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TAU NUMERICAL SOLUTION OF VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS WITH
ARBITRARY POLYNOMIAL BASES

J. POUR-MAHMOUD*, M. Y. RAHIMI AND S. SHAHMORAD

Communicated by Mohammad Asadzadeh

ABSTRACT. The purpose of this paper is to investigate the Tau
method with arbitrary polynomial basis which is developed to find
numerical solutions of the Volterra integro-differential equations
(VIDEs). The differential and integral parts appearing in these
equations are replaced by Tau operational representation to convert
VIDEs to a system of linear algebraic equations. Some numerical
results are given to demonstrate the superior performance of the
Tau method, particularly, with the Chebyshev bases.

1. Introduction

Let us consider the general form of linear Volterra integro-differential
equation:

Dy(z) — )\/axk(x,t)y(t)dt — f(z), z€lab (1.1)

with ng independent conditions
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ng

Z[Cg'l)y(s_l) (a) + C;'Z)y(s_l)(xﬂ)] = d]a .7 = ]-a 27 SRR LT

= (1.2)
where f(z) and k(z,t) are given continuous functions and A, a, cﬁ), cﬁ)
zo € [a,b] are given constants and ng is the order of the differential op-

erator D with polynomial coefficients p;(z):

ng dz Qg )
D = Zpi(fﬁ)ﬁ, pi(z) = sz'jfl?] (1.3)
i=0 §=0

while «; is the degree of p;(x).

Hosseini and Shahmorad [1, 2, 3] developed the Tau method to find
numerical solution of the Fredholm, Volterra and Fredholm-Volterra
integro-differential equations with the standard bases X = [1,z,---]7
and Fredholm integro-differential equations (FIDEs), in particular, with
arbitrary polynomial bases.

The subject of this paper is to present developments of the operational
Tau method (see [5] and [6]) with arbitrary polynomial bases for the
numerical solution of Volterra integro-differential equations (VIDEs).

Details of the structure of the employed arbitrary bases in the opera-
tional approach to the Tau method is explained in section 2. In section 3,
an efficient Tau error estimator is introduced. In section 4, preliminary
steps towards application of the Chebyshev bases are taken. Finally, in
section 5, some numerical results are provided to demonstrate the effi-
ciency of using Chebyshev bases compared with the results obtained by
other methods.

2. Matrix representation

2.1. Differential part and supplementary conditions. Let V =
[vg(x),v1(z),---]7 be an orthogonal polynomial basis vector given by
V = VX, where V is a non-singular lower triangular matrix and
deg vi(z) <i,1=0,1,2,--.

We recall the following relations from [4]:

(i) Differential part:

Dy(x) = dll,V, (2.1)
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where
ng .
Q:[a[]’ala"']? HU:VHV*I’ H:anpi(/ﬁ)a
i=0
and
01 0 0 0
0 1 0 10
0 00 3 0

(ii) Supplementary conditions:
aB =d, (2.2)

where d = [di,dy, - ,dy,] is the vector consisting of the right hand sides
of the conditions and the entries of the matrix B are obtained by

ng

bZ] = Z[cgi)vz(:l) (a’) + C;i)vz(izl)(xﬂ)]v Z’] = ]-7 2a IR LT
and
S0 5= (2), (51
bij = Z[st v (a) + Cjs vty (20)],
s=1
t=ng+1,ng+2,--, ]:1523 y Nd -
(2.4)
2.2. Integral part. Consider the expansions of k(z,t) and y(z)
n n o
k(z,t) =Y > kyui(z)oi(t) , ylz) = awi(z) =aV,
i=0 j=0 i=0
where k;; are constant coefficients and v;(z), ¢ =0,1,---, the entries
of V. So the integral part of (1.1) can be written as
z c© n n z
[ by de =333 k(@) [ vt d.
a 5=01i=0j=0 a
We set

vijs(x) = vi(x) [ vj(t)vs(t)dt,

[V
Tl

oo~

’—‘u’—‘l_‘
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and write it in terms of the basis functions:

