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Abstract. The excessive index of a bridgeless cubic graph G is the least
integer k, such that G can be covered by k perfect matchings. An equiv-
alent form of Fulkerson conjecture (due to Berge) is that every bridgeless

cubic graph has excessive index at most five. Clearly, Petersen graph is a
cyclically 4-edge-connected snark with excessive index at least 5, so Fou-
quet and Vanherpe asked whether Petersen graph is the only one with
that property. Hägglund gave a negative answer to their question by con-

structing two graphs Blowup(K4, C) and Blowup(Prism,C4). Based on
the first graph, Esperet et al. constructed infinite families of cyclically
4-edge-connected snarks with excessive index at least five. Based on these
two graphs, we construct infinite families of cyclically 4-edge-connected

snarks E0,1,2,...,(k−1) in which E0,1,2 is Esperet et al.’s construction. In
this note, we prove that E0,1,2,3 has excessive index at least five, which
gives a strongly negative answer to Fouquet and Vanherpe’s question.

As a subcase of Fulkerson conjecture, Häggkvist conjectured that ev-
ery cubic hypohamiltonian graph has a Fulkerson-cover. Motivated by a
related result due to Hou et al.’s, in this note we prove that Fulkerson
conjecture holds on some families of bridgeless cubic graphs.

Keywords: Fulkerson-cover, excessive index, snark, hypohamiltonian
graph.
MSC(2010): Primary: 05C70; Secondary: 05C75, 05C40, 05C15.

1. Introduction

Let G be a simple graph (without loops or parallel edges) with vertex set
V (G) and edge set E(G). A perfect matching of G is a 1-regular spanning
subgraph of G. The excessive index of G (first introduced by Bonisoli and
Cariolaro [3]), denoted by χ′

e(G), is the least integer k, such that G can be
covered by k perfect matchings. We call these k perfect matchings as the
minimum perfect matching cover of G.
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The following conjecture is due to Berge and Fulkerson, and first appeared
in [6].

Conjecture 1.1 (Fulkerson conjecture, Fulkerson [6]). If G is a bridgeless
cubic graph, then G can be covered by six perfect matchings such that each edge
is in exactly two of them.

We call such 6 perfect matchings as the Fulkerson-cover. If Fulkerson con-
jecture is true, then deleting one perfect matching from the Fulkerson-cover
would result in a covering of the graph by 5 perfect matchings. Thus, Berge
conjectured that (unpublished and first appeared in [13])

Conjecture 1.2 (Berge, unpublished and first appeared in [13]). If G is a
bridgeless cubic graph, then χ′

e(G) ≤ 5.

Mazzuoccolo [10] proved that Conjectures 1.1 and 1.2 are equivalent. But
on a given graph, the equivalence of these two conjectures has not been proved.

A graph G is called cyclically k-edge-connected if at least k edges must be
removed to disconnect it into two components, each of which contains a circuit.

Obviously, Conjectures 1.1 and 1.2 hold on 3-edge-colorable cubic graphs.
So in this note, we only consider bridgeless non 3-edge-colorable cubic graphs,
which are called snarks. For more details, see the book written by Zhang
[14]. Fouquet and Vanherpe [5] proved that there are several infinite families
of cyclically 3-edge-connected snarks with excessive index at least five. But
for cyclically 4-edge-connected snarks, they only know Petersen graph. They
proposed the following question.

Question 1.1 (Fouquet and Vanherpe [5]). If G is a cyclically 4-edge-connected
snark, then either G is Petersen graph or χ′

e(G) < 5.

Hägglund [7] gave a negative answer to Question 1.1 by constructing two
graphs Blowup(K4, C) and Blowup(Prism,C4). Based on Blowup(K4, C), Es-
peret et al. [4] constructed infinite families of cyclically 4-edge-connected snarks
with excessive index at least five. Based on these two graphs, in Section 2, we
construct infinite families of bridgeless cubic graphs M0,1,2,...,(k−1) and infinite
families of cyclically 4-edge-connected snarks E0,1,2,...,(k−1) (k ≥ 2) where E0,1,2

is Esperet et al.’s [4] construction.
In Section 3, we prove that each graph in E0,1,2,3 (see Fig. 1) has excessive

index at least five. This gives a strongly negative answer to Question 1.1. In
Section 4, we prove that each graph in M0,1,2,3 has a Fulkerson-cover.

