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ABSTRACT. In this paper, a numerical procedure for an inverse problem of
simultaneously determining an unknown coefficient in a semilinear parabolic
equation subject to the specification of the solution at an internal point along
with the usual initial boundary conditions is considered. The method con-
sists of expanding the required approximate solution as the elements of the
inverse quadratic radial basis functions (IQ-RBFs). The operational matrix
of derivative for IQ-RBFs is introduced and the new computational technique
is used for this purpose. The operational matrix of derivative is utilized to
reduce the problem to a set of algebraic equations. Some examples are given
to demonstrate the validity and applicability of the new method and a com-
parison is made with the existing results.
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1. Introduction

An inverse problem is a general framework that is used to convert observed
measurements into information about a physical object or system. For example, if
an acoustic plane wave is scattered by an obstacle, and one observes the scattered
field far from the obstacle, or in some exterior region, then the inverse problem is
to find the shape and material properties of the obstacle. Inverse problems arise
in many branches of science and mathematics, including computer vision, natural
language processing, machine learning, statistics, statistical inference, geophysics,
medical imaging (such as computed axial tomography and EEG/ERP), remote
sensing, ocean acoustic tomography, nondestructive testing, astronomy, physics
and many other fields [39]. The determination of unknown coefficients in partial
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differential equations (PDEs) of parabolic type from additional boundary condi-
tions (i.e., measured data taken on the boundary) is well known in literature as
inverse coefficient problems (ICPs). Physically, the ICP is the reconstruction of
an intraproperty of a medium (for example, conductivity or permittivity) in some
bounded regions by using state measurements taken on the boundary. ICPs for
semilinear parabolic equations have been studied by many people, for example,
by Dehghan [15, 16, 17, 18], Wang and Lin [44], Ramm [38] and Cannon and Lin

[5, 6, 9].

1.1. Problem statement. In this work, we will consider the following inverse
problem of simultaneously finding unknown function u(z,¢) and unknown coeffi-
cient p(t) from the following parabolic equation:

(1.1) Up = Ugy + qug + p(t)u + g(x, t); 0<z<l1, 0<t<tppm,
with the initial and boundary conditions:

(1.2) u(z,0) = up(x); 0<zx<1,

(1.3) u(0,t) = go(t); 0 <t <tpin,

(1.4) u(l,t) = g1(t); 0 <t <tpin,

subject to the overspecification at a point in the spatial domain:

(1.5) w(z*,t) = E(t); 0<t<tpin,

where t;, > 0 is constant and g(z,t), uo(z), go(t), 91(t) and E(t) # 0 are known
functions, ¢ is a known constant and z* is a fixed prescribed interior point in
(0,1). It is worth pointing that, the problem (1.1)-(1.4) is under-determined and
we are forced to impose an additional boundary condition, such that a unique
solution pair (u,p) is obtained. Employing the condition (1.5), a recovery of the
function p(t) together with the solution u(x,t) can be made possible. The inverse
problem (1.1)-(1.5) can be used to describe a heat transfer process with a source
parameter p(t), where (1.5) represents the temperature at a given point * in a
spatial domain at time ¢ and w is the temperature distribution.

1.2. A brief review of other methods existing in the literature. The exis-
tence and uniqueness of the solutions to this problem and also some more appli-
cations are discussed in [7, 8, 30, 32, 36]. The numerical solution of the problem
(1.1)-(1.5) was discussed by several authors. In [16, 17, 18] some well-known fi-
nite difference techniques are investigated for solving the problem (1.1)-(1.5). In
[13], a method by the reproducing kernel Hilbert space is applied to solve this
problem. Authors of [21] used finite difference methods to solve the problem. In
[19], several explicit and implicit finite difference procedures have been developed
to find the numerical solution of the problem (1.1)-(1.5). Two different numerical
procedures are studied in [2]. One of the these procedures obtained by introducing
transformation of an unknown function, while the other based on trace functional
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TABLE 1. Some well-known functions that generate RBF's

Name of Radial Basis Function Definition

Multiquadric(MQ) o(r) =2 +r?

