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(Communicated by Hamid Reza Ebrahimi Vishki)

Abstract. Let A be a commutative Banach algebra and X be a left
Banach A-module. We study the set DecA(X ) of all elements in A
which induce a decomposable multiplication operator on X . In the case
X = A, DecA(A) is the well-known Apostol algebra of A. We show
that DecA(X ) is intimately related with the largest spectrally separable
subalgebra of A and in this context we give some results which are related

to an open question if Apostol algebra is regular for any commutative
algebra A.
Keywords: Commutative Banach algebra, decomposable multiplication
operator, spectrally separable algebra.
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1. Introduction

In their famous monograph [6], Colojoară and Foiaş have shown that every
element a in a semisimple regular commutative complex Banach algebra A
induces a multiplication operator La : A → A which is decomposable in
the sense of Foiaş (see §2, Chapter 6 in [6] for more details). In [7], Frunză
proved the converse, i.e., a semisimple commutative Banach algebra has to
be regular if all multiplication operators on the algebra are decomposable.
This result indicates close connection between the structure of a commutative
Banach algebra and the local spectral properties of multiplication operators on
it.

Let A be a commutative Banach algebra and X be a left Banach A-module.
Denote by DecA(X ) the set of all elements in A for which the corresponding
multiplication operator on X is decomposable. For instance, consider A as
a left Banach module over itself through the usual multiplication in A. Then
the above result of Colojoară, Foiaş, and Frunză may be formulated in the
following way.
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Theorem 1.1. A semisimple commutative Banach algebra A is regular if and
only if DecA(A) = A.

Another classical result in this direction is the following theorem by Apostol.
Let X be a complex Banach space and B be a closed subalgebra of B(X ), the
Banach algebra of all bounded linear operators on X , such that the identity
operator I is in B. Denote by B′ the commutant of B in B(X ) and set A :=
B∩B′. Then A is a closed commutative subalgebra of B(X ) containing I. It is
clear that B is a left Banach A-module for the usual multiplication of operators.
Recall that a subalgebra S ⊆ B(X ) is said to be a full subalgebra if T−1 ∈ S
whenever T ∈ S is invertible in B(X ).

Theorem 1.2 ( [2], Theorem 3.6). The set DecA(B) is a closed full subalgebra
of B(X ).

It is an immediate consequence of Theorem 1.2 that DecA(A) is a closed
full subalgebra of A whenever A is a closed commutative subalgebra of B(X )
containing I.

Our aim is to study DecA(X ). The paper is organized as follows. In Sec-
tion 2 we introduce notation and we present some background of the theory
of commutative Banach algebras and of the local spectral theory of operators.
Some basic properties of DecA(X ) are presented in Section 3. The intimate re-
lation between decomposable multiplication operators and spectrally separable
algebras is outlined in Sections 4 and 5.

2. Preliminaries

Let A be a commutative Banach algebra. The character space of A is the set
Σ(A) of all non-zero multiplicative linear functionals on A. As it is well known,
every character is continuous with norm less than or equal to 1 ( [9, Lemma
2.1.5]). Hence, Σ(A) is a subset of the closed unit ball of A∗, the topological
dual of A. The Gelfand topology on Σ(A) is defined to be the relative weak-∗

topology on Σ(A), which is considered as a subset of the closed unit ball of A∗.
Another important topology on Σ(A) is the hk-topology which is defined

as follows. For a non-empty subset E ⊆ Σ(A), kernel is defined as k(E) =
∩φ∈Ekerφ, and the kernel of the empty set is the whole algebra A. The hull of
a subset U ⊆ A is h(U) = {φ ∈ Σ(A); U ⊆ kerφ}. Then the hk-topology on
Σ(A) is given by the closure operation

E 7→ hk(E) (E ⊆ Σ(A)).

The Gelfand topology is stronger than the hk-topology; if both topologies co-
incide the algebra is said to be regular (see [9, §4.2]). It is well known that A
is regular if and only if the hk-topology is Hausdorff.

For each a ∈ A, the Gelfand transform â is given by â(φ) = φ(a) (φ ∈ Σ(A)).
The mapping a 7→ â is the Gelfand representation and its kernel is the radical
of A. If the Gelfand representation is injective, A is said to be semisimple.
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The co-zero set of a ∈ A is ω(a) = {φ ∈ Σ(A); φ(a) ̸= 0}. Note that this
is a hk-open subset of Σ(A). Its closure in the Gelfand topology is supp â, the
support of the Gelfand transform of a.

