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Abstract. We present an application of the dual Gabor frames to im-
age processing. Our algorithm is based on finding some dual Gabor frame
generators which reconstructs accurately the elements of the underlying
Hilbert space. The advantages of these duals constructed by a polynomial

of Gabor frame generators are compared with their canonical dual.
Keywords: Gabor frame, dual frame, alternate dual frame, image pro-
cessing.
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1. Introduction and preliminaries

A frame for a separable Hilbert space H is a sequence of vectors {fi}∞i=1 for
which there are constants A,B > 0 such that

A∥f∥2 ≤
∞∑
i=1

|⟨f, fi⟩|2 ≤ B∥f∥2, (f ∈ H).(1.1)

If the right-hand side of (1.1) holds, it is said to be a Bessel sequence. For
a frame {fi}∞i=1 we define the frame operator S : H → H given by Sf =∑∞

i=1⟨f, fi⟩fi. This operator is bounded, invertible and positive. Two Bessel
sequences {fi}∞i=1 and {gi}∞i=1 are said to be dual frames if

f =
∞∑
i=1

⟨f, gi⟩fi, (f ∈ H).

It can be shown that two such Bessel sequences indeed are frames. Every
frame has at least one dual, which is called the canonical dual and is given by
{S−1fi}∞i=1, which is a frame with bounds B−1 and A−1. A dual which is not
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the canonical dual is called an alternate dual, or simply a dual. Only frames
which are not basis (redundant frames) have several duals.

In [1], it is shown how we can construct a sequence of alternate duals from
a specific dual. Let {fi}∞i=1 be a frame for H with the frame operator S and a
dual {gi}∞i=1. Put

(1.2) g′i = S−1fi − fi + Sgi,

and assume that f ∈ H. Using the properties of the frame operator,
∞∑
i=1

⟨f, g′i⟩fi =
∞∑
i=1

⟨f, S−1fi⟩fi −
∞∑
i=1

⟨f, fi⟩fi +
∞∑
i=1

⟨f, Sgi⟩fi

= SS−1f = f,

so it follows that the sequence {g′i}∞i=1 is also a dual for {fi}∞i=1. The introduc-
tory courses on frames can be found in the books [5, 10]. The advantages of
frames and their promising features in various application have attracted a lot of
interest and effort in recent years. Furthermore, Gabor frames have been widely
used in signal and image processing and many other parts of applied mathemat-
ics [2, 3, 7, 12–14,16, 20]. For f ∈ L2(R), we define the modulation operator by
Ebf(x) = e2πibxf(x) and the translation operator by Taf(x) = f(x− a) where
a, b ∈ R. A Gabor frame is a frame for L2(R) of the form {EmbTnaf}m,n∈Z
with the generator f ∈ L2(R) and a, b > 0. Various characterizations of Gabor
frames have been given by Wexler and Raz [22], Daubechise et al. [9] and Ron
and Shen [21]. It is well known that two Gabor frames {EmbTnag}m,n∈Z and
{EmbTnah}m,n∈Z are called dual of each other if

f =
∑

m,n∈Z
⟨f,EmbTnah⟩EmbTnag, (f ∈ L2(R)).(1.3)

Although a Gabor frame {EmbTnag}m,n∈Z when ab < 1 has infinitely many
duals, the standard choice of h is S−1g, where S : L2(R) → L2(R) is the frame
operator of {EmbTnag}m,n∈Z. There are several duality principles in Gabor
frame theory [4, 15, 17]. In particular, an explicit construction of dual Gabor
frames can be found in [6,8]. We claim that more precise results can be obtained
by using different duals.

We end this section with an explicit expression for the canonical dual gen-
erator.

Proposition 1.1. [6] Let N ∈ N and let g ∈ L2(R) be a function with support
in [0, N ]. Assume that b ≤ 1

N and that there exist A,B > 0 such that

A ≤ G(x) :=
∑
n∈Z

|g(x− na)|2 ≤ B a.e. x.

Then {EmbTnag}m,n∈Z is a frame for L2(R), and the canonical dual generator

is given by S−1g = b
Gg.
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2. Tensor product of alternate duals

LetH andK be Hilbert spaces with orthonormal bases {eα}α∈I and {uβ}β∈J ,
respectively. Also let Q be a bounded antilinear map from K into H, or equiv-
alently, bounded linear operator from K∗ into H. Then

∑
β ∥Quβ∥2 is inde-

pendent of the choice of {uβ}β∈J and∑
β

∥Quβ∥2 =
∑
α

∥Q∗eα∥2.(2.1)

Hence, we can define the Hilbert Schmidt norm of Q by ∥Q∥2HS =
∑

β ∥Quβ∥2.
The set of all antilinear maps Q : K → H such that ∥Q∥HS < ∞, denoted by
H⊗K, is a Hilbert space with the inner product

⟨Q,P ⟩ =
∑
β

⟨Quβ , Puβ⟩.

If u ∈ H and v ∈ K, the map w 7→ ⟨v, w⟩u (w ∈ K) belongs to H ⊗ K; we
denote it by u⊗ v:

(u⊗ v)(w) = ⟨v, w⟩u.

