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Abstract. The vertex arboricity ρ(G) of a graph G is the minimum
number of subsets into which the vertex set V (G) can be partitioned so
that each subset induces an acyclic graph. A graph G is called list vertex

k-arborable if for any set L(v) of cardinality at least k at each vertex v of
G, one can choose a color for each v from its list L(v) so that the subgraph
induced by every color class is a forest. The smallest k for a graph to
be list vertex k-arborable is denoted by ρl(G). Borodin, Kostochka and

Toft (Discrete Math. 214 (2000) 101-112) first introduced the list vertex
arboricity of G. In this paper, we prove that ρl(G) ≤ 2 for any toroidal
graph without 5-cycles. We also show that ρl(G) ≤ 2 if G contains neither
adjacent 3-cycles nor cycles of lengths 6 and 7.
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1. Introduction

All graphs considered in this paper are finite and simple. For a graph G
we denote its vertex set, edge set, maximum degree and minimum degree by
V (G), E(G), ∆(G) and δ(G), respectively.

The vertex arboricity of a graph G, denoted by ρ(G), is the smallest number
of subsets that the vertices of G can be partitioned into such that each subset
induces an acyclic subgraph, i.e. a forest. There is an equivalent definition to
the vertex arboricity in terms of the coloring version. An acyclic k-coloring of
a graph G is a mapping π from V (G) to the set {1, 2, · · · , k} such that each
color class induces an acyclic subgraph. The vertex arboricity ρ(G) of G is the
smallest integer k such that G has an acyclic k-coloring.

Vertex arboricity, also known as point arboricity, was first introduced in 1968
by Chartrand, Kronk and Wall [10] who proved for any graph G with maximum
degree ∆ that ρ(G) ≤ ⌈∆+1

2 ⌉, and that if G is a planar graph, then ρ(G) ≤ 3.
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Shortly afterward, Chartrand and Kronk [9] showed that their result for planar
graphs was sharp and that if G is an outerplanar graph, then ρ(G) ≤ 2. A
result analogous to Brooks’s Theorem for vertex arboricity was proved in 1975
by Kronk and Mitchenm [23]; which showed that if G is neither a cycle, nor a
complete graph with an odd number of vertices, then ρ(G) ≤ ⌈∆

2 ⌉.
The upper bound 3 for ρ(G) on planar graphs has also been studied by

Goddard [18], Grunbaum [19] and Poh [25]. Among them, Goddard and Poh,
independently, proved a stronger result that the vertex set of any planar graph
can be partitioned into three sets such that each set induces a linear forest,
that is, a forest satisfies the condition that every component is a path. The
path version of vertex arboricity, called linear vertex arboricity, has also been
studied extensively in [1, 2, 24].

It was known [17] that determining the vertex arboricity of a graph is NP-
hard. Hakimi and Schmeichel [20] showed that determining whether ρ(G) ≤ 2
is NP-complete for maximal planar graphs. Stein [29], Hakimi and Schmeichel
[20] gave a complete characterization of maximal planar graphs with vertex
arboricity 2. The reader is referred to [6, 8, 11, 28, 31, 34, 27] for other results
about the vertex arboricity of graphs.

A k-cycle is a cycle with k edges. Recently, in 2008, Raspaud and Wang [26]
proved that ρ(G) ≤ 2 if G is a planar graph with no k-cycles for some fixed
k ∈ {3, 4, 5, 6} or no triangles at distance less than 2. In 2012, Huang et al.
[21] extended the result by showing that ρ(G) ≤ 2 if G is a planar graph with
no 7-cycles, and Chen et al. [12] proved that ρ(G) ≤ 2 if G is a planar graph
with no intersecting triangles.

List-colourings, in which each element is coloured from its own list of colours,
were introduced independently by Vizing [30] in 1976 and by Erdös et al. [16]
in 1980. In 2000, Borodin, Kostochka and Toft [5] combined and extended the
ideas of vertex arboricity and choosability to introduce list vertex arboricity.
A graph G is called list vertex k-arborable if for any set L(v) of cardinality at
least k at each vertex v of G, one can choose a color for each v from its list L(v)
so that the subgraph induced by every color class is a forest. Note that if the
list L(v) does not vary from a vertex to another, we have a problem of usual
vertex arboricity. The smallest k for a graph to be list vertex k-arborable is
denoted by ρl(G). Borodin et al. obtained the list vertex arboricity analogue
of Brook’s Theorem in [5]. It is trivial to see that ρ(G) ≤ ρl(G). Xue and Wu
[33] proved that the list vertex arboricity of bipartite graphs can be arbitrarily
large.