Let A be a commutative Banach algebra and X be a Banach space. A
representation of A on X is an algebra homomorphism π : A → B(X ). Each
representation π of A on X defines a structure of a left A-module on X if the
module multiplication is given by

a · x := π(a)x (a ∈ A, x ∈ X ).

In this paper, it is always assumed that π(1) = I if A is unital and 1 is its unit.
On the other hand, if X is a left A-module, then the corresponding repre-

sentation of A on X is the algebra homomorphism π of A into B(X ) that
is defined by the above equality. If the corresponding representation of a left
A-module X is bounded, X is called a left Banach A-module. The algebra A
itself, considered as a left A-module through the usual multiplication, is a left
Banach module; the corresponding representation is denoted by λ.

For a left Banach A-module X , let X ∗ denote its topological dual. Then
X ∗ is a left BanachA-module for a module multiplication that is given through

⟨a · ξ, x⟩ = ⟨ξ, a · x⟩ (a ∈ A, x ∈ X , ξ ∈ X ∗),

where ⟨·, ·⟩ denotes the usual pairing between X and X ∗. If X ∗ has this
module structure, then it is called the dual module of X . Note that in the
case of a non-commutative algebra the dual module of a given left module has
a structure of a right module.

Let X be a left Banach A-module with the corresponding representation π.
The annihilator of ∅ ̸= M ⊆ X is

annπ(M ) := {a ∈ A; π(a)x = 0, ∀ x ∈ M }.

In particular, the annihilator of a vector x ∈ X is given by

annπ(x) := {a ∈ A; π(a)x = 0}.

It is easily seen that an annihilator is a closed ideal of A. The Arveson spectrum
of π is defined as

sp(π) := {φ ∈ Σ(A); annπ(X ) ⊆ kerφ} = h(annπ(X ))

and the local Arveson spectrum of π at x is

spπ(x) := {φ ∈ Σ(A); annπ(x) ⊆ kerφ} = h(annπ(x))

(see [10], §4.12). If a commutative Banach algebra A is semisimple and regular,
then spλ(a) = supp â, for every a ∈ A. Hence, in this case, spλ(a) = ∅ if and
only if a = 0 (cf. [10], Proposition 4.12.4).

It is not hard to see that local Arveson spectra have the following properties.
Obviously, they are hk-closed subsets of Σ(A). If A is unital (and therefore
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π(1) = I), then spπ(x) = ∅ if and only if x = 0. For a ∈ A and x, x1, x2 ∈ X ,
we have

hk(ω(a) ∩ spπ(x)) ⊆ spπ(a · x) ⊆ spλ(a) ∩ spπ(x).

and

spπ(x1 + x2) ⊆ spπ(x1) ∪ spπ(x2).

At the end of this section let us recall two definitions from the local spectral
theory. Let X be a Banach space and T ∈ B(X ). If for every open covering
{U1, U2} of C there exists a pair of closed T -invariant linear subspaces Y1 and
Y2 of X such that X = Y1 + Y2, and σ(T |Yk) ⊆ Uk (k = 1, 2), then T is
said to be decomposable (in the sense of Foiaş). A decomposable operator T is
super-decomposable if there exists an operator S ∈ B(X ) commuting with T
such that the subspaces Y1 and Y2 in the above definition of decomposability
are of the form Y1 = imS and Y2 = im (I − S). By [10, Proposition 1.4.3],
an operator T ∈ B(X ) is super-decomposable if and only if, for every open
covering {U1, U2} of C, there exist T -invariant closed linear subspaces Y1 and
Y2 of X and operators T1, T2 ∈ B(X ) commuting with T such that T1+T2 =
I, TkX ⊆ Yk, and σ(T |Yk) ⊆ Uk (k = 1, 2).

3. Some basic properties of DecA(X )

Some assertions about DecA(X ) are easily seen. For instance, if A ·X , the
linear span of all products a · x (a ∈ A, x ∈ X ), is finite dimensional, then
DecA(X ) = A. Another simple observation is that

DecA(X ) = DecA(X
∗),

whenever A is a commutative Banach algebra, X is a left Banach A-module,
and X ∗ is the dual module of X . Namely, by [10, Theorem 2.5.19], an operator
T on a Banach space X is decomposable if and only if its adjoint operator T ∗

is decomposable on X ∗.