3n+1
vijs() = D Cmijsvm(2), (2.5)
m=0

where ¢;,,;j5 are constant coefficients that must be determined. We mul-
tiply both sides of (2.5) by

w(z)vy(z), r=0,1,---,3n+1,

where w(z) is the weight function. Integrating on [a, b], we get

Cmijs = ﬁ f;w(x)vm(x)vijs(x)dx, m=0,1,2,--- ,3n+1
i=0,1,2,-- ,n
j:031523"'5n (26)
5=0,1,2,-
with a;, = fabw(x)v?n(x)dx, m=20,1,--- ,3n+ 1, so that
T oo n n 3n+l
JRLERNOLED 3D 39 DY B TIIRA !
a 5=014i=0 j=0 m=0
which can be written as:
x
[ kgt =a KV, (2.7)
a

with the vector of unknown coefficients a = [ag, a1, a9, -], the basis
vector V and the constant matrix K with entries:
n n
Ky :szijcmij& m,n=0,1,2,--- .
i=0 j=0

Remark 2.1. The integral part converts to matrix form using equation
(2.7).

2.3. Converting IDE to matrix. Let f(z) = i, fivi(z) = f V
with the coefficient vector f = (fo, f1," ", fn,0,0,---). Considering the

equations (2.1), (2.2) and (2.7) we have

all,V = a KV
aB

v,

3

|
[SHEN
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instead of (1.1), (1.2). So

a(Il, = AK) = f, aB =d, (2.8)

because V is a basis vector. Now let

—

K = II, - AK,

G = [Bla"'aBndaKlaKQa"']a

g = [dla"'adndaf[]afla"']'
Furthermore, let B be the matrix representation of the supplementary
conditions with j** column Bj, and let Ky ,K> , --- be the columns of

the matrix K. So (2.8) can be replaced by the equation
aG =g. (2.9)

Definition 2.2. The polynomial y,(z) = g,V will be called an approx-

imate solution of ( 1.1 ) and ( 1.2 ), if the vector a,, = [ag, a1, - ,ay] is
the solution of the system of linear algebraic equations
a,Gn = gn, (2.10)

where G, is the matrix defined by restriction of G to its first n+ 1 rows
and columns.

Remark 2.3. For ny = 0 and pg(z) = 1, the equation ( 1.1 ) is trans-
formed into a Volterra integral equation of second kind and for A = 0,
it is transformed into a differential equation.

3. Error estimation

In this section an error estimator for the approximate solution of
(1.1) and (1.2) is obtained. Let us call e,(z) = y(x) — yn(z) as the
error function of the approximate solution y,(z) to y(z), where y(z) is
the exact solution of (1.1) and (1.2). Hence y, (z) satisfies the following
equation:

Dyn(z) — A/jk(m,t)yn(t)dt — f(2) + Ho(z), =€ [ab],

with ng independent conditions
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nq
S eyl V(a) + Py Do) = dj, G=1,2, na.
s=1 (3.2)

The perturbation term H,(z) can be obtained by substituting the
computed solution y,(z) into the equation

Hy(2) = Dyale) = X [ Ko, Dy (t)dt = (). (3.3)

We proceed to find an approximation e, y(z) to the error function
en(z) in the same way as we did before for the solution of equations
(1.1) and (1.2). Here N denotes the Tau degree of e,(z). Subtracting
(3.1) and (3.2) from (1.1) and (1.2) respectively, the error function e, (z)
satisfies the equation

Dey(x) — A/jk(x,t)en(t)dt _ _Hy(), z€lab, (34)

with ngy homogeneous conditions

S [Vel D (@) + Pl V(@) =0, j=1,2,-- ,na.
s=1 (3.5)

It should be noted that in order to construct the approximation
en,N(z) for e,(z), we only need to re-compute the right hand side of
the system (2.10). In fact the structure of the coefficient matrix G,
remains the same.

