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ABSTRACT. Let G be a finite group. An element g € G is called non-
vanishing, if for every irreducible complex character x of G, x(g) # 0. The
bi-Cayley graph BCay(G,T) of G with respect to a subset T' C G, is an
undirected graph with vertex set G x {1, 2} and edge set {{(z, 1), (tz,2)} |
z € G, t € T}. Let nv(G) be the set of all non-vanishing elements of a
finite group G. We show that g € nv(G) if and only if the adjacency
matrix of BCay(G,T), where T' = Cl(g) is the conjugacy class of g, is
non-singular. We prove that if the commutator subgroup of G has prime
order p, then

(1) g € nv(G) if and only if |Cl(g)| < p,

(2) if p is the smallest prime divisor of |G|, then nv(G) = Z(G).
Also we show that

(a) if Cl(g) = {g, h}, then g € nv(G) if and only if gh~! has odd order,

(b) if |Cl(g)| € {2,3} and (o(g),6) = 1, then g € nv(G).
Keywords: Non-vanishing element, character, conjugacy class, Bi-Cayley
graph.
MSC(2010): Primary: 20C15; Secondary: 05C25, 05C50.

1. Introduction

Let G be a finite group and Irr(G) be the full set of complex irreducible
characters of G. A classical theorem of W. Burnside states that every non-
linear x € Irr(G) vanishes on some element of G. This is equivalent to say
that in the character table of G, the rows which do not contain the value 0 are
precisely those corresponding to linear characters.

The dual question: Which columns of a character table can fail to contain
zero? posed by M. Issacs, G. Navarro and T. Wolf [7] in 1999. To investigate
the question they introduced the concept of non-vanishing element of a finite
group G: an element x € G is called non-vanishing if x(xz) # 0 for every
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x € Irr(G). Violating the standard duality between characters and conjugacy
classes, it is in general not true that the columns not containing the value 0
are precisely those corresponding to conjugacy classes of central elements, as
there are finite groups having non-central non-vanishing elements. In fact, a
non-vanishing element of G can even fail to lie in an abelian normal subgroup
of G (see Theorem 5.1 in [7]).

In [7] it is proved that non-vanishing odd order elements of a solvable group
G all lie in a nilpotent normal subgroup of G, i.e. they lie in the Fitting
subgroup F(G). Some authors recently found other sufficient conditions for
a non-vanishing element to lie in F(G), see [3, 5, (6]. In fact a non-vanishing
element x € G lies in F(G), when (1) the order of z is coprime to 6 [3] (2) G
is a nilpotent-by-supersolvable group [5] (3) G is solvable of order divisible by
neither a Fermat nor a Mersenne prime [6].

Issacs et.al. [7] proved that in a nilpotent group every non-vanishing element
is central. Also they showed that in a group G with a normal Sylow p-subgroup
P, every element of Z(P), the center of P, is non-vanishing. These results
encourage some authors to find some groups with non-trivial non-vanishing
elements. If G possesses a non-trivial elementary abelian normal p-subgroup
A and P is a Sylow p-subgroup of G, then all elements of Z(P) N A are non-
vanishing in G [14]. Every irreducible character of G vanishes only on involu-
tions if and only if G = F x F' | where F is an elementary abelian 2-group and
F is a Frobenius group with Frobenius complement of order two [2].

Our motivation differs from all previous works. Certainly, every central
element of a group G is non-vanishing because if x € Z(G), then |x(z)| =
x(1) > 0 for all characters x € Irr(G), by [8, Corollary 2.28]. So it is a
natural question that when a non-central element is non-vanishing. In this
paper, we focus on the size of conjugacy class of non-central elements. We
use the concept of bi-Cayley graph of a finite group to establish a relation
between non-vanishing elements of a finite group G and the eigenvalues of a
suitable bi-Cayley graph of G (by an eigenvalue (eigenvector) of a graph we
mean eigenvalue (eigenvector) of the corresponding adjacency matrix).

Let S be a subset of a group G not containing the identity element of G.
Recall that the Cayley graph T' = Cay(G, S) of G with respect to S is the graph
with vertex set G, where (z, ) is a directed edge if and only if yz=! € S. Clearly
Cay(G, S) is undirected if and only if S = S~1, where S~! = {s7! | s € S}.