Proposition 3.1. Let A be a commutative Banach algebra and X be a left
Banach A-module. Then DecA(X ) is a closed subset of A.

Proof. Let {an}∞n=1 ⊆ DecA(X ) be a convergent sequence with the limit point
a ∈ A. Denote by Tk (k ∈ N) the multiplication operator induced by ak on X
and let T be the multiplication operator that corresponds to a. Then {Tn}∞n=1

is a Cauchy sequence in B(X ) with the limit point T . Note that T commutes
with each of the operators Tn. By [10, Theorem 3.4.10], T is decomposable,
which means a ∈ DecA(X ). □

The algebraic structure of DecA(X ) is a harder issue. The problem is
closely connected with a long-standing open problem whether sums and prod-
ucts of commuting decomposable operators on Banach spaces are decomposable
(see [10, 6.1.4]). Namely, let X be a complex Banach space and S, T ∈ B(X )
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be commuting decomposable operators. Denote by A an arbitrary closed com-
mutative subalgebra of B(X ) which contains S and T . For the multiplication
wich is given by

A · x := Ax (A ∈ A, x ∈ X )

the space X becomes a left Banach A-module. It is obvious that the multi-
plication operator which is induced by A ∈ A on X is A itself. Thus, by the
assumption, S, T ∈ DecA(X ). It is clear now that the sum S+T (respectively,
the product ST ) is in DecA(X ) if and only if S + T (respectively, ST ) is a
decomposable operator on X .

For a ∈ A, letA[a] denote the closed subalgebra ofA which is generated by a.
If A is a commutative Banach algebra and X is a left Banach A-module, then
A[a] ⊆ DecA(X ), for any a ∈ DecA(X). Namely, for an arbitrary complex
polynomial p, the multiplication operator induced by p(a) on X is p(Ta),
where Ta is a multiplication operator induced by a on X . By [6, Corollary
2.1.11], p(Ta) is decomposable, which means that p(a) ∈ DecA(X ). Now, by
Proposition 3.1, we conclude that A[a] ⊆ DecA(X ).

For a unital commutative Banach algebra A, it is clear that the spectrum
σ(Ta) of a multiplication operator induced by a ∈ A on a left Banach A-module
X is included in the spectrum σ(a). The same is true if A is without a unit.
To see this, let A be a non-unital commutative Banach algebra and let A1 be
its standard unitisation ( [10], p. 335). Then each left Banach A-module X is
also a left Banach A1-module through the multiplication

(a+ λ) · x = a · x+ λx (a+ λ ∈ A1, x ∈ X ).

A number λ ∈ C is in the spectrum of a ∈ A if and only if a − λ is invertible
in A1, see [9, §1.2].

Proposition 3.2. Let A be a unital commutative Banach algebra. If, for
a ∈ A, the spectrum σ(a) is totally disconnected, then a ∈ DecA(X ), for
every left Banach A-module X . In particular, the radical of A is a subset of
DecA(X ) and each algebraic element a ∈ A is in DecA(X ).

Proof. Let X be an arbitrary left Banach A-module. If a ∈ A has a totally
disconnected spectrum, then, because of σ(Ta) ⊆ σ(a), the spectrum of the mul-
tiplication operator Ta, which is induced by a on X , is totally disconnected.
Since, by [10, Proposition 1.4.5], every operator with totally disconnected spec-
trum is super-decomposable, we conclude that a ∈ DecA(X ). □

4. Spectrally separable algebras

If A is a semisimple regular commutative Banach algebra A, then

(4.1) DecA(A) = A,
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by Theorem 1.1. Does there exist a non-semisimple commutative Banach alge-
bra A which satisfies (4.1)? In this section we will give an affirmative answer
to this question.

A unital commutative Banach algebra A is said to be spectrally separable if
for any two distinct characters φ,ψ ∈ Σ(A) there exist elements a, b ∈ A such
that

(4.2) ab = 0 and φ(a)ψ(b) ̸= 0.

Spectrally separable algebras have been introduced and studied by Baskakov,
see [3] and references therein.

Every spectrally separable algebra is regular. Indeed, let φ and ψ be two
distinct characters on A and let a, b ∈ A be elements which fulfill (4.2). Then
ω(a) and ω(b) are disjoint hk-open neighbourhoods of φ and ψ, respectively,
which means that the hk-topology is Hausdorff.