Let X ⊆ V (G) and e = uv ∈ E(G). We use G\X to denote the subgraph of
G obtained from G by deleting all the vertices of X and all the edges incident
with X. Moreover if X = {x}, we simply write G\x. Similarly, we use G\e to
denote the subgraph of G obtained from G by deleting e. A minor of G is any
graph obtained from G by means of a sequence of vertex and edge deletions
and edge contractions. According to Hao et al. [8] and Hou et al. [9], we use G
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to denote the graph obtained from G by contracting all the vertices of degree
2.

A graphG is called hypohamiltonian ifG itself doesn’t have Hamilton circuits
but G \ v does for each vertex v ∈ V (G). A graph G is called Kotzig if G has
a 3-edge-coloring, each pair of which form a Hamilton circuit (the definition is
defined by Häggkvist and Markström).

The research on Fulkerson conjecture has attracted more and more graph
theorists, and in particular, Häggkvist [11] proposed the following conjecture
in 2007.

Conjecture 1.3 (Häggkvist [11]). If G is a cubic hypohamiltonian graph, then
G has a Fulkerson-cover.

There is little progress on Conjecture 1.3. Recently, Hou et al. [9] partially
solved Conjecture 1.3 in the following theorem.

Theorem 1.1 (Hou, Lai and Zhang [9]). Let G be a bridgeless cubic graph. If

there exists a vertex v ∈ V (G) such that G \ v is a Kotzig graph, then χ′
e(G) ≤

5.

Motivated by their results, in Section 5, we prove that

Theorem 1.2. Let G be a bridgeless cubic graph. Then G has a Fulkerson-
cover if one of the followings holds:

(1) there exists a vertex v ∈ V (G) such that G \ v is a Kotzig graph and
G \ e doesn’t have Petersen graph as a minor for each edge e incident with v.

(2) there exists an edge e ∈ E(G) such that G \ e is a Kotzig graph.
(3) for each e ∈ E(G), G \ e doesn’t have Petersen graph as a minor.

Note that our proof is independent of Hou et al.’s [9].

u

v
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b2 c2

a3

b3
c3

a0

b0
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H3

H0

H1

Fig. 1
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2. Preliminaries

In this section, we will give some necessary definitions, constructions, lemmas
and propositions.

Lemma 2.1 (Parity lemma, Blanuša [1]). Let G be a cubic graph. If M is a
perfect matching of G and T an edge-cut of G, then |M ∩ T | ≡ |T | (mod 2).

Let X be a subset of V (G). The edge-cut of G associated with X, denoted
by ∂G(X), is the set of edges of G with exactly one end in X. The edge set
C = ∂G(X) is called a k-edge-cut if |∂G(X)| = k.

Let Gi be a cyclically 4-edge-connected snark with excessive index at least
5, for i = 0, 1. Let xiyi be an edge of Gi and x0

i , x
1
i (y0i , y

1
i ) the neighbours of

xi (yi). Let Hi be the graph obtained from Gi by deleting the vertices xi and
yi. Let {G; G0, G1} be the graph obtained from the disjoint union of H0, H1

by adding six vertices a0, b0, c0, a1, b1, c1 and 13 edges a0y
0
0 , a0x

0
1, a0c0,

c0b0, b0y
1
0 , b0x

1
1, b1x

1
0, b1y

1
1 , b1c1, c1a1, a1x

0
0, a1y

0
1 , c0c1. We call graphs

of this type as E0,1 (see Fig. 2).

b1

c1

a1

a0

c0

b0

H0 H1

Fig. 2

Now we construct E0,1,...,(k−1) (k ≥ 2) as follows:
(1) {G; G0, G1} ∈ E0,1 with Aj = {aj , bj , cj} for j = 0, 1.
(2) For 3 ≤ i ≤ k, {G; G0, G1, . . . , Gi−1} is obtained from {G; G0, G1,

. . . , Gi−2} ∈ E0,1,...,(i−2) by adding Hi−1 and Ai−1 = {ai−1, bi−1, ci−1} and by
inserting a vertex vi−3 into e0, such that