Now we define a family of undirected bipartite graphs, the bi-Cayley graphs.
For a finite group G and a non-empty subset S C G, the bi-Cayley graph
BCay(G, S) of G with respect to S is the graph with vertex set G x {1,2} and
edge set {{(z,1),(sz,2)} | z € G, s € S}. Then BCay(G, S) is a well-defined
bipartite |S|-regular with bipartition subsets G x {1} and G x {2}. By [l1,
p. 1259], BCay(G, S) is connected if and only if G = (SS~!). Furthermore, if
1 € S then BCay(G, S) is connected if and only if G = (S). Also note that if
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S = S~ then BCay(G, S) is isomorphic to the tensor product Cay(G, S) ® Ks.
Note that the connectivity of BCay(G, S) is not equivalent to the connectivity
of Cay(G, S).

In Section 2, we compute the spectrum of BCay(G,T'), where T is a conju-

gacy class of G containing an element z. Recall that a graph with non-singular
adjacency matrix is called non-singular. Note that a graph I' is non-singular
if and only if 0 is not an eigenvalue of I'. We prove that x is non-vanishing if
and only if BCay(G,T) is non-singular.
We denote the set of all non-vanishing elements of a finite group G by nv(G).
When Tz~! is a union of conjugacy classes of (I'T~1), or in particular when
(I'T~1) is abelian, we prove that 2 € nv(G) if and only if >, x(tz™1) # 0,
for all x € Irr((TT~1)). In most cases we assume that (T7~!) is abelian and
characterize non-vanishing elements. We prove that in a finite nilpotent group
G with an abelian commutator p-subgroup G’, |G| = |nv(G)| (mod p), see
Corollary 2.11. Also we show that in a finite group G with |G’| = p, p a prime,
G is nilpotent if and only if every non-central element has exactly p conjugates
in G, see Theorem 2.12.

In Section 3, we focus on the elements with 2 or 3 conjugates. Using the
spectrum of BCay(G,T), where T' = {g, h} is a conjugacy class of G, we prove
that ¢ € nv(G@) (and so h € nv(G)) if and only if gh™! is of odd order, see
Corollary 3.1. As a result, we prove that every element x with conjugacy class
size 2 or 3 and (o(x),6) = 1 is a non-vanishing element, see Corollary 3.5. Also
we show that in a finite solvable group G with derived length 2, if (|G’|,3) =1
then every element with 3 conjugates is non-vanishing, see Corollary 3.4.

2. Main results

The eigenvalues and eigenvectors of Cayley graphs with respect to a union
of conjugacy classes were determined by Ito:

Theorem 2.1. (See [9, pp. 1-3]) Let T' = Cay(G,T) be a Cayley graph with
respect toT'. If T is a union of conjugacy classes of G, then every eigenvalue of
I is of the form Ay := >, x(t)/x(1), for some x € Irr(G) and the eigenspace
of I' corresponding to the eigenvalue Ay is generated by the eigenvectors

Ui = (x(9i91 1)y X (9393 )5+ 5 X (939, 1), i =1, m.

Our terminology and notation will be standard. For the group-theoretic and
graph-theoretic terminology not defined here we refer the reader to [3, 1]. In
the following proposition, we find a relation between non-vanishing elements of
a group G and a non-singular bi-Cayley graph of G.

Proposition 2.2. Let T be a union of conjugacy classes of G. Then BCay(G,T)
is non-singular if and only if for each x € Irr(G), >, x(t) # 0. In particu-
lar, if T is a conjugacy class of G containing x, then x € nv(G) if and only if
BCay(G,T) is non-singular.
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Proof. Let I' = BCay(G,T) and A be the adjacency matrix of I'. A fixed
chosen ordering g1 = 1,¢2,...,¢g, of elements of G naturally determines the
following induced ordering:

(917 1), (92; 1)7 R (gna 1)7 (9172)7 (9272)7 tr (gm2)

of vertices of I". Hence relative to this ordering we have

0 B
A=le )
where B is the adjacency matrix of Cay(G,T) and C = B, the transposed

matrix of B, is the adjacency matrix of Cay(G,T~1). Since T is a union of
conjugacy classes of G, by Theorem 2.1, the vectors

Ux,i = (X(gzg;1)7 X(glggl)u ey X(gzg;l))a 1= 17 ey,

are eigenvectors of B corresponding to the eigenvalue A, := >, . x(t)/x(1),
where x € Irr(G). Also vy, i = 1,...,n, are eigenvectors of C' corresponding
to the eigenvalue >, x(t71)/x(1) = A, the complex conjugate of .

On the other hand det(zl, — A) = det(z?I,, — CB) is the characteristic
polynomial of A, where I,,, is the identity matrix of order m. Hence A is
an eigenvalue of A if and only if A? is an eigenvalue of CB. Also for each
x € Irr(G),

CBuy,i = CA\vy,i = A Cvy i = M AUy = [ A"y i,

t=1,...,n. Since CB and B have the same number of eigenvalues, this shows
that X is an eigenvalue of B if and only if |\|? is an eigenvalue of CB. Since I' is
a bipartite graph, for each eigenvalue A of I', —\ is also an eigenvalue, with the
same multiplicity, see [1, Proposition 3.4.1]. Consequently, X is an eigenvalue
of B if and only if |A\| and —|)| are eigenvalues of A. Hence I" is non-singular
if and only if for each x € Irr(G), Ay # 0 if and only if for each x € Irr(G),
> ter X(t) # 0. This completes the proof. a

Lemma 2.3. Let T C G, I’ = BCay(G,T) and H = (TT~1). Then

(1) for each x € T, Tx~! C H, BCay(H,Tx ') is connected and T is
non-singular if and only if BCay(H, Tx~1) is non-singular,
(2) if T is a conjugacy class of G, then H < G' and H < G.

Proof. Let x € T. Clearly Tz—! C H. On the other hand (Tx~1(Tz~1)71) =
(I'T~') = H. Hence, by [1], BCay(H,Tz~"') is a connected bi-Cayley graph.
Also |G : HIBCay(H, Tx~—1) =2 BCay(G, Tz~ 1), see [ 1, p. 1260], and BCay(G,
Tx=1) =2 BCay(G,T), by [13, Lemma 2.2]. Hence 0 is an eigenvalue of I if and
only if 0 is an eigenvalue of BCay(H, Tx~1).

Now suppose that T is a conjugacy class of G. For each ty,to € T, there
exists ¢ € G such that t; = g 'tag. Hence tltgl = g_ltggtgl € G’ which
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shows that H < G’. Also for each ¢ € G, and ty,t2 € T, giltltz_lg =
g t1g(g Hag)"t € TTL. Hence H < G. O

Now combining Proposition 2.2 and Lemma 2.3, we have the following result.

Theorem 2.4. Let T = Cl(z) be a conjugacy class of G containing x. Then
the following statements are equivalent.

(1) z € nv(G),

(2) BCay(G,T) is non-singular,

(3) BCay((TT~1Y), Tx1) is non-singular.

In the following corollary, as an application of Theorem 2.4, we obtain a
necessary condition for an element to be a non-vanishing element. First we
recall that 0 is not an eigenvalue of the complete bipartite graph K,, ,, if and
only if m+n=2ie. m=n=1, see [1, 1.5.2].

Corollary 2.5. Let g € nv(G) and T be a non-central conjugacy class con-
taining g. Then |[(TT~Y)| # |T).

Proof. Suppose, for a contradiction, that [(TT~!)| = |T|. Let H = (TT1).
Since [Tg~t| = |T| = |H|, Tg~! = H, it follows that BCay(H, T'g~!) is isomor-
phic to the complete bipartite graph K| |g|. By Theorem 2.4, BCay(H, Tg~1)
is non-singular. So K|p,|g| is non-singular which implies that |[H| = 1, a con-
tradiction. |

Theorem 2.6. Let G be a group, T = Cl(g) and H = (TT™Y). If Tg~ ' is a
union of conjugacy classes of H (or in particular if H is abelian) then

g € nv(G) < for all x € Irr(H), Zx(tg_l) #0.
teT
Proof. Let ' = BCay(H,Tg~!). Then by Theorem 2.4, g € nv(Q) if and only
if I" is non-singular. On the other hand, by Proposition 2.2, I is non-singular
if and only if for each x € Irr(H), > ,cr x(tg™') # 0. This completes the
proof. O

Now we are ready to determine some non-vanishing elements of a finite
group. First let us recall the main theorem of [12].