Inverse Quadratic(IQ) o(r) = m

Inverse Multiquadric(IMQ) o(r) = \/C;ﬁ

Gaussian(GA) o(r) = exp(—c*r?)

Thin Plate Splines(TPS) o(r) = r?log(r)
formulation of the problem. In [14], the numerical solution is also considered by

use of the third order compact Runge-Kutta method. As for other types of inverse
parabolic problems, see e.g. [5, 6, 9, 15, 44, 38].

In this paper, we solve the inverse problem (1.1)-(1.5) by using IQ-RBF's as a truly
meshless method. In a meshless (mesh free) method a set of scattered nodes is
used instead of meshing the domain of the problem. Although polynomials (e.g.,
Chebyshev and Legendre) are very powerful tools for interpolating a set of points
in one-dimensional domains, the use of these functions is not efficient in higher-
dimensional or irregular domains. Also, the use of the RBFs for solving PDEs has
some advantages over mesh-dependent methods, such as finite difference methods,
finite element methods, finite volume methods and boundary element methods.
Since a large portion of the computational time is spent in providing a suitable
mesh on the domain of the problem in mesh-dependent methods. The main ad-
vantage of numerical methods, which use RBF's over traditional techniques, is the
meshless property of these methods. The RBFs method is used actively for solv-
ing PDEs. For example see [3, 11, 12, 26, 11, 12]. Also some applications of this
approach in solving inverse problems can be found in [1, 29, 34, 35].

The rest of this paper is organized as follows. In Section 2, we describe RBFs and
its properties and construct its operational matrix of derivative. In Section 3, the
presented technique is used to approximate the solution of the inverse problem
(1.1)-(1.5). As a result a set of algebraic equations is formed and the solution of
the considered problem is introduced. In Section 4, we give some computational
results of numerical experiments with IQ-RBF's method to support our theoretical
discussion. The conclusions are discussed in Section 5.

2. Radial basis functions

RBFs were introduced in [23] and they form a primary tool for multivariate
interpolation. They are also receiving increased attention for solving PDE in
irregular domains. Hardy [24] showed that multiquadrics RBF is related to a
consistent solution of the biharmonic potential problem and thus has a physical
foundation. Buhmann and Micchelli [1] and Chiu et al. [13] have shown that RBF
are related to prewavelets (wavelets that do not have orthogonality properties).
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Also, PDEs and ordinary differential equations (ODEs) have been solved using
RBFs in recent works [25, 31, 33, 37][39-42].

2.1. Definition of RBF. Let RT = {x € R,z > 0}, ||.||2 denotes the Euclidean
norm and ¢ : R* — R be a continuous function with (0) > 0. A RBF on R? is
a function of the form:

i (x) = p(llx = xill2),
which depends only on the distance between x € R? and a fixed point x; € R?
[2]. So that the RBF ¢; is radially symmetric about the center x;. Let r be the
Euclidean distance between a fixed point x; € R% and x € R?, ie. [x — x|z
Some well-known RBFs are listed in Table 1.
The standard RBFs are categorized into two major classes [2, 31].

e Class 1. Infinitely smooth RBFs. These basis functions are infinitely differ-
entiable and involve a parameter, called shape factor (such as multiquadric
(MQ), inverse multiquadric (IMQ) and Gaussian (GA)) which needs to be
selected so that the required accuracy of the solution is attained.

e Class 2. Infinitely smooth (except at centers) RBFs. These basis functions
are not infinitely differentiable. These basis functions are shape param-
eter free and have comparatively less accuracy than the basis functions
discussed in Class 1. Examples are thin plate splines.

Despite research done by many scientists to develop algorithms for selecting the

values of ¢ which produce the most accurate interpolation (e.g. see [10, 40]),
the optimal choice of shape parameter is still an open question. For example,
Franke [22] evaluated about 30 interpolation schemes in two dimensions and found

that the most accurate two schemes were MQ and TPS. He suggested the shape
parameter c? = 1.25D/\/N in MQ basis, where D is the diameter of the minimal
circle enclosing all data points and N is the number of data points. Hardy [23]
recommended ¢ = 0.815d where d = (1/N) ZZI\LI d; and d; is the distance between
the i-th data point and its nearest neighbor.