(i) Gi−1 is a cyclically 4-edge-connected snark with excessive index at least
5 (xi−1yi−1 is an edge of Gi−1 and x0

i−1, x
1
i−1 (y0i−1, y

1
i−1) are the neighbours

of xi−1 (yi−1));
(ii) Hi−1 = Gi−1 \ {xi−1, yi−1};
(iii) e0 ∈ E({G; G0, G1, . . . , Gi−2})−∪i−2

j=0E(Hj)−∪i−2
j=0{ajcj , cjbj} and e0

is incident with c0;
(iv) ai−1 is adjacent to x0

0 and y0i−1, bi−1 is adjacent to x1
0 and y1i−1, ai−2 is

adjacent to x0
i−1 and y0i−2, bi−2 is adjacent to x1

i−1 and y1i−2, ci−1 is adjacent
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to ai−1, bi−1 and vi−3, the other edges of {G; G0, G1, . . . , Gi−2} remain the
same.

(v) {G; G0, G1, . . . , Gi−1} ∈ E0,1,...,(i−1).
If k = 3, then we obtain the class of graphs constructed by Esperet et

al. [4]. If we ignore the excessive index and non 3-edge-colorability of Gi (i =
0, 1, 2, . . . , (k − 1)) and only assume that Gi has a Fulkerson-cover, then we
obtain infinite families of bridgeless cubic graphs. We denote graphs of this
type as M0,1,2,...,(k−1) (k ≥ 2).

Let {G; G0, G1, G2, G3} be a graph in E0,1,2,3. We consider how each
perfect matching M of {G; G0, G1, G2, G3} intersects ∂G(Hi) (see Fig. 1).
Since |∂G(Hi)| = 4, by Lemma 2.1, we have that |M ∩ ∂G(Hi)| is even. If
|M ∩∂G(Hi)| = 0, then we say that M is of type 0 on Hi. If |M ∩∂G(Hi)| = 2,
then we consider two cases: we say that M is of type 1 on Hi if |M ∩
∂G(Hi, Ai)| = |M ∩ ∂G(Hi, Ai−1)| = 1, while M is of type 2 on Hi, otherwise.
If |M ∩ ∂G(Hi)| = 4, then we say that M is of type 4 on Hi. By observation,
it’s easy to obtain the following propositions.

Proposition 2.2. If a perfect matching M contains uc0, vc1 (uc3, vc2), then
at least one of the following holds:

(1). M is of type 4 on H1 (H3), type 0 on H0, H2, type 1 on H3 (H1).
(2). M is of type 2 on H0, H1 (H3), type 0 on H2, type 1 on H3 (H1).
(3). M is of type 2 on H1 (H3), H2, type 0 on H0, type 1 on H3 (H1).
(4). M is of type 2 on H0, H2, type 0 on H1 (H3), type 1 on H3 (H1).
(5). M is of type 1 on H0, H1 (H3), H2, type 0 on H3 (H1).

Proposition 2.3. If a perfect matching M contains uc0, vc2 (uc3, vc1), then
at least one of the following holds:

(1). M is of type 2 on H0, type 0 on H1 (H3), type 1 on H2, H3 (H1).
(2). M is of type 2 on H1 (H3), type 0 on H0, type 1 on H2, H3 (H1).
(3). M is of type 2 on H3 (H1), type 0 on H2, type 1 on H0, H1 (H3).
(4). M is of type 2 on H2, type 0 on H3 (H1), type 1 on H0, H1 (H3).

Proposition 2.4. If a perfect matching M contains uv, then at least one of
the following holds:

(1). M is of type 1 on H0, H2, type 0 on H1, H3.
(2). M is of type 1 on H1, H3, type 0 on H0, H2.

It’s easy to see that each perfect matching of type 0 on Hi corresponds to a
perfect matching of Gi containing xiyi, while each perfect matching of type 1
on Hi corresponds to a perfect matching of Gi avoiding xiyi. Thus, we obtain
the following proposition.

Proposition 2.5 (Esperet and Mazzuoccolo [4]). If {G; G0, G1, G2, G3} can
be covered by k perfect matchings, and each of type 0 or 1 (not all of type 1) on
Hi, for some i ∈ {0, 1, 2, 3}, then Gi can be covered by k perfect matchings.
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3. Each graph in E0,1,2,3 has excessive index at least 5

From the construction of E0,1,...,(k−1), we have the following theorem.