Theorem 2.7. There is some vanishing sum €1 + €2 + -+ + €, = 0 of m-th
roots of unity if and only if n is a linear combination, with non-negative integer
coefficients, of the prime divisors of m.

The following theorem is well-known, see for example [3, Theorem 4.21].

Theorem 2.8. Let G = Zy, X Zp, X -+ X Lyp,, wheret > 1, be a finite abelian
group. Then for every g = (g1,...,9t) € G, g € Ly, and x € Irr(G), there ex-
ist x; € Irr(Zy,), 1t =1,...,t, such that x(g9) = x1(91) ... x¢(g¢). Furthermore,
each x;(gi) is an n;th root of unity.
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Lemma 2.9. Let g be an element of a finite group G, T = Cl(g) and H =
(TT™Y) =2 Zpy, X Ly X -++ X L, where ny | ng | --+ | ng. If |T| is not any
linear combination, with non-negative integer coefficients, of prime divisors of
ne, then g € nv(G).

Proof. First note that since n; | ny, i = 1,...,t, Theorem 2.8 implies that for
every x € Irr(H) and t € T, x(tg~!) is an nsth root of unity. Now suppose |T|
is not any linear combination, with non-negative integer coefficients, of prime
divisors of n;. Suppose, by contrary, that ¢ € G \ nv(G). Then Theorem 2.6
implies that Y, ., x(tg~*) = 0, for some y € Irr(H). Hence, by Theorem 2.7,
|T| is a linear combination, with non-negative integer coefficients, of the prime
divisors of n;, a contradiction. 0

Remark 2.10. Consider the non-abelian group G 22 ((Za X Zo) X Zg) X Zg of order
72. One can check, for example by GAP software, that there exists a conjugacy
class T := Cl(z) in G of size 6 where x € nv(G). Also H := (TT1) 2 7y x Zs.
This shows that the converse of Lemma 2.9 is not true in general (Here H x K
denotes the semidirect product of H by K). Hence the natural question is that
in which groups the converse of Lemma 2.9 is true?

Corollary 2.11. Let p be a prime, g an element of a finite group G, T = Cl(g)
and H = (TT~1) be an abelian p-group. If (|T|,p) = 1 then g € nv(G). In
particular, in a finite nilpotent group G with abelian p-subgroup G', |G| =
[nv(G)| (mod p).

Proof. The first part is a direct consequence of Lemma 2.9. Now let G be a
finite nilpotent group with an abelian p-subgroup G’. Let g be a non-central
element of G, T = Cl(g) and H = (T'T~1). By Lemma 2.3, H is also an abelian
p-group. On the other hand by [7, Theorem B], nv(G) = Z(G), which implies
that ¢ € G\ nv(G). Hence, by the first part, p | |T|. Now the class equation
implies that |G| = |Z(G)| (mod p) and so |G| = |nv(G)| (mod p). O

In the following theorem we consider finite groups whose commutator sub-
groups have prime order.

Theorem 2.12. Let p be a prime and g be an element of a finite group G. If
|G'| = p, then
(1) g € nv(G) if and only if |Cl(g)| < p (or equivalently |Cl(g)| # p),
(2) if p is the smallest prime divisor of |G|, then nv(G) = Z(G),
(3) G is nilpotent if and only if CI(G) = {1,p}, where CI(G) = {|Cl(g)| |
g € G}.