In 2008, Borodin and Ivanova [4] proved that every planar graph with no
triangles at distance less than 2 is list vertex 2-arborable. In the following year,
they proved that ρl(G) ≤ 2 if G is a planar graph without 4-cycles adjacent to
3-cycles in [3]. Zhen and Wu [35] showed that if ρ(G) is close enough to half
the number of vertices of G, then ρ(G) = ρl(G).
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A graph G is k-degenerate if every subgraph of G contains a vertex of degree
at most k. A k-degenerate graph admits a linear ordering such that the forward
degree of every vertex is at most k. In [26], Raspaud and Wang mentioned
that ρ(G) ≤ ⌈k+1

2 ⌉ for any k-degenerate graph G. Recently, Xue and Wu [33]

showed that ρl(G) ≤ ⌈k+1
2 ⌉ for any k-degenerate graph, and they also showed

that ρl(G) ≤ 2 if G is either K4-minor free, or G is a planar graph without
k-cycles for any fixed k ∈ {3, 4, 5, 6}.

A torus is a closed surface (compact, connected 2-manifold without bound-
ary) that is a sphere with a unique handle, and a toroidal graph is a graph
embeddable in the torus. For a toroidal graph G, we still use G to denote an
embedding of G in the torus. Cai, Wang and Zhu [7] discussed the structural
properties of toroidal graphs without short cycles and gave some results on
choosability.

The investigation of vertex arboricity on higher surfaces were actually done
by Kronk, and Cook. In 1969, Kronk [22] proved that every connected graph of

genus n has vertex arboricity ρ(G) ≤ ⌊ 9+
√
1+48n
4 ⌋. In 1974, Cook [15] obtained

an analogue of the result of Kronk and gave some upper bound of graphs on
genus. By their results, ρ(G) ≤ 4 for any toroidal graph G; and ρ(G) ≤ 2 for
any toroidal graph G with girth at least 5. In 1975, Kronk and Michem [23]
improved the latter result by showing that ρ(G) ≤ 2 if G is a toroidal graph
with no triangles.

In this paper, we consider the list vertex arboricity of toroidal graphs without
cycles of specific length. More precisely, we give the following theorems.

Theorem 1.1. Let G be a toroidal graph. Then ρl(G) ≤ 2 if G contains no
5-cycles.

Theorem 1.1 implies some of the following results. Every planar (toroidal)
graph without 5-cycles is 4-choosable in [32, 7], and every planar graph without
5-cycles is vertex 2-arborable in [26].

Note that toroidal graphs without 6-cycles and 7-cycles are not 4-choosable,
so neither of them are list vertex 2-arborable. The 4-choosability of a planar
(toroidal) graphs without adjacent triangles is still open.

In this paper, we also consider the list vertex arboricity of the graphs con-
taining neither adjacent triangles nor cycles of lengthgs 6 and 7, and give the
following result.

Theorem 1.2. Let G be a toroidal graph. Then ρl(G) ≤ 2 if G contains no
adjacent 3-cycles and no cycles of lengths 6 and 7.

In [26], Raspaud and Wang asked the following question:

Question 1.3. [26] What is the maximum integer µ for all k ∈ {3, · · · , µ}, a
planar graph G with no k-cycles has ρ(G) ≤ 2?
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Recently, Choi and Zhang [14] showed Theorem 1.4, which says that forbid-
ding 4-cycles in toroidal graphs is sufficient to guarantee vertex arboricity at
most 2.

Theorem 1.4. [14] If G is a toroidal graph with no 4-cycles, then ρ(G) ≤ 2.

Since the complete graph on 5 vertices is a toroidal graph with no cycles of
length at least 6 and has vertex arboricity at least 3, we completely answer the
Question 1.3 for toroidal graphs.