On the other hand, it is not known whether every regular unital commutative
Banach algebra is spectrally separable. In the particular case of semisimple
algebras both notions coincide. Namely, let A be semisimple and regular.
Then, for two distinct characters φ and ψ on A, there exist, by regularity,

elements a, b ∈ A such that â(φ) = 1, ψ /∈ supp â, b̂(ψ) = 1, and φ /∈ supp b̂. It

follows âb = âb̂ = 0 and consequently, by semisimplicity, ab = 0.
Besides unital semisimple regular commutative Banach algebras there ex-

ist also non-semisimple spectrally separable algebras. For instance, if T is a
bounded linear operator on a Banach space X and the spectrum of T is totally
disconnected, then the closed subalgebra of B(X ) which is generated by T and
I is spectrally separable and, in general, non-semisimple (see [5, Example 3.1]).
For more examples see [4].

If A is a spectrally separable algebra and {U1, . . . , Un} is an open covering of
Σ(A), then there exist elements a1, . . . , an in A such that a1+ · · ·+an = 1 and
spλ(ak) ⊂ Uk for all k = 1, . . . , n. Relying on this result we can characterize
spectrally separable algebras through the local spectral theory as follows.

Theorem 4.1. Let A be a unital commutative Banach algebra. If there exists a
subset A0 ⊆ A such that the Gelfand transforms of elements in A0 separate the
points of Σ(A) and for each a ∈ A0 the corresponding multiplication operator
on A is decomposable, then A is spectrally separable.

On the other hand, if A is spectrally separable and X is a left Banach A-
module, then, for every a ∈ A, the multiplication operator which is induced by
a on X is super-decomposable.

For a proof of Theorem 4.1 see [4]. An immediate corollary of the theorem
is the following assertion.

Corollary 4.2. Let A be a unital commutative Banach algebra. If DecA(A) =
A, then A is spectrally separable. On the other hand, if A is spectrally separable,
then DecA(X ) = A, for every left Banach A-module X .
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Every commutative Banach algebra A (with or without identity) contains a
maximum closed regular subalgebra Reg(A). For a unital semisimple algebra,
this was observed by Albrecht [1]. In the general case it was proven by Neu-
mann [11] and, independently, by Inoue and Takahasi [8]. Now we shall show
that every unital commutative Banach algebra contains a maximal spectrally
separable subalgebra.

Theorem 4.3. Let A be a unital commutative Banach algebra. There exists
a greatest spectrally separable subalgebra of A, denoted by Sep(A), such that:
(i) Sep(A) is closed and contains 1, the unit of A, and (ii) Sep(A) is a full
subalgebra of A.

Proof. Let F be the family of all spectrally separable subalgebras of A. This
family is not empty because it contains C1, the onedimensional subalgebra of
A which is generated by 1. Denote by S the closed subalgebra of A which is
generated by the union D = ∪C∈FC.

Let φ and ψ be two distinct characters on S. If φ(a) = ψ(a) for all a ∈ D,
then φ and ψ would be equal on S. Since this is not the case, it follows that
the Gelfand transforms of elements in D separate the points of Σ(S).

Choose a ∈ D and consider the corresponding multiplication operator La on
S. Since a is in D there is an algebra Ca in the family F such that a ∈ Ca. The
algebra S is a Banach left Ca-module. Hence La is decomposable, by Theorem
4.1. By the same theorem, we may conclude that S is spectrally separable. It
is clear, by the construction, that S is the greatest algebra in F and that it
satisfies (i).

In order to show (ii), assume that S is not a full subalgebra of A. Then there
exists an element a ∈ S, which is invertible in A, and a−1 /∈ S. Denote by T
the closed subalgebra of A that is generated by S ∪ {a−1}. Of course, Gelfand
transforms of the elements in S∪{a−1} separate the points of Σ(T ). Since T is a
left Banach module over S, all multiplication operators Lb : T → T (b ∈ S) are
decomposable, by Theorem 4.1. In particular, La : T → T is decomposable.
The operator La is invertible and its inverse is La−1 . Since, by [6, Proposition
2.1.12], La−1 is decomposable we may use Theorem 4.1 again and conclude that
T is spectrally separable. However this contradicts the assumption that S is
the greatest spectrally separable subalgebra of A. □

Following the proof of [10, Proposition 4.3.7] it can be shown that Sep(A)
is spectrally closed, however we will not include that proof here.