Proof. (1) Let T = Cl(g) be the conjugacy class containing g. Since |G'| = p,
|T'| < p. Also, by Lemma 2.3, |H| = p. Let g € nv(G), then by Corollary 2.5,
|T| < p. Conversely, let |T'| < p. Then p t|T| and Corollary 2.11 implies that
g € wv(QG).
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(2) For every x € Irr(G) and = € Z(G), by [8, Corollary 2.28], \X( )| =
x(1) > 0 and so Z(G) C nv(G). Now let g € nV(G) and T = Cl(g). By (1),
|T'| < p. On the other hand |T| divides |G| and p is the smallest prime d1v1so
of |G|. This shows that |T| = 1, which means that g € Z(G). So nv(G) C Z(G).
Hence nv(G) = Z(G).

(3) Tt is obvious that if p = 2, then G is a nilpotent group of class 2 and
Cl(G) = {1,2}. So we may assume that p > 2. First let C1(G) = {1,p}. Then
by [10, Theorem 1], G is nilpotent. Conversely, let G be nilpotent and ¢ be a
non-central element of G. Thus by [7, Theorem BJ, g € G\ nv(G). So Lemma
2.11 implies that p | |Cl(g)|. On the other hand |Cl(g)| < |G'| = p, which
means that |Cl(g)| = p. Hence C1(G) = {1, p}. O

3. Non-vanishing elements with 2 or 3 conjugates

In this section, we focus on elements with 2 or 3 conjugates. In the following
corollary, we give a complete classification of non-vanishing elements with 2
conjugates. Let C, be the undirected graph of a cycle with n vertices. Then
the eigenvalues of C,, are the numbers 2cos(27j/n), 7 = 0,...,n — 1, see [1,
1.5.3]. Now it is easy to see that C,, is non-singular if and only if 4 { n.

Corollary 3.1. Let G be a finite group with an element g such that T :=
Cl(g) = {g,h}. Then g € nv(G) if and only if gh~! has odd order. In particu-
lar,
(1) if (g) N (h) =1, then g € nv(G) if and only if g is of odd order,
(2) if g is of odd order, then g € nv(G),
(3) if G’ is of odd order, then g € nv(G).
Proof. Let H = (TT7!), and T' = BCay(G,T). By Lemma 2.3, ' & |G :
H|BCay(H,Tg™ '), and ¥ := BCay(H,Tg~!) is a connected graph. Indeed
since |Tg~!| = 2, ¥ is an undirected cycle with 2|H| vertices. Now
g €nv(G) <= ¥ isnon-singular (by Theorem 2.4)
<= 44{2|H| (by above discussion)
< |H] is odd.
On the other hand H = (T'T~!) = (1,gh~!,hg™1) = (gh™1). Hence g € nv(G)
if and only if gh~! is of odd order.

Since h™'gh € T and h # g, h~'gh = ¢g. So g and h~! commute. Also g
and h have the same order. Hence the following results are straightforward.
If {(g) N (h) =1 then o(gh~ ') = o(g).

If g is of odd order n then, since o(gh™1) | n, o(gh~!) is odd.
If |G’| is odd then, since gh=t € G’, o(gh™1) is odd. O

Lemma 3.2. Let x € G be an element of odd order k and T = {x,y, 2} be the
conjugacy class of G containing x. Then the elements of T commute and so
(TT7Y) = (zy~ Y, 2y~ 1Y) is a normal abelian subgroup of G.
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Proof. Let a € T, b € T\ {a}, and suppose, by contrary, that ab # ba. Since
b~lab € T, b='ab = c¢. On the other hand bab~! € T, which implies that
bab~! = ¢ = b~'ab. Hence b%a = ab®. Since k is odd, there exist 7, s € Z such
that 1 = rk + 2s. So ab = ab"*b?>* = ab®** = b**a = b"*+2%q = ba. This shows
that (TT~!) is abelian. Also

= (ey~l ey hat)
= (wy hay™h)  (sincexy ey )P =az7h),
which completes the proof. O

Theorem 3.3. Let G be a finite group, x € G, T := Cl(z) = {x,y,z}, and
H = (TT™Y) be abelian. Suppose that

H=7Zpn, XZLpny, X+ XLp,,

where ny | ng | --- | ng, and for j = 1,...,t, Zyn; = (a;) and n; > 2 and
t > 1. Then x € G\ nv(G) if and only if for all j € {1,...,t}, there exists
r; €{0,...,n; — 1} such that

t t
3ny | 3ijkjrj —ny | and 3n | 3ijljrj +n |,

J=1 J=1

where zy~! = (a’fl,...,af‘), 2y~ = (alll,...,aéf) and b =n¢/n;, j=1,...,t.