4. Application on the Chebyshev basis

In section 2, we considered V. = [vg(z),v1(z),---]T as a basis vector
with polynomial entries where deg (v;(z)) < i, for 1 =0,1,2,---.
It was used for converting (1.1) and (1.2) into a system of linear equa-
tions. The shifted Chebyshev polynomials are interesting polynomial
bases with a matrix V of the same structure. We pursue the application
of the method for the case of Chebyshev polynomials.

The shifted Chebyshev polynomials are defined as

:2x—(b+a)

Ti(@) =1, Ti(s) = =20,

x € [a,b]
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and, for 7 > 1, as
2z — (b+a)
fale) =25 T @) - T @), @ e fa,h)

In this case the functions y,(z), f(z) and k(z,t) are written as

yn(z) =Y a; T (x), f(z) =D "fiT(x),
i=0 i=0

k(m,t) = "> ki Tj (x) T} (t),

i=0  j=0
where the symbol (") over " indicates that the first and the last terms
must be divided by 2. Here ag,aq,--- ,a, are obtained from (2.10) and
fi , kij are given by the following relations:
2 &, QST
= (Z =2z i =0.1.2.- -
fi (”)5;0 f(zs) cos( n ), i y by 4y iz
4 Ny, 1ST jrm .
kl] = (ﬁ) Z: Z: k(Is,IEr) COS(T) COS(T)’ t,) = Oa 172a e, N,
r=0 s=0
with
1
Ty = — {(b—a)cos (ﬂ> +(b+a)} , s=0,1,---,n,
2 n
and ¢y in (2.5) are easily computed for m = 0,1,--- ,3n + 1, i =

0,1,---,n,5=0,1,--- ,n,s=0,1,--- as follows:

b—a 1
sz‘sz( g )[5(21+z2+23+z4)—(71 + 72 + 73 + V1) Bmo|

with
otherwise,

Zl:{ ﬁﬁ(ﬁm,ﬁrﬁm,z) if j4+s+1#£0
0

_ | 5B+ Bma) if j+s—1#0
z9 — )
0 otherwise,

0 otherwise,

23:{ (B + Bs) if G—s+1£0
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Z4 =

{%(5m,7+5m,8) if j—s—1#0

0 otherwise,
Cq)ititt .
= G i +s+140
0 otherwise,
—1)J+s . .
w={ G i its- 120
0 otherwise,
_1)i—s+1 . .
= D if j—s+1#0
0 otherwise,
—1)J-s . .
e = (jfzfl if j—s—1#0
0 otherwise,
where for m =0,1,--- ,3n + 1 we have

g (LAl m=lititst]]
m1 = otherwise,

g, (L if m=l—itits]
m,2 otherwise,

By s = 1 if m=li+j+s—1]
m3 0 otherwise,

By = 1 if m=|—i+j+s—1]
mAd =) 0 otherwise,
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b [ 1 if m=liti-a+l
mS 0 otherwise,

o[ 1 if m=l—itj-s+]]
m6 =0 otherwise,

G [ 1 if m=liti-a-1
mT= 0 otherwise,

By = 1 if m=|—-i+j—s—1]
m.8 otherwise,

otherwise.

ﬁm,gz{é if m=i

5. Numerical examples

In this section we consider some examples demonstrating the accuracy
of the method and effectiveness of the Chebyshev basis compared with
the standard basis X.

Example 5.1.(Constructed)

Y'() + (0 — 20y () + 422y (2) + 4 [ (o — DPhy()d = 2z — 17,
y'(0) = 0.

The exact solution is y(z) = sin(z?) — 2 cos(x?). For numerical results
and comparison with the exact solution see Table 1.

Example 5.2. [ See [6, 3], Example (b) ]

y'(z) =142z —y(z) + [J 2(1 + 22)e!@Dy(t)dt, 0<z <1,

The exact solution is y(z) = ¢*". For numerical results and comparison
with exact solution see Table 2.