Theorem 3.1. Each graph in E0,1,...,(k−1) is a snark.

Proof. If not, suppose that {G; G0, G1, . . . , Gk−2, Gk−1} ∈ E0,1,...,(k−1) has
a 3-edge-coloring {M1, M2, M3}. If M1 is of type 2 or 4 on Hi, for some i ∈
{0, 1, 2, . . . , (k−1)}, without loss of generality, suppose that |M1∩∂G(Hi, Ai)| =
2, then by the construction, |M1 ∩ ∂G(Hi+1, Ai)| = 0, |M2 ∩ ∂G(Hi+1, Ai)| =
|M3 ∩ ∂G(Hi+1, Ai)| = 1. By Lemma 2.1, both M2 and M3 are of type 1 on
Hi+1, M1 is of type 0 on Hi+1. By Proposition 2.5, Gi+1 is 3-edge-colorable,
a contradiction. Thus, Mj is of type 1 or 0 on Hi (j = 1, 2, 3). But now by
Lemma 2.1, we have that there exists an Ml (l ∈ {1, 2, 3}), such that Ml is of
type 0 on Hi and the other two perfect matchings are of type 1 on Hi. Now
by Proposition 2.5, Gi is 3-edge-colorable, a contradiction. □

From Theorem 3.1, it’s easy to obtain the following theorem.

Theorem 3.2. If {G; G0, G1, . . . , Gk−2, Gk−1} ∈ E0,1,...,(k−1), then the graph
{G; G0, G1, . . . , Gk−2, Gk−1} is a cyclically 4-edge-connected snark.

Now we analyze the excessive index of E0,1,...,(k−1). First we consider the
case k = 2.

Question 3.1. If {G; G0, G1} ∈ E0,1, then χ′
e({G; G0, G1}) ≥ 5?

Answer. The answer is no. Since if both G0 and G1 are the copies of Petersen
graph, then {G; G0, G1} has a perfect matchingM1, such that E({G; G0, G1})−
M1 is a set of two disjoint circuits C0 and C1, each of which contains 11
vertices. Furthermore, Ci contains all the vertices of Hi ∪ {ai, bi, ci} for
i = 0, 1. Let M2 be a perfect matching of {G; G0, G1} satisfying x0

0a1 ∈ M2

and M2 \ x0
0a1 ⊆ E(C0 ∪ C1). Let M3 be a perfect matching of {G; G0, G1}

satisfying a0x
0
1 ∈ M3 and M3 \a0x0

1 ⊆ E(C0∪C1). Let M4 be a perfect match-
ing of {G; G0, G1} satisfying c0c1 ∈ M4 and M4 \ c0c1 ⊆ E(C0 ∪ C1). It’s
easy to verify that {G; G0, G1} can be covered by {M1, M2, M3, M4}. Thus
χ′
e({G; G0, G1}) = 4.
Esperet et al. [4] proved that for every graph G ∈ E0,1,2, χ

′
e(G) ≥ 5.

For the case k = 4, we have the following theorem.

Theorem 3.3. If {G; G0, G1, G2, G3} ∈ E0,1,2,3, then χ′
e({G; G0, G1, G2,

G3}) ≥ 5.

Proof. If not, suppose that {G; G0, G1, G2, G3} ∈ E0,1,2,3 is a counterex-
ample, then by Theorem 3.1, χ′

e({G; G0, G1, G2, G3}) = 4. Assume that
F = {M1, M2, M3, M4} is the minimum perfect matching cover of the graph
{G; G0, G1, G2, G3}.

Claim 3.1. F has at most one element of type 4.
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Proof. If not, without loss of generality, suppose that M1 and M2 are of type
4, then by Proposition 2.2 (1), M1, M2 are of type 0 on H0 and H2. By
Proposition 2.5, M3 and M4 must be of type 2 on H0 and H2. But now uv
can’t be covered by F , a contradiction. □

Claim 3.2. F has no element of type 4.

Proof. If not, without loss of generality, suppose that M1 is of type 4 on H1,
then by Proposition 2.2 (1), M1 is of type 0 on H0, H2, type 1 on H3. Since F
is the minimum perfect matching cover of {G; G0, G1, G2, G3}, without loss
of generality, suppose that uv ∈ M2. By Proposition 2.4, either M2 is of type
1 on H0, H2, type 0 on H1, H3 or M2 is of type 1 on H1, H3, type 0 on H0,
H2.