2.2. Function approximation. Let X = L?(2) where Q = [0,1] x [0,¢£;,], the
inner product in this space is defined by:

tfin 1
(), fola, ) = / / f1 (e ) Fol By ddt,
and the norm is as follows:
1@ )l = (f (), Flas ) = ( / /llf( |2 ddt)*
z,t)|le = (f(z, 1), f(x, =0 ; x, T .
Now, suppose that

{wll(xvt)v"' ,1/}1M($,t),1/}21(:17,t),~~~ 7¢2N1(‘r7t)7--~7¢N1(:r7t)a"' 7¢N1W(xat)} cX
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be the set of IQ- RBF's, where v;;(z, t)

— 1
= Gy and

Y= span{d)ll(xa t)a T 71/)1M(:Ea t)a ¢21(£, t)a T 71/)2]\/1(277 t)a ceey le(z7t)7 T ,wNM(ma t)}7

and f(x,t) be an arbitrary element in X. Since Y is a finite dimensional vector
space, f has the unique best approximation out of Y such as fyps € Y, that is

[28]:
VyeY, |If — fvmllz < I —vll2

Since fyyr € Y, there exist unique coefficients ¢11, ..., C1ar, €21, vy Co0g -+,
CN1, .-, N M Such that:

N M
f(.%‘, t) = fNM(xv t) = Z Z Cij%‘j(xv t) = CT\I/NIVI(xv t) = \IIJTCIM('I’ t)ca
i=1j=1
where C' and U ps(x,t) are vectors with the form:

(21) C = [CH, ooy CIM5C2145 -y COM -5 CN1y -2+ CN]\/[]T7

(22) \IJNM(xvt) = [1/’11(3% t)v T 7w1M(x7t)’1/)21(3:7t)’ T 7¢NM(x7t)}T7

where T indicates transposition.

2.3. The operational matrix of derivative. The differentiation with respect
to z of vectors Wy ps(x,t) in (2.2) can be expressed as:

0
(2.3) o Unaa (1) = Dy (2)¥$3), (2, 1),
where \IJ%CB\/[(m,t) = [ (2, 1), 0%y (2, ), - ok (2, )] Tk = 2,3 and Dy (w) is
N x M operational matrix of derivative with respect to x for IQ-RBFs. The
matrix Dy (z) can be obtained as:

(2.4)
—2(x — ZE1)’(/)%1 (z,t) T
2(e — 21) i (1)
72(33 - 962)1051 (l’, t)
o d d r :
%‘I/NM(x,t) = [%wu(x,t), SRR ?wNM(a%t)} =

—2(z — x2)1/)§M (z,t)

2z — )R ()

L —2(z — mN)l/)Iz\rM(m,t) i



The use of inverse quadratic radial basis functions

Comparing (2.3) and (2.4), we can write:

0
%\PNM(%IL/) =

r M1(.CL‘)

0

0 0 7 .
My (x) 0
O MN(JL') i 1/)]2\]1(.:13715)

i 1/1%1 (xat) i

¢%M ('T, t)
'l/)%l (x7 t)

"/}%M (x> t)

L W (ant) |
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where M;(z) = —2(x — ;) Ip;i=1,2,..., N and Iy is M x M identity matrix.
Therefore we have:

(2.5)

T Mi(z) 0 - 0
0  My(z) - 0
DN(l'):
L 0 0 - My(z) |

Similarly, the differentiation with respect to ¢ of vectors ¥y s(x,t) in (2.2) can

be expressed as:

7]
ot

U (z,t) = Dy (), (2, 1),

where DM(t) = diag(Nl(t),Ng(t)7~ - ,NM(t)) and Ni(t) = —Q(t - Ifi)INxN;’L' =

(2.6)
1,2,.... M.
And

82

\I/NM(.’E,t) =

i 8(56 - 951)27/’?1 (:II, t) - 21;0%1 (:L‘, t) i

82 — 1) 2 (1, 8) — 20 (2, 1)