2. Notations

We use b(f) to denote the boundary walk of a face f and write f =
[v1v2v3 · · · vn] if v1, v2, v3, · · · , vn are the vertices of b(f) in a cyclic order. We
use NG(v) and dG(v) to denote the set and number of vertices adjacent to a
vertex v, respectively. A face f is incident with all vertices and edges on b(f).
The degree of a face f of G, denoted also by dG(f), is the length of its boundary
walk, where cut edges are counted twice. When no confusion may occur, we
write N(v), d(v), d(f) instead of NG(v), dG(v) and dG(f). A face f of G is
called a simple face if b(f) forms a cycle. Obviously, when δ(G) ≥ 2 for k ≤ 5,
or G is 2-connected, each k-face is a simple face. A vertex (face) of degree k
is called a k-vertex (k-face). If r ≤ k or 1 ≤ k ≤ r, then a k-vertex (k-face) is
called an r+- or r−-vertex (r+- or r−-face), respectively.

For a vertex v ∈ V (G), let ni(v) denote the number of i-vertices adjacent to
v, and mj(v) the number of j-faces incident with v. For a face f ∈ F (G), let
ni(f) denote the number of i-vertices incident with f , and mj(f) the number of
j-faces adjacent to f . Two faces are adjacent if they share at least one common
edge.

3. Structural properties

Let G be a toroidal graph without 6-cycles, 7-cycles and without adjacent
3-cycles. Obviously every subgraph of G also carries such properties. In this
section, We investigate the structural properties of G which will be used to
establish upper bounds of list vertex arboricity of such toroidal graphs.

Lemma 3.1. Let G be a toroidal graph without 6-cycles and 7-cycles and with-

out adjacent 3-cycles. Then G is 3-degenerate.

Proof. Assume to the contrary that the lemma is false. Let G be a connected

counterexample which is embedded on the torus. Thus δ(G) ≥ 4 and without

6-cycles, 7-cycles, and without adjacent triangles.
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A face f is frugal if some vertex t is incident to it twice. Obviously, any

6-face or 7-face in G must be a frugal face for G contains no 6-cycles and 7-

cycles. A list of faces of a vertex v is consecutive if it is a sublist of the list of

faces incident to v in cyclic order. Two adjacent faces are normally adjacent

if they have only two vertices in common (clearly, only one common edge on

their facial walk), or are abnormally adjacent (that is, they have at least three

vertices in common). □

First we prove some structural results needed for the proof of Lemma 3.1.

Claim 3.2. G contains no 3-face adjacent to a 5-face.

Proof. Let f be a 3-face with b(f) = [v1v2v3], and let f1 be a 5-face with b(f1) =

[v1v2u1u2u3]. Then v3v2u1u2u3v1v3 forms a 6-cycle, unless v3 ∈ {u1, u2, u3}.
But, if v3 = u1, then d(v2) = 2, which is a contradiction to the minimum degree

of G. If v3 = u2, it appears adjacent 3-cycles. By symmetry, v3 ̸= u3. □

Claim 3.3. A 3-face must be normally adjacent to a 4-face.

Proof. Let f be a 3-face with b(f) = [v1v2v3], and let f1 be a 4-face with

b(f1) = [v1v2u1u2]. A abnormally adjacent of f and f1 will contradict to the

fact G contains no adjacent 3-cycles. □

Claim 3.4. G contains no two adjacent 4-faces f1 = v1v2v3v4 and f2 =

v1v2u1u2.

Proof. Obvious two faces f1 and f2 must be abnormally adjacent, or a 6-cycle

appears. By the symmetry, we consider v3 = u1, or v3 = u2. If v3 = v1, then

d(v2) = 2 which contradicts the fact dG(v) ≥ 4 for any v ∈ V (G). So v3 = u2,

we have two adjacent 3-cycles v1v2v3(= u2), v2u1u2(= v3). □

Proposition 3.5. There is no 4+-vertex v with d(f1), d(f2), d(f3) ∈ {3, 4}
where f1, f2, f3 are three consecutive faces incident with v.
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Proof. Let v be a 4+-vertex with three consecutive faces f1, f2, f3 incident

with it and all the degrees of faces in f1, f2, f3 are in {3, 4}. For G contains no

adjacent 3-cycles. We just consider the following four cases 343, 434, 443, 444

of all the degree combinations of f1, f2, f3. Moreover, by Claim 3.4, we just

consider two cases 343 and 434.

Case 1. d(f1 = [vv1v2]) = 3, d(f2 = [vv2xv3]) = 4, d(f3 = [vv3v4]) = 3.