If A is unital and semisimple, then Reg(A) = Sep(A). Since we do not know
if every unital regular algebra is spectrally separable, we also do not know if the
inclusion Reg(A) ⊇ Sep(A) is actually an equality, for any unital commutative
Banach algebra A. However, there is a great similarity between these two
algebras. For instance, we have the following result, which should be compared
with [10, Proposition 4.4.16].
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Proposition 4.4. Let A be a unital commutative Banach algebra, and consider
the transfinite sequence of closed subalgebras of A given by A0 := A, Aα+1 :=
DecAα(Aα) for each ordinal α, and Aα := ∩{Aβ ; β < α} for each limit ordinal
α. Then the sequence {Aα}α is eventually constant, and its eventual constant
value is Sep(A).

Proof. It is clear that the transfinite sequence of algebras is decreasing. Since
there exists an ordinal number that is greater than the number of all elements
in A, the sequence {Aα}α has to be eventually constant. Let S be this constant
value. By the second part of Theorem 4.1 it is obvious that Sep(A) ⊆ Dec(Aα)
for each ordinal α. Thus Sep(A) ⊆ S. On the other hand, it follows from
S = DecS(S) that S is spectrally separable. □

In general, it is hard to determine Sep(A), for a given unital commutative
Banach algebraA. For instance, letG be a non-discrete locally compact abelian
group and M(G) be the measure algebra. Then M(G) is a unital semisimple
commutative Banach algebra that is not regular. Since M(G) is semisimple we
have Sep(M(G)) = Reg(M(G)) however it is not known (even for G = R and
G = T) which measures are in this subalgebra (for the details see [10], Section
4.4, especially Example 4.3.11).

If A is a unital commutative Banach algebra and X is a left Banach A-
module, then X is also a left Banach Sep(A)-module. Thus, a simple applica-
tion of Theorem 4.1 gives the following result.

Proposition 4.5. Let A be a unital commutative Banach algebra. Then

Sep(A) ⊆ DecA(X ),

for every left Banach A-module X .

When A is considered as a left Banach module over itself through the
usual multiplication, we have Sep(A) ⊆ DecA(A). It is not known, in general,
whether Sep(A) = DecA(A). Even in the case of semisimple algebras, when
Sep(A) = Reg(A), it is an open question whether Reg(A) = DecA(A) (see Sec-
tion 6.2 in [10] for related open questions). The class of semisimple non-regular
commutative Banach algebras for which the equality Reg(A) = DecA(A) is
confirmed is not large and some examples of algebras in this class may be
found in Sections 4.4 and 4.5 of [10].

In the end of this section we prove an assertion by using spectrally separable
algebras.

Proposition 4.6. Let A be a unital commutative Banach algebra and X be a
left Banach A-module with the corresponding representation π. If the Arveson
spectrum of π is totally disconnected, then DecA(X ) = A.

Proof. Denote by B the quotient algebra A/annπ(X ). This is a commutative
Banach algebra with the character space Σ(B) which can be identified with



1163 Bračič

h(annπ(X )) = sp(π) ⊆ Σ(A) ( [9, Lemma 2.2.15]). The multiplication

(a+ annπ(X )) · x := a · x (a+ annπ(X ) ∈ B, x ∈ X )

is well defined and X is through it a left Banach B-module. It is clear that
a ∈ A and a + annπ(X ) ∈ B induce the same multiplication operator Ta
on X . Since the character space of B is totally disconnected, the algebra is
spectrally separable, by [4, Example 2.1]. Since, by Theorem 4.1, each element
in B induces a decomposable multiplication operator on X , we conclude that
Ta is decomposable. □

5. Elements with continuous Gelfand transform

For a semisimple commutative Banach algebra A, Neumann ( [11,12]) char-
acterized the Apostol algebra of A as follows.

Theorem 5.1. Let A be a semisimple commutative Banach algebra. If a ∈
DecA(A), then the Gelfand transform â is hk-continuous.

On the other hand, if the Gelfand transform of a ∈ A is hk-continuous, then
a ∈ DecA(X ), for every left Banach A-module X .