8($ - xz)ngl (:C? t) - 211}%1 ({L’, t)
82 — 2) 2y (1, 1) — 203 (2, 1)

8 — a2 (2. 8) — 203 (2, 1)

8(x — xN)2¢?\fM(3.U»t) - 21/)12\1M@>t) .
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So we have:
> 2 g ®) @)
(2.8) @\PNM(x,t) = 2D (2) Uy (2, t) — 20 5, (2, 8),
Similarly:
> 2 hg® @)
(2.9) @\IINM(m,t):2DM(t)\IJNM(x,t)—2\IINM(x,t).

3. Description of the new computational technique

To use the IQ-RBFs for solving the inverse problem (1.1)-(1.5), at first we use
the following transformation.

3.1. The employed transformation. Consider the following transformations

[43]:

(3.1) w(z,t) = u(z,t) exp(%ac)r(t),
(32) r(t) = expl= [ (0(s) = s,

we reduce the original inverse problem (1.1)-(1.5) to the following auxiliary prob-
lem:

(3.3)  wi = waa +7(t) eXp(gx)g(x,t); 0<z<l,0<t<tsp,

(3.4) w(z,0) = up(z) exp(%m); 0<z<l,

(3.6) w(l,t) = gi(t) exp(%x)r(t); 0<t<trin,

subject to:

(3.7) r(t) = w(@”,?) exp(— Lz%); O<az<l, 0<t<tpm.
E(t) 2" ’

It is easy to show that the original inverse problem (1.1)-(1.5) is equivalent to the
auxiliary problem (3.3)-(3.7). Obviously, Eq. (3.3) has only one unknown function
w(z,t) and a suitable form to apply the IQ-RBFs method.
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3.2. The computational framework. Let 1 =0, zy = 1 and Q; = {2;]0 <
x; <1, i=2,3,--- N — 1} be a set of scattered nodes on [0,1] and ¢; = 0 and
Qo ={t;|0 < tj <tgin, j=2,3,---,M} be a set of scattered nodes on [0, ;,].
Then the solution of the problem (3.3)-(3.7) by using IQ-RBFs is considered as
follows:

N M
(3.8) w(z,t) = > Y wighij(a,t) = WUy (x,1),

i=1 j=1

where Wy (z,t) is the vector of IQ-RBFs defined in (2.2) and
W = [w11, w12, .oy wNM]T is an unknown vector which remains to be determined.
Using (2.6), (2.8) and (3.8) in (3.3), we obtain:

(3.9) WD ()0, (2, 1) = 20T D2, (2) U8, (2, t) — 2W T W), (2, 1)
JreXp(j(Q? ;(.:‘)*))g(m, t) WT\IINM (z*,1).

And using (3.8) in (3.4)-(3.6) yields:

(3.10) W s (2,0) = uo(x) exp(gx),

(3.11) WTW N (0,8) = (WWT\PNM(x*,t)v

(3.12) WO yar(1, 1) = SPEE NN ry oy

E(t)
The collocation technique is used for finding the unknown vector W.
We collocate (3.9) in (N —2) x (M — 1) points {(x;,t;)|xz; € Q, t; € Qa}, to get:
W Das(8) 0 (5, 15) = 2WT D3 (2) U, (24, t5) — 2WTW ) (1, 8

M () VN (i, t) N (@)W (@i, t5) o (@isty)

exp(§(zi — x%))g(xs, 1))
E(t;)

Now, collocation (3.10)-(3.12) in N points x;, ¢ = 1,..., N and M — 1 points t;,

Jj=2,..., M, yields:

(3.13) + WEU N (2%, t5); 20 € Q,t5 € Qo

(3.14) WTW N ar(24,0) = ug(z;) exp(%xi); i=1,2,..., N,
4 p* ts
(315)  WT(0,1) = “ St ) = 23 M
J

exp(3(1 —a*))g1(t))
E(t;)