42 Pour-Mahmoud, Rahimi and Shahmorad

In the following two tables the terms (Ezact), (Tau), (Tau.Err),
(Shahmo.Err), (Markro.Err) are provided at the selected points of the
given interval for the exact solution, Tau approximate solution, their
absolute error |y(s) — yn(s)| , estimation error by the Tau method in
Chebysheve basis, the estimation error of the Tau method obtained by
Shahmorad [4] in the standard basis X and the absolute error of the
Makroglou method [6], respectively.

Table 1
T FEzxact Tau Tau.Err Est.Err
n=>5
0.00 —2.00000000 —2.00000000 2.00e —09 4.00e— 12
.20 —1.95841088 —1.95909953 6.89¢ — 04 6.88e — 04
.40 —1.81513636 —1.82041079 5.27¢ —03 5.27e — 03
.60 —1.51951941 —1.52774678 8.23¢ — 03 8.21e — 03
.80 —1.00699608 —1.01541428 8.42¢ —03 7.96e — 03
1.00 —.23913363  —.25000787 1.09¢ — 02 5.34e — 03
n =10
0.00 —2.00000000 —2.00000000 2.00e —09 2.47e— 14
.20 —1.95841088 —1.95841088 0.00e — 01 1.20e — 09
.40 —1.81513636 —1.81513636 2.00e —09 5.40e — 09
.60 —1.51951941 —1.51951942 7.00e — 09 1.85e — 08
.80 —1.00699608 —1.00699607 3.00e — 09 1.86e — 06
1.00 —.23913363 —.23913363 3.90e — 09 6.45e¢ — 05
n=15
0.00 —2.00000000 —2.00000000 2.00e—09 1.00e— 17
.20 —1.95841088 —1.95841088 2.00e —09 6.49¢ — 11
.40 —1.81513636 —1.81513636 2.00e —09 6.55e¢ — 11
.60 —1.51951941 —1.51951942 1.00e — 09 3.80e — 10
.80 —1.00699608 —1.00699607 1.00e —09 1.70e — 09
1.00 —.23913363 —.23913363 2.00e — 10 2.46e — 07

Numerical results

Table 1; Numerical results of Example 1 in the Chebyshev basis and
comparison with the numerical results of the standard basis for n = 5,
10, 15.
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Table 2

T Ezact Tau Tau - Err Est - Err Shahmo.Err Makro.Err
n =2

0 1.0 1.0 0.0 0.0

0.200 1.04081  0.990415 5.0395 x 10~2  5.7551 x 102

0.400 1.17351  1.18107 7.56 x 1073 8.6335 x 1073

0.600 1.43333  1.57196 1.3863 x 10~ 1 1.5831 x 107!

0.800 1.89648  2.16309  2.6661 x 10~ ! 3.0446 x 1071

1.0 2.71828  2.95446 2.3618 x 10~ ! 2.6971 x 1071

n=2>5

0 1.0 1.0 0.0 0.0

0.200 1.04081  1.04081 7.2 x 1077 8.2224 x 10~7

0.400 1.17351  1.17351 3.2 x 1078 3.6544 x 10~8

0.600 1.43333  1.43337 4.5 x 10~7 5.1390 x 10~7

0.800 1.89648 1.89642 6 x 10~7 0.8212 x 10~7

1.0 2.71828  2.71840 1.2 x 1075 1.3704 x 105

n = 10

0 1.0 1.0 0.0 0.0 0.0

0.200 1.04081  1.04081 1.001 x 10~ 1! 1.114 x 10~10 1.153 x 1072 3.63 x 10~8
0.400 1.17351  1.17351 1.001 x 10~ 10 1.112 x 10~ 10 2.331 x 10°8 1,60 x 10~ 7
0.600 1.43333  1.43333 1.001 x 10~8 1.112 x 10~8 2.223 x 1079 4.45 x 1077
0.800 1.89648  1.89648 1.100 x 10~7 1.113 x 10~6 1.244 x 10™%  1.11 x 10~9
1.0 2.71828  2.71828 1.2 x 1076 1.284 x 10~6 1.838 x 1073 2,75 x 10~9
n =15