It is easy to see that

∥u⊗ v∥ = ∥u∥∥v∥,
⟨u⊗ v, u′ ⊗ v′⟩ = ⟨u, u′⟩⟨v, v′⟩

for all u, u′ ∈ H and v, v′ ∈ K. Moreover, {eα⊗uβ}α,β is an orthonormal basis
for H ⊗ K. For example, the tensor product L1(R) ⊗ L1(R) is isometrically
isomorphic to L2(R2) where (f ⊗ g)(x, y) = f(x)g(y) for all f, g ∈ L1(R) and
x, y ∈ R. For T ∈ B(H) and U ∈ B(K) the tensor product of T and U , denoted
with T ⊗ U , is defined by

(T ⊗ U)Q = TQU∗, (Q ∈ H ⊗K).

It is shown that ∥T ⊗U∥ = ∥T∥∥U∥ and (T ⊗U)(u⊗ v) = Tu⊗Uv. For more
details of these facts see Subsection 7.3 of [11].

We now review some basic facts about frames in the tensor product of Hilbert
spaces. As usual in frame theory, we assume that the Hilbert spaces H and K
are separable with the orthonormal bases {ei}∞i=1 and {ui}∞i=1, respectively.

Lemma 2.1. Let {fi}∞i=1 and {gi}∞i=1 be frames for H and K, respectively.
The sequence {fi ⊗ gj}∞i=1,j=1 is a frame for H ⊗ K. In particular, the frame
bounds of tensor product of two frames is the product of their frames bounds.
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Proof. Let Q ∈ H ⊗K. Then we have;

⟨Q, fi ⊗ gj⟩ =
∑
k

⟨Qek, (fi ⊗ gj)ek⟩

=
∑
k

⟨Qek, fi⟩⟨ek, gj⟩

= ⟨Q
∑
k

⟨gj , ek⟩ek, fi⟩ = ⟨Qgj , fi⟩.

Now suppose that A1 and A2 are the lower frame bounds of {fi}∞i=1 and
{gj}∞j=1, respectively. So by (2.1) we obtain

∑
i

∑
j

|⟨Q, fi ⊗ gj⟩|2 =
∑
i

∑
j

|⟨Q, fi ⊗ gj⟩|2

≥ A1

∑
j

∥Qgj∥2

= A1

∑
k

∑
j

|⟨gj , Q∗uk⟩|2

≥ A1A2

∑
k

∥Q∗uk∥2 = A1A2∥Q∥2HS .

A similar argument works for the upper bounds. □

The following theorem summaries basic properties of tensor product frames
[18].

Theorem 2.2. Suppose {fi}∞i=1 ⊆ H and {gi}∞i=1 ⊆ K are frames with the
frame operator S1 and S2, respectively.

(1) S = S1 ⊗ S2 is the frame operator of {fi ⊗ gj}∞i=1,j=1.

(2) S−1 = S−1
1 ⊗S−1

2 . In particular, the canonical dual of {fi ⊗ gj}∞i=1,j=1

is the tensor product of their canonical duals.

Our aim is to prove that by using alternate duals instead of the canonical
duals we may obtain more accurate results. Hence, we first show that the above
theorem is also true for alternate duals.

Theorem 2.3. The tensor product of alternate duals of the frames is an al-
ternate dual for their tensor product.

Proof. Let {f ′
i}∞i=1 and {g′i}∞i=1 be alternate duals of two frames {fi}∞i=1 ⊆ H

and {gi}∞i=1 ⊆ K, respectively. The elements of H ⊗ K can be described by a
pair of dual frames in K. More precisely, for each Q ∈ H ⊗ K and v ∈ K we
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have

Qv = Q

(∑
i

⟨v, gi⟩g′i

)

=
∑
i

⟨gi, v⟩Qg′i =

(∑
i

Qg′i ⊗ gi

)
v.

This implies that
∞∑

i,j=1

⟨Q, f ′
i ⊗ g′j⟩(fi ⊗ gj) =

∞∑
i,j=1

⟨Qg′j , f
′
i⟩(fi ⊗ gj)

=

∞∑
j=1

( ∞∑
i=1

⟨Qg′j , f
′
i⟩fi

)
⊗ gj

=
∞∑
j=1

(
Qg′j ⊗ gj

)
= Q.

□
It is straightforward to show that the tensor product of Gabor frames form

a Gabor frame of the tensor product Hilbert spaces, but the converse is not
true in general [19]. It can be easily seen that if {EmbTnag}m,n∈Z is a Gabor
frame for L2(R), then {Em(b,b)Tn(a,a)g⊗ g}m,n∈Z is a Gabor frame for L2(R2).

3. Computational experiments

For frames generated by any compactly supported function g whose integer-
translates form a partition of unity, e.g., a B-spline, Christensen and Kim
constructed a class of dual frame generators, formed by linear combinations of
translates of g [6, 8]:

Theorem 3.1. Let N ∈ N and b ∈ (0, 1
2N−1 ]. Let g ∈ L2(R) be a real-valued

bounded function with supp(g) ⊆ [0, N ], for which∑
n∈Z

g(x− n) = 1.