Proof. We have Ty~! C H. Since H is abelian, by Theorem 2.6, » € nv(Q) if
and only if for each x € Irr(H), >, o x(ty™") # 0; that is « € nv(G) if and
only if for each x € Irr(H), 1+ x(xy~!) + x(2y~!) # 0. Thus z € G\ nv(G) if
and only if there exists y € Irr(H) such that 1 + x(zy~!) + x(2y~!) = 0.
Suppose that x € Irr(H). Then by Theorem 2.8, there exist x; € Irr(Zy,),
j=1,...,t such that for all h = (a]™,...,a;") € H, x(h) = x1(a]™)x2(a5")
--xt(af™). On the other hand, for each j = 1,...,¢, there exists r; €

{0,...,n;—1} such that Xj(a;nj) = exp(2mim;rj/n ). Let zy~t = (ab*, ..., ak"),
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gyt =(dbr, ... al), = Z;Zl k;jrj/n; and = 23:1 ljrj/n;. Now
T+ xy H+xzy™H=0 < Vi=1,...,t,3r,€{0,...,n; — 1}
1+ exp(2micr) = — exp(2mif)
< 1+ cos(2ma) = — cos(273),
sin(2ra) = —sin(273)

<= cos(2ma) = cos(2mf) = —1/2,
sin(2ra)) = — sin(273)
< dsy €7Z, 2na =27/3 + 27sy,

dsy € Z, 273 = —27w/3 + 27sy
— 3ds1€Z, a=1/3+ s,
352 € Z, B =—1/3+ 59
— «a—-1/3€Z,+1/3 €.

Now since n; = njb;, j = 1,...,t, we have a = (22:1 bjkjrj) /ny and B =
(Z;Zl bjljr]) /ne. If 3| ng, then @ —1/3 = <Z§'=1 bikjr; — nt/3) /my and
if 3 4 ng, then o« —1/3 = (3 23:1 bikjr; — nt> /(3n:). Hence in both cases
a—1/3 € Z if and only if 3n, | (3 22:1 bik;r; — nt). Similarly 8+ 1/3 € Z if
and only if 3n; | (3 Z;Zl bilir; + nt). This completes the proof. O

Corollary 3.4. Let G be a finite group, x € G be an element with conjugacy
class T of size 3. If H := (TT~') is an abelian group and 3 { |H| then x €
nv(G). In particular, in a solvable group G with abelian commutator subgroup
G’ of order > 4 and coprime to 3, every element with 3 conjugates is a non-
vanishing element of G.

Proof. Suppose, by contrary, that x is not a non-vanishing element of G. Let
H =7Zp, XZpy X -+ X Lyp,, where ny | ny | -++ | ng, and for ¢ = 1,...,4,
n; > 2 and t > 1. Then by Theorem 3.3, there exists an integer k such that
3n; | 3k — ny. So 3 | ng, which implies that 3 divides |H|, a contradiction.
Since, by Lemma 2.3, H < G, the second part follows immediately. O

Corollary 3.5. Let G be a finite group, * € G and |Cl(z)] = 2 or 3. If
(o(x),6) =1 then z € nv(G).

Proof. Since (6,0(z)) = 1, x is of odd order and 3 1 o(x). If |Cl(z)| = 2 then by
Corollary 3.1, € nv(G). Now suppose that |[Cl(z)| = 3. Then by Lemma 3.2,
elements of T := Cl(z) = {x,y, 2z} commute and H := (TT~) = (zy~, 2y 1)
is abelian. So every element h of H is of the form h = 2"y%2%, for some
integers i1,42,43. Since o(x) = o(y) = o(z), o(h) | o(x). This shows that
3t |H|. Hence, by Corollary 3.4, € nv(G), which completes the proof. O
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