0 1.0 1.0 0.0 0.0 0.0

0.200 1.04081  1.04081 7.0000 x 10~ 7.994 x 10710 1.489 x 10~ °

0.400 1.17351  1.17351 2.100 x 10711 2.238 x 10710 2.591 x 10~ °

0.600 1.43333  1.43333 6.100 x 1010 6.962 x 1010 9.087 x 10~°

0.800 1.89648  1.89648 1.100 x 10~1° 1.142 x 1079 7.984 x 1077

1.0 2.71828  2.71828 2.570 x 108 2.93494 x 10~7  2.880 x 10~ °

n = 20

0 1.0 1.0 0.0 0.0 0.0 0.0

0.200 1.04081  1.04081 1.540 x 10~ 12 1.668 x 10~ 11 1.123 x 1079 2.28 x 10~°
0.400 1.17351  1.17351 1.571 x 10~ 12 1.528 x 10~ 11 1.439 x 1072 9.99 x 10~°
0.600 1.43332  1.43332 1.318 x 10~ 11 1.363 x 10~ 11 2,373 x 10792 278 x 10~ 8
0.800 1.89648  1.89648 1.2126 x 10711 1.247 x 10710 1.402 x 1072 6.91 x 10~ 8
1.0 2.71828  2.71828 1.595 x 1010 1.958 x 10”7 2.660 x 10°°% 171 x 10~ 7

43

Table 2; Numerical results of Example 2 in the Chebyshev basis com-

pared with the estimation error obtained by Hosseini and Shahmorad
in the standard basis for n= 10, 15, 20 and the absolute error of the

method applied by Makroglou for n= 10, 20.

6. Conclusions

Most integro-differential equations are usually difficult to solve analyt-
ically. In many cases, it is required to obtain the approximate solutions.
For this purpose, the Tau method presented in this paper can be applied.
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By comparing the estimation errors in the tables (1) and (2) we con-
clude that the results of operational Tau method in the Chebyshev basis
is not only more accurate than the Makroglou method but it is also
superiour to the Tau method applied in standard basis.

1]

[4]
[5]

REFERENCES

S.M. Hosseini and S. Shahmorad, Numerical solution of a class of integro-
differential equations by the Tau method with an error estimation, Appl. Math.
Comput. 136 (2003), 559-570.

S.M. Hosseini and S. Shahmorad, Tau numerical solution of Fredholm integro-
differential equations with arbitrary polynomial bases, J. Appl. Math. Modelling
27 (2003), 145-154.

S.M. Hosseini and S. Shahmorad, A matrix formulation of the Tau method for
Fredholm and Volterra linear integro - differential equations, Korean J. Comput.
Appl. Math. 9 (2) (2002), 497-507.

A. Makroglou, Convergence of a block-by-block method for non-linear Volterra
integro-differential equations. Math.Comp. 35 (1980), 783-796.

E.l. Ortiz, On the numerical solution of non-linear and functional differential
equations whit the Tau method. In : Numerical treatment of differential equa-
tions in applications, Springer-Verlag, Berlin (1978), 127 - 139.

E.l. Ortiz and H. Samara : An operational approach to the Tau method for the
numerical solution of non-linear differential equations, Computing 27 (1981), 15
- 25.

J. Pour-Mahmoud

Faculty of Basic Science

Azarbijan University

Tabriz, Iran

e-mail: jafarlisab5@yahoo.ca

M. Y. Rahimi and S. Shahmorad
Faculty of Mathematical Science
Tabriz University

Tabriz, Iran

e-mail: m.rahimi@tabrizu.ac.ir
e-mail: shahmorad@tabrizu.ac.ir