If M2 is of type 1 on H1, H3, type 0 on H0, H2, then by Proposition 2.5,
M3 and M4 must be of type 2 on H0, H2. Now in this situation χ′

e(G3) ≤ 4,
a contradiction. Thus M2 is of type 1 on H0, H2, type 0 on H1, H3. But now
M3 and M4 are of type 0 on H1. Otherwise either ∂(Hi) can’t be covered by
F or χ′

e(Gi) ≤ 4, for some i ∈ {0, 2, 3}, a contradiction. Now by Propositions
2.2 (4)(5), 2.3 (1)(4) and 2.4 (1), each of M3 and M4 is of type 1 or 0 on H3.
Thus χ′

e(G3) ≤ 4, a contradiction. □

Claim 3.3. Every element of F containing uv can’t be of type 1 on H1, H3,
type 0 on H0, H2.

Proof. If not, then assume that uv ∈ M1 and M1 is of type 1 on H1, H3, type
0 on H0, H2. Now there is at most one perfect matching of type 0 on H1 or
H3. Since otherwise either ∂G(Hi) can’t be covered by F or χ′

e(Gi) ≤ 4, for
some i ∈ {1, 3}, a contradiction. By Propositions 2.2-2.4, there are at least two
perfect matchings of type 0 on H0 or H2. But if there are 3 perfect matchings
of type 0 on H0 or H2, then ∂G(H0) or ∂G(H2) can’t be covered by F , a
contradiction. Thus there are exactly 2 perfect matchings of type 0 on H0 or
H2. Without loss of generality, suppose that M1 and M2 are of type 0 on H0.
By Proposition 2.5, M3 and M4 are of type 2 on H0.

If M3 or M4 is of type 2 on H1 or H3, then it’s of type 0 on H2. By
Proposition 2.5, M2 and M4 or M2 and M3 are of type 2 on H2. By relabelling,
we may assume that M2 and M3 are of type 2 on H2. Now M2 is of type 2
on H2, type 0 on H0, M3 is of type 2 on H0, H2, M4 is of type 2 on H0, H1

or H0, H3. But now either ∂G(H2) can’t be covered by F or χ′
e(Gi) ≤ 4, for

some i ∈ {1, 3}. Thus M3 and M4 can’t be of type 2 on H1 or H3. But now,
by Propositions 2.2-2.4, we have that each of M3 and M4 is either of type 1
on H1, type 0 on H3 or of type 0 on H1, type 1 on H3. By Proposition 2.5,
we have that either M2 is of type 2 on H1 and H3 or χ′

e(Gi) ≤ 4, for some
i ∈ {1, 3}, a contradiction.

□
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By Claim 3.2, F has no perfect matching of type 4. Since F is the minimum
perfect matching cover of {G; G0, G1, G2, G3}, without loss of generality, sup-
pose that uv ∈ M1. By Proposition 2.4, either M1 is of type 1 on H1, H3, type
0 on H0, H2 or M1 is of type 1 on H0, H2, type 0 on H1, H3. By Claim 3.3,
M1 is of type 1 on H0, H2, type 0 on H1, H3. Similar to the proof of Claim
3.3, there are two perfect matchings of type 0 on H1 or H3. Suppose that M1

and M2 are of type 0 on H1. By Proposition 2.5, M3 and M4 are of type 2 on
H1. Now by Propositions 2.2 (2)(3), 2.3 (2)(3), M3 and M4 are of type 1 on
H3. But now by Proposition 2.5, we have that M2 is of type 2 on H3, type 0
on H1, a contradiction. Since this type of perfect matchings don’t exist.

ThereforeM1 can’t be of type 1 onH0, H2, type 0 onH1, H3, a contradiction
to Proposition 2.4.

□
Theorem 3.3 gives a strongly negative answer to Question 1.1. It’s natural

to propose the following question.

Question 3.2. If {G; G0, . . . , Gk−2, Gk−1} ∈ E0,1,...,(k−1) (k ≥ 3), then
χ′
e({G; G0, . . . , Gk−2, Gk−1}) ≥ 5?