(3.16) WTWna(1,t5) = WU N (2%,t); §=2,3,..., M,
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Equations (3.13)-(3.16) give a N x M system of nonlinear algebraic equations
which can be solved for the N x M unknown coefficients w;;, using the Newtons
iterative method. It is well known that the initial guesses for Newtons iterative
method are very important. For our problem, by using w(z,0) = ug(x) exp(4x)
and Equation (3.8), we choose the initial guesses such that W1 Wy (x;,0) =
ug(z;) exp(dx;); i = 1,2,...,N. Solving this system, the unknown function of
w(z,t) can be found. Having w(z,t) determined, then the value of u(z,t) can be
computed by using the equation (3.1) where r(¢) is given in (3.7). And finally the
approximate value of p(t) is:

2 7
Mﬂ:%* 9.

4. Test examples

In this section, the theoretical considerations introduced in the previous sections
will be illustrated with some examples. For all of the three examples, the true
solutions are available. Example 1 was first considered in [32] by using the several
finite difference schemes and was also solved in [1] by using Crank-Nicolson method
and in [34] by using a high order compact finite difference scheme. we compare our
findings with the numerical results obtained in [1, 32, 34]. Examples 2 and 3 were
considered in [14, 31, 33]. We compare our findings with the numerical results in
[31], which have been shown to be comparable or superior to those of [14, 33].

In the process of computation, all the symbolic and numerical computations are
performed by using Maple 13. We tested the accuracy and stability of the method
presented in this paper by performing the mentioned method for different values
of N and M. To study the convergence behavior of the RBFs method, we apply
the following laws:

(1) The error Error is described using:

i M (u(zioty)—a(mi,ty))2
Error(u) = \/ i=1 %j:l(kg tg) ( tj))

i=1 j:1(u(wivtj))2
(2) The root mean square (RMS) is described using:

N M _
RMS(u) = /g S, S04 i, 1) — i, 1)]2,
where u is the exact value and u is the RBF's approximation.

4.1. Example 1. We solve the problem (1.1)-(1.5) with [14, 15, 19]:

T =1, 2"=025 q=0, gx,t) = (7% — (t + 1)?) exp(—t?)(cos(nz) + sin(7x)),
() = cos(mz)+sin(me), golt) = exp(—t2), g1(t) = — exp(—t2), B(t) = vZexp(~?)
for which the exact solution is u(z,t) = exp(—t?)(cos(rx) + sin(rx)) and p(t) =
1+ 2

In Tables 2 and 3, the results for u(x,t) in ¢t = 1.0 and p are shown for Az = 0.02
and At = 1074, using the formulas [19] and [15]. Also the corresponding results
obtained using the IQ-RBFs method with equidistance collocation points with
zi=(G—-1)/(N—-1)and t; = (j—1)/(M —1), N =M = 16 and ¢ = 50 are
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TABLE 2. Absolute values of error for u from Example 1.

T (1,3) FTCS [19] (1,5) FTCS [19] (3,1) BTCS [19] Grandall [19] Crank-Nicolson [15] Present Method
0.15 2.1x10" 2 2.7x10° 0 3.8x10 ° 3.2x10° 0 6.3x10 0 1.1x10~ 10
0.35 2.5x1073 3.0x1076 3.5%x107°3 2.9x1076 6.6x1076 8.0x10710
0.55 2.3x1073 3.4x10~6 3.9x1073 2.8x1076 6.8x1076 5.8x10710
0.75 2.1x1073 3.2x10~6 4.1x1073 3.3x10~6 7.4x10~6 5.3x10710
0.95 2.6x1073 3.7x106 4.0x103 3.6x106 7.1x106 5.3x10 10

TABLE 3. Absolute values of error for p from Example 1.

t (1,3) FTCS [19] (1,56) FTCS [19] (3,1) BTCS [19] Grandall [19] Crank-Nicolson [15] Present Method
0.1 4.4x10° 3 5.0x10 0 6.1x10 5 5.6x10°°  6.8x10 0 1.1x10~