It is an immediate consequence of Theorem 5.1 that an element a ∈ A
is in DecA(A) if and only if its Gelfand transform is hk-continuous and that
DecA(A) ⊆ DecA(X ), for every left Banach A-module X . Since Reg(A) ⊆
DecA(A) the Gelfand transform â is hk-continuous, for every a ∈ Reg(A). On
the other hand, we do not know if there exists a semisimple commutative Ba-
nach algebraA and an element a ∈ A whose Gelfand transform is hk-continuous
but a /∈ Reg(A). Hence, for semisimple commutative Banach algebras, this
question is equivalent to the problem whether Reg(A) = DecA(A).

We do not know whether Theorem 5.1 holds for non-semisimple algebras.
However if the hk-topology is replaced by a weaker one, a variant of Theorem 5.1
can be proven for unital commutative Banach algebras that are not necessarily
semisimple. The mentioned topology on Σ(A) is defined by the help of the
largest spectrally separable subalgebra as follows.

Let A be a unital commutative Banach algebra. For φ ∈ Σ(A) let r(φ)
denote the restriction of φ to Sep(A). It is obvious that r maps Σ(A) into
Σ(Sep(A)), i.e., r(φ) is a character on Sep(A). Since Sep(A) is regular the map
r is surjective (see [9]), however it does not need to be injective.

Define a family τ of subsets of Σ(A) in the following way. A subset U ⊆ Σ(A)
is in τ if and only if it is hk-open and r−1(r(φ)) ⊆ U for each φ ∈ U. It is not
hard to see that τ is indeed a topology on Σ(A) and that it is weaker than the
hk-topology. This is the reason why we shall call it shk-topology (sub-hull-kernel
topology).

It is obvious that r−1(r(φ)) ⊆ F for each φ ∈ F whenever F is a shk-closed
subset of Σ(A). Hence, singletons are not shk-closed, in general. In fact, the
shk-closure of {φ} is r−1(r(φ)). Namely, let ψ be in the hk-closure of r−1(r(φ)).
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Then r(ψ) annihilates the kernel of r(φ) which means that r(ψ) = r(φ) and
consequently ψ ∈ r−1(r(φ)).

The shk-closure of a subset S ⊆ Σ(A) will be denoted by shk(S).
In the sequel let µ : Sep(A) → B(Sep(A)) be the left regular representation

of Sep(A).

Proposition 5.2. Let A be a unital commutative Banach algebra. If Σ(A)
is endowed with the shk-topology, then r : Σ(A) → Σ(Sep(A)) is continuous,
closed, and open.

Proof. Note that Σ(Sep(A)) is endowed with Gelfand topology which coincides
with hk-topology because of the regularity of Sep(A).

We shall start with the continuity of r. Let F ⊆ Σ(Sep(A)) be a closed set.
Since it is obvious that r−1(r(φ)) ⊆ r−1(F ) whenever φ ∈ r−1(F ), we have to
show that hk(r−1(F )) ⊆ r−1(F ), i.e. r−1(F ) is hk-closed.

Assume that ψ ∈ hk(r−1(F )). If a ∈ Sep(A) is in kS(F ), where kS stands
for a kernel in Sep(A), then r(φ)(a) = 0 for each φ ∈ r−1(F ). It follows that
φ(a) = 0, which gives a ∈ k(r−1(F )). Now, since ψ ∈ hk(r−1(F )) we have
ψ(a) = 0 and therefore r(ψ) ∈ hSkS(F ) = F. It follows ψ ∈ r−1(F ). By hS we
have denoted a hull in Σ(Sep(A)).

Now we are going to prove that r maps shk-closed sets into closed sets. We
have to show that hSkS(r(F )) ⊆ r(F ), for a shk-closed subset F ⊆ Σ(A).
Assume that r(φ) /∈ r(F ). Then, of course, r−1(r(φ)) ∩ F = ∅. It follows,
by [4, Corollary 2.9], that for each ψ ∈ F there exists bψ ∈ Sep(A) such that

b̂ψ(r(ψ)) = 1 and r(ψ) /∈ spµ(bψ). Let

Eψ = {η ∈ Σ(Sep(A)); |̂bψ(η)| ≥ 1/3} and Wψ = {η ∈ Σ(Sep(A)); |̂bψ(η)| > 2/3}.