4. Each graph in M0,1,2,3 has a Fulkerson-cover

A cycle of G is a subgraph of G with each vertex of even degree. A circuit
of G is a minimal 2-regular cycle of G.

The following theorem, due to Hao et al. [8], is very important in our main
proof.

Theorem 4.1 (Hao, Niu, Wang, Zhang and Zhang [8]). A bridgeless cubic
graph G has a Fulkerson-cover if and only if there are two disjoint matchings
E1 and E2, such that E1∪E2 is a cycle and G \ Ei is 3-edge colorable, for each
i = 1, 2.

Theorem 4.2. If {G; G0, G1, G2, G3} ∈ M0,1,2,3, then {G; G0, G1, G2, G3}
has a Fulkerson-cover.

Proof. Since Gi has a Fulkerson-cover, for each i = 0, 1, 2, 3, suppose that
M1

i ,M
2
i , . . . ,M

6
i is the Fulkerson-cover ofGi. Let E

i
2 be the set of edges covered

twice by M1
i , M2

i , M3
i , E

i
0 be the set of edges not covered by M1

i , M2
i , M3

i .

Now Ei
2∪Ei

0 is an even cycle, and {G; G0, G1, G2, G3} \ Ei
2 can be colored by

three colors 4, 5, 6, {G; G0, G1, G2, G3} \ Ei
0 can be colored by three colors 1,

2, 3. Then Ei
2, Ei

0 are the desired disjoint matchings as in Theorem 4.1. By
choosing three perfect matchings of Gi, we could obtain two desired disjoint
matchings Ei

2, Ei
0, such that either xi, yi ∈ Ei

2 ∪ Ei
0 or xi, yi /∈ Ei

2 ∪ Ei
0. Now

for each i = 0, 2 we choose three perfect matchings of Gi, such that xi, yi /∈
Ei

2 ∪Ei
0. For each i = 1, 3, we choose three perfect matchings of Gi, such that

xi, yi ∈ Ei
2∪Ei

0. Suppose that x
0
1x1, y01y1, x0

3x3, y13y3 ∈ Ei
2∪Ei

0. Replace x
0
1x1
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and y13y3 by x0
1a0c0uc3b3y

1
3 , and replace y01y1 and x0

3x3 by y01a1c1vc2a2x
0
3. Let

C be the resulting cycle of {G; G0, G1, G2, G3} through the above operation.
Let E1 and E2 be two disjoint perfect matchings of C. It’s easy to verify that
{G; G0, G1, G2, G3} \ Ei is 3-edge colorable, for each i = 1, 2. Therefore by
Theorem 4.1, {G; G0, G1, G2, G3} has a Fulkerson-cover.

□
Similar to the proof of Theorem 4.2, we have the following theorem.

Theorem 4.3. If {G; G0, G1} ∈ M0,1, then {G; G0, G1} has a Fulkerson-
cover.

Proof. SinceGi has a Fulkerson-cover, for each i = 0, 1, suppose thatM1
i ,M

2
i , . . . ,

M6
i is the Fulkerson-cover of Gi. Let Ei

2 be the set of edges covered twice by
M1

i , M2
i , M3

i , E
i
0 be the set of edges not covered byM1

i , M2
i , M3

i , now Ei
2∪Ei

0

is an even cycle, and {G; G0, G1} \ Ei
2 can be colored by three colors 4, 5, 6,

{G; G0, G1} \ Ei
0 can be colored by three colors 1, 2, 3. Then Ei

2, E
i
0 are the

desired disjoint matchings as in Theorem 4.1. By choosing three perfect match-
ings of Gi, we could obtain two desired disjoint matchings Ei

2, E
i
0, such that

xi, yi ∈ Ei
2 ∪ Ei

0. Now for each i = 0, 1, we choose three perfect matchings of
Gi, such that xi, yi ∈ Ei

2∪Ei
0. Suppose that y

0
0y0, x0

1x1, y11y1, x1
0x0 ∈ Ei

2∪Ei
0.

Replace y00y0 and x0
1x1 by x0

1a0y
0
0 and replace y11y1 and x1

0x0 by y11b1x
1
0. Let

C be the resulting cycle of {G; G0, G1} through the above operation. Let
E1 and E2 be two disjoint perfect matchings of C. It’s easy to verify that
{G; G0, G1} \ Ei is 3-edge colorable, for each i = 1, 2. Therefore by Theorem
4.1, {G; G0, G1} has a Fulkerson-cover.