0.2 4.2x1073 4.9%x107° 5.3x1073 5.4x107°  6.7x107° 6.9x10710

0.3 4.1x1073 4.7%x107° 6.0x1073 5.4x107°  6.8x107° 7.3x10~10

0.4 3.8x1073 4.5%x107° 5.7x1073 5.1x107°  6.5x107° 1.4x107°

0.5 3.8x10°3 4.5x10° 5.5x10 3 4.8x107°  6.2x107° 2.2x10~ 10

TABLE 4. The comparison between the exact, methods in [14]
and IQ-RBF's solution for u(z,0.5) for Example 1.

z  Implicit error [14] Explicit error [11] Runge-Kutta error [11] Present Method Exact u
0.2 1.494974x10~° 3.604912x10~ %  9.667994x10 2 1.1x10~ 10 1.087831
0.4 3.608708x1073  8.443811x10~% 2.113957x10 % 5.4x10~7 9.813462x10 !
0.6 6.434342x1073  1.479397x10~3  3.713589x10 % 6.5x10~° 5.002090x 10~ 1
0.8 7.701922x10~3  1.796665x10~3  4.568415x10 % 2.2x10~ 10 1.722955x 10+

TABLE 5. Error and RMS errors for v and p for Example 1 with

c = 50.
Error N=6,M=7 N=8M=10 N=10,M=9 N=11,M =11 N =16,M =16
RM S (u) 6.239E-04 2.066E—-05 3.531E-07 2.222E-07 3.243E-10
Error(u) 8.105E-04 2.879E-05 4.582E-07 2.881E-07 4.201E-10
RMS(p) 5.029E-02 1.178E-03 1.863E-04 2.104E-05 3.385E-08
Error(p) 3.580E-02 8.470E-04 1.335E-04 1.514E-05 2.450E-08

presented in these tables. Table 4 shows the comparison between the exact solu-
tion, IQ-RBFs solution with equidistance collocation points, N = M = 16 and
¢ = 50 and approximate solution result from methods in [14] in ¢ = 0.5. Table 5
shows the Error and RMS error values for various values of N and M. It can be
obtained from Table 5 and Fig. 1 that the accuracy increases with the increase of
the number of collocation points.

4.2. Example 2. We solve the problem (1.1)-(1.5) with [21, 43]:

T=12*=05,q=2, g(z,t) = ((%2 —t)sin(Fx) — wcos(Gx)) exp(t), uo(zr) =
sin(Zx), go(t) = 0, g1(t) = exp(t), E(t) = %2 exp(t) for which the exact solution
is u(x,t) = sin(Fx) exp(t) and p(t) = 14t

For our method, the finite difference method (FDM) [21] and the method in [43],
(RMS) errors of the u(z,t) and p(t), and CPU time are presented in Table 6.
From this table, it is easy to obtain good results when the number of collocation

points are large, also when the CPU time is short. In addition, the graphs of the
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(a) Graph of |u(z,t) —a(x,t)| for N = M = 16. (b) Graph of |u(z,t) —a(z,t)| for N = M = 11.

1.2e407]

S111E

0 02 04 . 06 08 1 0 02 04 06 08 1
; 4 0 ;
(¢) Graph of |p(t) — p(t)| for N = M = (d) Graph of |p(t) — p(t)| for N =M =
16. 11.

F1GURE 1. Graph of absolute error for u and p by using IQ-RBF
for Example 1 with ¢ = 50.

absolute error functions |u(x,t) — @(z,t)| and |p(t) — p(t)| are plotted in Fig. 2
with N = M =8.