Of course, Eψ is a closed subset and Wψ is an open subset of Σ(Sep(A)).
By [13, Theorem 3.6.15], there exists cψ ∈ Sep(A) such that η(bψcψ) = 1
for all η ∈ Eψ. Let dψ = bψcψ. Then r(φ) /∈ spµ(dψ). Since r is continuous

r−1(Eψ) is a shk-closed subset and r−1(Wψ) is a shk-open subset of Σ(A). The
family {r−1(Wψ); ψ ∈ F} is a shk-open covering of F, which is shk-closed and
therefore shk-compact. Thus, there exist ψ1, . . . , ψn ∈ F such that

F ⊆ r−1(Wψ1) ∪ . . . ∪ r−1(Wψn) ⊆ r−1(Eψ1) ∪ . . . ∪ r−1(Eψn).

It is easily seen that

r(r−1(Eψ1
) ∪ . . . ∪ r−1(Eψn

)) = Eψ1
∪ . . . ∪ Eψn

,

therefore

r(F ) ⊆ Eψ1 ∪ . . . ∪ Eψn .

Let

e1 := dψ1 , e2 := (1− dψ1)dψ2 , . . . , en := (1− dψ1) · · · (1− dψn−1)dψn .
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Then ek ∈ Sep(A) and r(φ) /∈ spµ(ek) for all k = 1, . . . , n. Inductively we get

e1 + · · · ek = 1− (1− dψ1) · · · (1− dψk
) (k = 1, . . . , n).

Set e = e1 + · · · + en and a = 1 − e. Then r(φ) /∈ spµ(e) and consequently
â(r(φ)) = 1. For each η ∈ r(F ), there exists Eψk

that contains η. It follows

that d̂ψk
(η) = 1, which gives ê(η) = 1 and consequently â(η) = 0. We have

proven that a ∈ kS(r(F )). Since â(r(φ)) = 1 we conclude r(φ) /∈ hSkS(r(F )).
Let now U ⊆ Σ(A) be shk-open. Then F := Σ(A) \ U is shk-closed and

consequently r(F ) is a closed subset of Σ(Sep(A)). Since r(U) = Σ(Sep(A)) \
r(F ) we conclude that r(U) is open. □

Now it is easy to deduce the following assertion.

Proposition 5.3. Let A be a unital commutative Banach algebra and {U1, . . . ,

Un} be an shk-open covering of Σ(A). Then there exist a1, . . . , an ∈ Sep(A)
such that a1+ · · ·+an = 1 and spλ(ak) ⊆ Uk, for k = 1, . . . , n. In particular, if
F ⊆ Σ(A) is shk-closed and φ ∈ Σ(A) is not in F , then there exists a ∈ Sep(A)
such that spλ(a) ∩ F = ∅ and â(φ) = 1.

Proof. Since {U1, . . . , Un} is an shk-open covering of Σ(A) the sets Vk = r(Uk)
(k = 1, . . . , n) form an open covering of Σ(Sep(A)). By [4, Theorem 2.10],
there exist a1, . . . , an ∈ Sep(A) such that a1 + · · · + an = 1 and spµ(ak) ⊆ Vk
(k = 1, . . . , n). Since r−1(Vk) ⊆ Uk we have r−1(spµ(ak)) ⊆ r−1(Vk) ⊆ Uk. Let

us show that spλ(ak) ⊆ r−1(spµ(ak)). It is obvious that annµ(ak) ⊆ annλ(ak).
Thus, if φ ∈ spλ(ak), then annλ(ak) ⊆ kerφ gives annµ(ak) ⊆ ker r(φ), which
means r(φ) ∈ spµ(ak) and consequently φ ∈ r−1(spµ(ak)). □

Proposition 5.4. Let A be a unital commutative Banach algebra, X be a left
Banach A-module, and F ⊆ Σ(A) be an shk-closed set.

(i) The set X (F ) = {x ∈ X ; spπ(x) ⊆ F} is a submodule of X .
(ii) If X = A, then A(F ) is a closed ideal of A and

hk(F c) ⊆ h(A(F )) ⊆ shk(F c).

Proof. (i) It is easily seen that X (F ) is a submodule. Let {xn}∞n=1 ⊂ X (F )
be a convergent sequence with the limit point x ∈ X . If φ ∈ Σ(A) is not
in F, then, by Proposition 5.3, there exists a ∈ Sep(A) such that â(φ) = 1
and spλ(a) ∩ F = ∅. It follows that a · xn = 0, for all n = 1, 2, . . . . Since
a · x = limn→∞ a · xn = 0 and φ ∈ ω(a) we have φ ̸∈ spπ(x).