□
Since for k = 2 (by Theorem 4.3), k = 3 (Esperet et al. [4]) and k = 4

(by Theorem 4.2), M0,1,2,...,(k−1) has a Fulkerson-cover. Thus it’s natural to
consider the following question.

Question 4.1. If {G; G0, G1, . . . , Gk−1} ∈ M0,1,2,...,(k−1), then the graph
{G; G0, G1, . . . , Gk−1} has a Fulkerson-cover?

5. Proof of Theorem 1.2

In order to prove the main result, we first recall the following theorem that
is important in our proof.

Theorem 5.1 (Robertson, Sanders, Seymour and Thomas [12]). Let G be a
bridgeless cubic graph. If G doesn’t have Petersen graph as a minor, then G is
3-edge-colorable.

1.2 (1). Suppose that N(v) = {v1, v2, v3} and {M1, M2, M3} is the 3-edge-

coloring of G \ v, such that M1 ∪M2, M1 ∪M3 and M2 ∪M3 are all Hamilton
circuits.
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If vv1v2v is a triangle of G, then since {M1, M2, M3} is the 3-edge-coloring

of G \ v, and M1 ∪M2, M1 ∪M3, M2 ∪M3 are all Hamilton circuits, we have
that G has a Hamilton circuit. Thus G is 3-edge-colorable and therefore admits
a Fulkerson-cover. So suppose that v is in no triangle of G.

Let a, b, c be the edges obtained from G \ v by contracting v1, v2, v3, re-
spectively.

If a ∈ M1, b ∈ M2, c ∈ M3, then let C1 = M1 ∪ M2, C2 = M1 ∪ M3,
C3 = M2 ∪M3. Let C ′

1 be the graph obtained from C1 by inserting v1 into a
and v2 into b. Let C ′

2 be the graph obtained from C2 by inserting v1 into a and
v3 into c. Let C ′

3 be the graph obtained from C3 by inserting v2 into b and v3
into c. Now C ′

1, C
′
2 and C ′

3 are all circuits of length |V (G)| − 2 in G. Let M ′
1

and M ′
2 be two disjoint perfect matchings of C ′

1, M
′
3 and M ′

4 be two disjoint
perfect matchings of C ′

2, M
′
5 and M ′

6 be two disjoint perfect matchings of C ′
3.

Now {M ′
1∪{vv3}, M ′

2∪{vv3}, M ′
3∪{vv2}, M ′

4∪{vv2}, M ′
5∪{vv1}, M ′

6∪{vv1}}
is a Fulkerson-cover of G.

If a ∈ M1, b ∈ M2, c ∈ M2, then let C = M1 ∪ M2 and C1 be the graph
obtained from C by inserting v1 into a, v2 into b and v3 into c. Let P (v1, v2)
be a segment between v1 and v2 in C1, such that v3 /∈ P (v1, v2). Let C2 =
vv1P (v1, v2)v2v. Now the length of C2 is even. Let E1 and E2 be two disjoint
perfect matchings of C2. Suppose that E1 ∩ M1 ̸= ∅, then E1 ∩ M2 = ∅,
E2 ∩M2 ̸= ∅, and E2 ∩M1 = ∅. Now both G \ E1 and G \ E2 are bridgeless,
since M2 ∪M3 and M1 ∪M3 are Hamilton circuits. Since G \ vvi (i = 1, 2, 3)

doesn’t have Petersen graph as a minor, both G \ E1 and G \ E2 don’t have

Petersen graph as a minor. By Theorem 5.1, both G \ E1 and G \ E2 are
3-edge-colorable. Therefore, by Theorem 4.1, G has a Fulkerson-cover.

If a, b, c ∈ M1, then M2 ∪M3 is an even circuit of G. Let E1 be the graph
obtained fromM1 by inserting v1 into a, v2 into b and v3 into c. Since E1∪M5−i

is in G \ Mi (i = 2, 3), we have that G \ Mi is bridgeless and has at most 4

vertices of degree 3. By Theorem 5.1, G \Mi is 3-edge-colorable. Therefore,
by Theorem 4.1, G has a Fulkerson-cover. □

By Theorem 1.2 (1), we obtain the following corollary.