By Claim 3.3, v1, v4 /∈ {v2, v3, x}. If v1 ̸= v4, then vv1v2xv3v4v is a 6-cycle.

Yet, if v1 = v4, two adjacent triangles vv1v2 and vv4v3 will appear.

Case 2. d(f1 = [vv1xv2]) = 4, d(f2 = [vv2v3]) = 3, d(f3 = [vv3yv4]) = 4.

By Claim 3.3, x, y, v1, v4 /∈ {v2, v3, v}. If v1, x /∈ {y, v4}, then vv1xv2v3yv4v

is a 7-cycle. By symmetry, we consider the following two subcases.

Subcase 1. x = y. Then v2v3y(= x) and vv2v3 are adjacent 3-cycles.

Subcase 2. x = v4. Then f2, f3 and vv1x(= v4) is a case in Case 1.

□

Claim 3.6. G contains no 3-face adjacent to a 6-face.

Proof. By the properties of G, a 6-face must be frugal 6-face as depicted in

Figure 1. So is it. □

Claim 3.7. A 3-face is adjacent to at most one frugal 7-face.

Proof. By the properties of G, a 7-face must be frugal 7-face as depicted in

Figure 1. So we get it by the fact that G contains no adjacent 3-cycles and G

contains no three consecutive faces with the face f1, f2, f3 and the degree of

these consecutive faces are 4, 3, 4 respectively, which is excluded by Proposition

3.5.

□

The Euler’s formula |V | + |F | − |E| = 0 can be rewritten in the following
form:
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(3.1)
∑

v∈V (G)

{dG(v)− 4}+
∑

f∈F (G)

{dG(f)− 4} = 0.

Let ω be a weight on V (G)∪F (G) by defining ω(v) = dG(v)−4 if v ∈ V (G),
and ω(f) = dG(f)−4 if f ∈ F (G). Then the total sum of the weights is zero. To
prove Lemma 3.1, we will introduce some rules to transfer weights between the
elements of V (G)∪ F (G) so that the total sum of the weights is kept constant
while the transferring is in progress. However, once the transferring is finished,
we can show that the resulting weight ω∗ satisfies

∑
x∈V (G)∪F (G) ω

∗(v) > 0.

This contradiction to (3.1) will complete the proof.
Our transferring rules are as follows:

(R1) Each 5+-vertex transfers w(v)

⌊ 2
3d(v)⌋

to each incident 4−-face.

(R2) Each 5+-face transfers w(f)
d(f) to each adjacent 4−-face.

The following simple facts will be used frequently in our discussions.

Fact 1. w(v)
2
3d(v)

≥ 1
2 while d(v) ≥ 6, and w(f)

d(f)≥ 1
2

while d(f) ≥ 8.

Fact 2. |m3(v)| ≤ ⌊ 1
2d(v)⌋.

Fact 3. |m4−(v)| ≤ ⌊ 2
3d(v)⌋.

Fact 4. w∗(x) ≥ 0 while d(x) ≥ 4 for all x ∈ V (G) ∪ F (G).
Fact 5. Let f be a 3-face, then m4(f) ≤ 1. Let f1 be a 4-face, then

m3(f1) ≤ 1.
Fact 2 is true by the properties of G. Fact 3 is true by Proposition 1. Fact

1 can be got by direct calculation. Fact 4 can be easily seen by the discharging
rules (R1) and (R2). As to Fact 5, for the 4-face f1 = [v1v2v3v4], we have f1
can be adjacent to two 3-faces on the two opposite edges v1v2, v3v4 or v1v4, v2v3
by Proposition 3.5, but in this case, either a 6-cycle or two adjacent 3-cycles
will appear. This completes the proof of Fact 5.

Let f be a face of G. Now we consider the case while d(f) = 3.
By Fact 5, we have m4(f) ≤ 1. Moreover m3(f) = 0 because G contains no

adjacent 3-cycles.
If m4(f) = 0, we have m5(f) = m6(f) = 0 by Claim 1 and Claim 4 and

m7(f) ≤ 1 by Claim 5. If m7(f) = 0, then w∗(f) ≥ w(f) + 3 · 1
2 = 1

2 > 0 by

Fact 1. While m7(f) = 1, then w∗(f) ≥ w(f) + 2 · 1
2 + 3

7 = 3
7 > 0 by Fact 1

and (R2).
If m4(f) = 1, then the other two faces adjacent to f must be 8+-face. In this

case, if f is incident with at least one 5+-vertex, a 5-vertex transfers 5−4
⌊ 2·5

3 ⌋ to f ,

then w∗(f) ≥ w(f) + 2 · 1
2 +

1
3 = 1

3 > 0 by (R1) and (R2). While n5+(f) = 0.

w∗(f) ≥ w(f) + 2 · 1
2 = 0 by (R2).

