi,k(yi)s = θj,k(yj)s. Since ψk is quasi G-2-pure, there exist n ∈ N,
x1, x2 ∈ Xk such that ψk(x1) = θi,k(yi), ψk(x2) = θj,k(yj) and x1s

n = x2s
n.

Then, we can calculate that

y1 = αi(yi) = αkθi,k(yi) = αkψk(x1) = ψ(βk(x1)),

y2 = αj(yj) = αkθj,k(yj) = αkψk(x2) = ψ(βk(x2))

and βk(x1)s
n = βk(x2)s

n. Hence ψ is quasi G-2-pure. □
Corollary 5.7. Let S be a monoid. Directed colimits of quasi 2-pure epimor-
phisms of right S-acts are quasi 2-pure.
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