Corollary 5.2. Let G be a bridgeless cubic graph. If there exists a vertex
v ∈ V (G) such that G \ e doesn’t have Petersen graph as a minor for each

edge e incident with v and G \ v is uniquely 3-edge-colorable, then G has a
Fulkerson-cover.

Proof. Suppose that {M1, M2, M3} is the uniquely 3-edge-coloring of G \ v.
We claim that M1 ∪ M2, M1 ∪ M3 and M2 ∪ M3 are all Hamilton circuits.
Since if M1 ∪M2 isn’t a Hamilton circuit, then M1 ∪M2 has another 2-edge-
coloring M ′

1 and M ′
2. Now {M ′

1, M
′
2, M3} is a 3-edge-coloring of G \ v, which

is different from {M1, M2, M3}, a contradiction. Therefore, by Theorem 1.2
(1), G has a Fulkerson-cover. □
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Proof of Theorem 1.2 (2). Suppose that e = v1v2 ∈ E(G) and {M1, M2,

M3} is the 3-edge-coloring of G \ e, such that M1∪M2, M1∪M3 and M2∪M3

are all Hamilton circuits. Let a and b be the edges of G \ e obtained from
G− e by contracting v1 and v2, respectively.

If a, b are in the same matching Mi (i ∈ {1, 2, 3}), then without loss of
generality, suppose that a, b ∈ M1. Let C be the graph obtained from M1∪M2

by inserting v1 into a and v2 into b. Now C is a Hamilton circuit of G. Thus
G is 3-edge-colorable and therefore G has a Fulkerson-cover.

If a, b aren’t in the same matching Mi (i ∈ {1, 2, 3}), then without loss of
generality, suppose that a ∈ M1 and b ∈ M2. Let C be the graph obtained
from M1∪M2 by inserting v1 into a and v2 into b. Now C is a Hamilton circuit
of G. Thus G is 3-edge-colorable and therefore G has a Fulkerson-cover. □

Proof of Theorem 1.2 (3). If G itself doesn’t have Petersen graph as a mi-
nor, then by Theorem 5.1, G is 3-edge-colorable. Therefore G has a Fulkerson-
cover. So suppose that G has Petersen graph as a minor. But now, by assump-
tion, G is Petersen graph. It’s easy to check that Petersen graph satisfies the
first condition of Theorem 1.2. Therefore G has a Fulkerson-cover. □
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[7] J. Hägglund, On snarks that are far from being 3-edge colorable, Electron. J. Combin.
23 (2016), no. 2, 10 pages.

[8] R. X. Hao, J. B. Niu, X. F. Wang, C. Q. Zhang and T. Y. Zhang, A note on Berge-
Fulkerson coloring, Discrete Math. 309 (2009), no. 13, 4235–4240.

[9] X. M. Hou, H. J. Lai and C. Q. Zhang, On Matching Coverings and Cycle Coverings,

preprint, 2012.
[10] G. Mazzuoccolo, The equivalence of two conjectures of Berge and Fulkerson, J. Graph

Theory 68 (2011), no. 2, 125–128.
[11] B. Mohar, R. J. Nowakowski and D. B. West, Research problems from the 5th Slovenian

Conference (Bled, 2003), Discrete Math. 307 (2007), no. 3-5, 650–658.



A note on Fouquet-Vanherpe’s question and Fulkerson conjecture 1258

[12] N. Robertson, D. Sanders, P. D. Seymour and R. Thomas, Tutte’s edge-colouring con-

jecture, J. Combin. Theory Ser. B 70 (1997), no. 1, 166–183.
[13] P. D. Seymour, On multicolourings of cubic graphs, and conjectures of Fulkerson and

Tutte, Proc. Lond. Math. Soc. (3) 38 (1979), no. 3, 423–460.
[14] C. Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker Inc., New York,

1997.

(Fuyuan Chen) Institute of Statistics and Applied Mathematics, Anhui University
of Finance and Economics, Bengbu, Anhui, 233030, P. R. China.

E-mail address: chenfuyuan19871010@163.com


	1. Introduction
	2. Preliminaries
	3. Each graph in E0,1,2,3 has excessive index at least 5
	4. Each graph in M0,1,2,3 has a Fulkerson-cover
	5. Proof of Theorem 1.2
	Acknowledgements
	References