4.3. Example 3. Consider the problem (1.1)-(1.5) with the following conditions
2, 13:

T =1,2* =05, ¢ = 2, gl,t) = —(2 4 xt?) exp(t), uo(x) = z, go(t) = 0,
g1(t) = exp(t), E(t) = % exp(t) for which the exact solution is u(z,t) = xexp(t)
and p(t) = 1 +t2

For our method, the finite difference method (FDM) [2] and the method in [43],
(RMS) errors of the u(z,t) and p(t), and CPU time are presented in Table 6.
From this table, it is easy to obtain good results when the number of collocation
points are large, also when the CPU time is short. In addition, the graphs of the
absolute error functions |u(z,t) — @(z,t)| and |p(t) — p(t)| are plotted in Fig. 2
with N = M =8.
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TABLE 6. CPU time, RMS(u) and RMS(p) for Example 2 with
equidistance collocation points and ¢ = 50.

Method NxM RMS(u) RMS(p) CPU times (s)
Method [21] 26 x 26 1.9x10~% 6.8x10~2 0.577
30x30 1.6x107% 5.8x1072 1.029
40 x 40 1.2x1073  4.3x1072 2.433
50 x 50 9.5x107* 3.4x1072 5.367
56 x 56 8.4x107* 3.0x1072 8.237
66 x 66 7.1x107* 2.5x1073 15.495
Method [13] 3x3  3.7x10~% 59x10~% 0.249
4x4 1.1x10~*  1.1x10~* 0.795
5% 5 3.7x107° 9.6x107° 1.966
6 x 6 1.6x107%  6.3x107°  4.009
TXT 8.0x107% 5.2x107% 7.504
8x 8  4.4x107% 4.7x1075 12.777
Our method 7x7  28x10°% 2.7x107° 6.600
8 %8 1.6x10~7 6.8x107%  7.500
10 x 14 4.0x107° 2.4x10~7 19.832
16 x 15 5.2x1071 1.2x107 61.052

e
1] 3
0 02 04 06 08 1 i
I = de-06 T T T T
1] 02 04 t 06 LLX] 1

(a) Graph of |u(z,t) — a(z,t)|. (b) Graph of |p(t) — p(t)|.

F1GURE 2. Graph of absolute error for u and p by using IQ-RBF
for Example 2 with ¢ = 50 and for N = M = 8.

5. Conclusion

In this paper we presented a numerical scheme for solving a parabolic PDE
with a time-dependent coefficient subject to an extra measurement. The IQ-RBF's
on interval [0,1] and [0,7] were employed. The new algorithm proposed in the
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TABLE 7. CPU time, RMS(u) and RMS(p) for Example 3 with
equidistance collocation points and ¢ = 50.

Method NxM RMS(u) RMS(p) CPU times (s)
Method [2] 20 x20 1.4x10~% 1.9x10~! 0.219
26 x26 1.0x1073 1.4x10~! 0.578
34 x34 7.5x107* 1.0x10~! 1.388
42 x 42 59x10~* 8.2x1072 2.871
50 x 50 4.9x107% 6.7x1072 5.274
56 x 56 4.3x107% 6.0x1072 8.035
Method [13] 3 x3  86x10~% 6.2x10~3 0.141
4x4  3.3x107% 2.2x107% 0437
5%5 1.3x107% 7.2x107* 1.138
6x6 6.0x107% 2.5%x10~* 2.277
7T 3.2x107°% 1.2x107* 4.212
8% 8 2.0x107% 9.1x10~% 7.207
Our method 7 x 7 1.4%x107% 1.5x107° 2.900
8 x 8 3.2x1077 4.3x1076 4.724
9x12 98x10~% 1.1x10-% 9.005
13x 12 3.6x10~% 2.1x10~7 20.701

307
2.5e 07
2e07
1.5 07
1eliY

de06
3e-06
2e-06
1eb
1]
]

0 02 04 06 08 1
i X

0 02 04 i 06 08

(a) Graph of |u(z,t) — @(z,t)]. (b) Graph of |p(t) — p(t)|.

F1cURE 3. Graph of absolute error for 4 and p by using IQ-RBF
for Example 3 with ¢ = 50 and for N = M = 8.

current paper was tested on several examples from the literature. Comparing with
other methods, the results of numerical examples demonstrate that this method
is more accurate than some existing methods.
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