Now, we get that ω∗(x) ≥ 0 for each x ∈ V (G) ∪ F (G). It follows that
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0 ≤
∑

x∈V (G)∪F (G)

ω∗(x) =
∑

x∈V (G)∪F (G)

ω(x) = 0.

If
∑

x∈V (G)∪F (G) ω
∗(x) > 0, we are done. Assume that

∑
x∈V (G)∪F (G) ω

∗(x) =
0.

Claim 3.8. G contains no 4-face.

Proof. Assume f ′ is a 4-face in F (G), it must be adjacent to at least three 5+-

faces by Fact 5 and Claim 3.4. But there will have w∗(f ′) ≥ w(f ′)+3 · 15 > 0.

By Claim 3.8, G contains no 4-face, so for any 3-face, m4(f) = 0, then we

conclude that G must contain no 3-face by the discussion above. Subsequently,

G contain no 5+-faces since any 5+-face sends no charge to the adjacent faces

at this case by (R2). Such a toroidal graph does not exist. □

4. Proof of the theorems

Let G be a counterexample to Theorem 1.1 or Theorem 1.2 with the fewest
number of vertices. It is easy to see that G is 2-connected, and we have:

Claim 4.1. δ(G) ≥ 4.

Proof. If δ(G) ≤ 3, then there exists a vertex v in G such that d(v) ≤ 3. Let

G′ = G−v. Then G′ admits an acyclic coloring ϕ. Since d(v) ≤ 3, there always

exists a color which lies in L(v) which is assigned to at most one neighbor of

v under the map ϕ, then we can extend ϕ to an acyclic L-coloring of G by

assigning this color to v with ϕ(v) ∈ L(v). □
We will use the following two results for the proof of Theorem 1.1.

Lemma 4.2. [7] Let G be a toroidal graph without 5-cycles. Then δ ≤ 4; and

δ(G) = 4 if and only if G is 4-regular.

Theorem 4.3. [5, 33] Let G be a connected graph. If G is neither a cycle nor

a complete graph of odd order, then ρl(G) ≤ ⌈∆(G)
2 ⌉.

By Claim 4.1, δ(G) ≥ 4. By Lemma 4.2, G is a 4-regular graph. Obviously
it is not a complete graph of odd order because G contains no 5-cycles. This
fact completes the proof of Theorem 1.1 by Theorem 4.3.

By Lemma 1 and the following theorem posed in [33], Theorem 1.2 is trivial.

Theorem 4.4. [33] For any graph G, ρl(G) ≤ ⌈deg(G)+1
2 ⌉ where deg(G) is the

minimum number k for which G is k-degenerate.
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5. Further considerations

For all planar graphs, it was known that ρ(G) ≤ 2 if a planar graph contains
no cycle for any fixed k ∈ {3, 4, 5, 6, 7}. A toroidal graph wtihout 6-cycles
and 7-cycles may not be 4-choosable, of course, not be list vertex 2-arborable.
In fact, for n = 4, 5, 6, Kn is a toroidal graph with χl(Kn) = n but without
(n + 1)-cycle. Moreover, it will be noted that excluding cycles of length eight
does not forbid the complete graph K7 and thus the values of k between 3 and
7 are of the most interest.

In [13], Choi proved every toroidal graph containing neither K−
5 nor 6-cycles

is 4-choosable. And this result is sharp in the sense that forbidding only one
of a K−

5 or 6-cycles in a toroidal graph does not guarantee the 4-choosability.
Moreover, a graph containg neitherK5 nor 6-cycles can not assure its list vertex
arboricity at most two. (See Theorem 4.1 in [13]). In [33], Xue and Wu proved
that for any positive integer n, there is a bipartite graph G such that ρl(G) ≥ n.
Here we pose the following conjecture.

Conjecture 5.1. Let G be a toroidal graph without adjacent triangles. Then

ρl(G) ≤ 2.
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