(ii) Since spλ(a) ∩ F c = ∅, for each a ∈ A(F ), the ideal A(F ) is included
in the kernel k(F c) and consequently the first inclusion follows. On the other
hand, if φ ∈ Σ(A) is not in shk(F c), then there exists, by Proposition 5.3,
a ∈ Sep(A) such that â(φ) = 1 and spλ(a) ∩ shk(F c) = ∅. Thus a ∈ A(F ) and
therefore φ ̸∈ h(A(F )). □
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Now we can prove the analog of Theorem 5.1 for unital commutative Banach
algebras which are not necessarily semisimple.

Theorem 5.5. Let A be a unital commutative Banach algebra. If a ∈ DecA(A)
and â is a constant function on r−1(r(φ)), for each φ ∈ Σ(A), then â is shk-
continuous.

On the other hand, if â is shk-continuous, then a ∈ DecA(X ), for every left
Banach A-module X .

Proof. The first part of the theorem is easy to prove. Namely, by [10, Proposi-
tion 4.4.4], â is hk-continuous. Thus, for an open subset U ⊆ C, the set â−1(U)
is hk-open. Since â is a constant function on r−1(r(φ)), for all φ ∈ Σ(A), we
conclude that â−1(U) is shk-open.

Let X be an arbitrary left BanachA-module and let Ta be the multiplication
operator induced by a on X . We shall prove that Ta is super-decomposable.
Let {U1,U2} be an open covering of C. Since â is shk-continuous the sets Uk =
â−1(Uk) (k = 1, 2) form an shk-open covering of Σ(A). Using Proposition 5.3
we get a1, a2 ∈ Sep(A) such that a1 + a2 = 1 and spλ(ak) ⊆ Uk (k = 1, 2).
Let Tk be the multiplication operator induced by ak on X (k = 1, 2). Then,
of course, T1 + T2 = I, and TkTa = TaTk (k = 1, 2). By Proposition 5.4,
Yk := X (shk(Uk)) (k = 1, 2) are closed A-submodules in X, which means that
TkX ⊆ Yk. It remains to prove that σ(Ta|Yk) ⊆ Uk (k = 1, 2).

Let z be a complex number in Uck. Then there is an open neighbourhood W
of Uk such that z /∈ W. The set F = Wc is closed and therefore F = â−1(F)
is shk-closed. By Proposition 5.4, A(F ) is a closed ideal in A. Of course,
F ∩ â−1(Uk) = ∅. Also, F c = â−1(W) gives shk(F c) ⊆ â−1(W). The character
space of the quotient algebra A/A(F ) may be identified by h(A(F )) (see [9,
Lemma 2.2.15]). Using Proposition 5.4 (i) we conclude that Σ(A/A(F )) =
h(A(F )) ⊆ â−1(W).

Consider the element a − z + A(F ) ∈ A/A(F ). Since ψ(a − z + A(F )) =
â(ψ) − z, for every ψ ∈ Σ(A/A(F )) = h(A(F )), and since z is not in W, the
spectrum σ(a− z +A(F )) does not contain 0. Thus a− z +A(F ) is invertible
in A/A(F ), which means that there exists b in A such that

(b+A(F ))(a− z +A(F )) = 1 +A(F ).

Let d ∈ A(F ) be such that b(a − z) = 1 + d. Denote by Tb the multiplication
operator induced by b on X . Then

Tb|Yk(Ta|Yk − z)x = b(a− z) · x = x+ d · x,

for each x ∈ Yk. However d · x = 0 because of

spπ(d · x) ⊆ spλ(d) ∩ spπ(x) ⊆ F ∩ â−1(Uk) = ∅.

Thus Tb|Yk(Ta|Yk − z)x = x, x ∈ Yk, or, equivalently, z /∈ σ(Ta|Yk).
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It is obvious that â is a constant function on r−1(r(φ)) for each φ ∈ Σ(A).
□

Acknowledgement

The author is thankful to the referees whose comments helped to improve
the previous version of this paper. The author was supported by the Slovenian
Research Agency through the research program P2-0268.

References

[1] E. Albrecht, Decomposable systems of operators in harmonic analysis, in: Toeplitz
Centennial, 19–35, (I. Gohberg, ed.), Birkhäuser, Basel, 1983.
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