Then the functions h and k defined by

h(x) = bg(x) + 2b
N−1∑
n=1

g(x+ n), k(x) =
N−1∑

n=−N+1

ang(x+ n),

where

a0 = b an + a−n = 2b, n = 1, 2, ..., N − 1,

generate two dual frames {EmbTnh}m,n∈Z and {EmbTnk}m,n∈Z for Gabor frame
{EmbTng}m,n∈Z.
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Now we examine Theorem 3.1 when the generator function g is a B-spline.
Recall that the B-splines BN , N ∈ N, are given inductively by

B1 = χ[0,1], BN+1 = BN ∗B1,

where ∗ denotes the usual convolution of two functions. The B-spline BN has
its support in the interval [0, N ]. Furthermore, it is well known that the integer-
translates of any B-spline form a partition of unity, see Theorem 6.1.1 of [5].
Thus, by Proposition 1.1, {EmbTnBN}m,n∈Z is a Gabor frame with the frame
operator

Sf =
∑

m,n∈Z

⟨f,EmbTnBN ⟩EmbTnBN , (f ∈ L2(R)),(3.1)

where N ∈ N and b ∈ (0, 1
2N−1 ].

Using Theorem 3.1 on the B-splines and applying (1.2) we can construct two
sequences {hl}∞l=1 and {kl}∞l=1 of dual generators

(3.2) hl+1 = S−1BN −BN + Shl, l ∈ N,

(3.3) kl+1 = S−1BN −BN + Skl, l ∈ N,
where h1 = h and k1 = k is given by Theorem 3.1. So, {EmbTnhl}m,n∈Z and
{EmbTnkl}m,n∈Z are two alternate duals for {EmbTnBN}m,n∈Z for all l ∈ N
and we may rewrite (1.3) as

(3.4) f =
∑

m,n∈Z
⟨f,EmbTnhl⟩EmbTnBN =

∑
m,n∈Z

⟨f,EmbTnkl⟩EmbTnBN .

For each f ∈ L2(R) the finite terms of (3.4) can be considered as an esti-
mation of f . The benefit of using the alternate duals based model (3.4) for
approximation of signals has been discussed in [1].

Image processing is a growing field covering a wide range of techniques for
the manipulation of digital images. There are a variety of methods available
for getting the desired results. Most image-processing techniques involve treat-
ing the image as a two-dimensional signal and applying standard signal pro-
cessing techniques to it. More precisely, the reconstruction formula (3.4) in
two-dimension can be read as

(3.5) M =
∑

m,n∈Z
⟨M,Em(b,b)T(n,n)g⟩Em(b,b)T(n,n)BN ⊗BN ,

where N ∈ N, b ∈ (0, 1
2N−1 ], M is an image matrix and g is one of the following

tensor product functions:

hl ⊗ hl, hl ⊗ kl, kl ⊗ kl, (l ∈ N).
Moreover, one may rewrite (3.5) with respect to the canonical as follows

(3.6) M =
∑

m,n∈Z

⟨M,Em(b,b)T(n,n)S
−1BN ⊗ S−1BN ⟩Em(b,b)T(n,n)BN ⊗BN ,
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(a) tire (b) spine (c)

pep-
pers

Figure 1. Original images.

(a) Original (b) canonical (c) h1

(d) h2 (e) k1 (f) k2

Figure 2. Approximation of Image Tire by using different generators.

where S, given by (3.1), is the Gabor frame operator of {EmbTnBN}m,n∈Z
and therefore S−1BN = bBN by Proposition 1.1. To demonstrate the benefit
of dual Gabor frames presented in this paper, we have decomposed some test
images shown in Figure 1. A finite terms of (3.5) and (3.6) can be considered as
an estimation of the test image M when m = −3, ..., 3, n = −50, ..., 50, N = 3
and b = 1/(2N − 1). The estimations of test images by using five different
generators are shown in Figures 2-4.
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AMSE

Dual generator spine tire peppers

canonical 0.1251 0.0090 0.0052
h1 0.1250 0.0090 0.0054
k1 0.1253 0.0090 0.0053
h2 0.0947 0.0174 0.0151
k2 0.0916 0.0171 0.0151
h3 0.0751 0.0768 0.0276

Table 1. AMSEs for the approximation of test images ob-
tained by (3.5) and (3.6)

(a) Original (b) canonical (c) h1

(d) h2 (e) k1 (f) k2

Figure 3. Approximation of Image Spine by using different generators.

The performance of each estimator was measured by its average mean-square
error (AMSE) defined as the average over simulated replications x̂i of

n−1
n∑

i=1

|x̂i − xi|2.

Table 1 presents the average mean-square errors for the obtained estimations
of test images with different dual generators. The advantage of choosing a dual
Gabor frame generator with the minimal AMSE is highlighted in Table 1.
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(a) Original (b) canonical (c) h1

(d) h2 (e) k1 (f) k2

Figure 4. Approximation of Image Peppers by using different

generators.

Finally, it is worthwhile to point out that this technique can be applied to
any approximation method which uses Gabor frames, see for example face and
marker detection algorithms introduced in [12].
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