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Abstract. In this paper, we give some necessary conditions for a com-
plex difference equation of Malmquist type

n∑
j=1

f(z + cj) =
P (f(z))

Q(f(z))
,

where n(∈ N) ≥ 2, and P (f(z)) and Q(f(z)) are relatively prime poly-
nomials in f(z) with small functions as coefficients, admitting a mero-
morphic function of finite order. Moreover, the properties of finite or-

der transcendental meromorphic solutions for complex difference equa-
tion

∏n
j=1 f(z + cj) = P (f(z))/Q(f(z)) are also investigated.
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MSC(2010): Primary: 30D35; Secondary: 39A10.

1. Introduction

In the whole paper, a meromorphic function always means meromorphic in
the whole complex plane. We assume that the reader is familiar with the basic
notions of Nevanlinna’s value distribution theory of meromorphic functions, see,
e.g., [4,10]. Let f(z) be a meromorphic function, we use σ(f), λ(f) and λ(1/f)
to denote the order of growth, the exponent of convergence of the zeros and
the exponent of convergence of the poles of f(z), respectively. In addition, we
denote by S(r, f) any quantity that satisfies the condition S(r, f) = o(T (r, f))
as r → ∞ outside of a possible exceptional set of finite logarithmic measure,
and a meromorphic function a(z) ( ̸≡ ∞) is called a small function with respect
to f(z) provided that T (r, a(z)) = S(r, f).

As we all know, the celebrated Malmquist theorem shows that a complex
differential equation f ′(z) = R(z, f(z)), where R(z, f(z)) is rational in both
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arguments, and which admits a transcendental meromorphic solution f(z) in
the complex plane, reduces into a Riccati differential equation

(1.1) f ′(z) = a(z) + b(z)f(z) + c(z)f(z)2

with rational coefficients, and all meromorphic solutions of (1.1) have finite
order. For more details concerning equation (1.1), as well as for generalizations
of the Malmquist theorem, see, e.g., [10]. Recently, as the research on the
difference analogues of Nevanlinna theory is becoming active, many authors
(see, e.g., [1–3,5,6,8,11]) started to consider the growth of order and existence
of meromorphic functions of complex difference equations of Malmquist type.
By using the difference analogue of the lemma on the logarithmic derivative,
Chiang and Feng [3] gave the necessary conditions for a complex difference
equation of Malmquist type admitting a meromorphic function of finite order
by proving the following Theorem 1.1.

Theorem 1.1. (see [3]) Let c1, · · · , cn be nonzero complex constants. If the
difference equation

(1.2)
n∑

j=1

f(z + cj) =
P (f(z))

Q(f(z))
=

apf(z)
p + ap−1f(z)

p−1 + · · ·+ a1f(z) + a0
bqf(z)q + bq−1f(z)q−1 + · · ·+ b1f(z) + b0

with rational coefficients ai(z), bj(z) admits a finite order transcendental mero-
morphic solution, then we have d = max{p, q} ≤ n.

Remark 1.2. From the following Theorem 1.3, we know that if (1.2) admits a
finite order transcendental meromorphic solution, we also have p ≤ q + 1.

The difference equations of Malmquist type may have rational solutions. For
example, f(z) = −1/z satisfies the following equation

f(z + 1) + f(z − 1) =
(z + 2)f(z) + 1

1− f(z)2
.

In this paper, we study the growth of transcendental meromorphic solutions for
complex difference equations of Malmquist type. We first prove the following
Theorem 1.3.

Theorem 1.3. Suppose that c1, c2, · · · , cn are distinct, nonzero constants,
and that f(z) is a transcendental meromorphic solution of complex difference
equation of Malmquist type

(1.3)
n∑

j=1

f(z+ cj) =
P (f(z))

Q(f(z))
=

apf(z)
p + ap−1f(z)

p−1 + · · ·+ a1f(z) + a0
bqf(z)q + bq−1f(z)q−1 + · · ·+ b1f(z) + b0

,

where n(∈ N) ≥ 2, and P (f(z)) and Q(f(z)) are relatively prime polynomials in
f(z) with coefficients as (s = 0, · · · , p) and bt (t = 0, · · · , q) such that apbq ̸≡ 0
and satisfy T (r, as) = S(r, f) and T (r, bt) = S(r, f). Then

(1) if p > q + 1, we have σ(f) = ∞;
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(2) if f(z) is an entire function of finite order, we have p = 1 and q = 0.

It is natural to ask what happens if we ignore the condition in Theorem 1.3
that all the coefficients as (s = 0, · · · , p) and bt (t = 0, · · · , q) are all small
functions of f(z). We consider this case and obtain the following Theorem 1.4.

Theorem 1.4. Suppose that c1, c2, · · · , cn are distinct, nonzero constants
and that P (f(z)) and Q(f(z)) are relatively prime polynomials in f(z) with
coefficients as (s = 0, · · · , p) and bt (t = 0, · · · , q) such that apbq ̸≡ 0, and
there is a dominant coefficient al or bm satisfying

σ0 = σ(al) > max{σ(as), σ(bt) : 0 ≤ s ≤ p, 0 ≤ t ≤ q, s ̸= l}
or

σ0 = σ(bm) > max{σ(as), σ(bt) : 0 ≤ s ≤ p, 0 ≤ t ≤ q, t ̸= m},
and σ0 < ∞. If p > q+1 and f(z) is a finite order transcendental meromorphic
solution of (1.3), then σ(f) = σ0.

In the rest of this paper, we continue to investigate the transcendental mero-
morphic solutions of complex difference equations of the following type

(1.4)
n∏

j=1

f(z+ cj) =
P (f(z))

Q(f(z))
=

apf(z)
p + ap−1f(z)

p−1 + · · ·+ a1f(z) + a0
bqf(z)q + bq−1f(z)q−1 + · · ·+ b1f(z) + b0

.

Chiang and Feng [3] proved that if (1.4) with rational coefficients admitting a
meromorphic function of finite order, then d = max{p, q} ≤ n. We consider
the finite order transcendental meromorphic solution of (1.4) and prove the
following Theorem 1.5 which is similar to Theorem 1.1 in [8].

Theorem 1.5. Let c1, c2, · · · , cn be distinct, nonzero constants. Suppose that
f(z) is a finite order transcendental meromorphic solution of complex difference
equation (1.4), where n(∈ N) ≥ 2, and P (f(z)) and Q(f(z)) are relatively prime
polynomials in f(z) with coefficients as (s = 0, · · · , p) and bt (t = 0, · · · , q) such
that a0apbq ̸≡ 0 and satisfy T (r, as) = S(r, f) and T (r, bt) = S(r, f). If q ≥ 1,
then we have λ(f) = λ(1/f) = σ(f).

2. Some lemmas

Lemma 2.1. (see [3]) Let c1, c2 be two complex numbers such that c1 ̸= c2
and let f(z) be a meromorphic function with finite order. Let σ be the order of
f(z), then for each ε > 0, we have

m

(
r,
f(z + c1)

f(z + c2)

)
= O(rσ−1+ε).

Lemma 2.2. (see [9]) Let f(z) be a meromorphic function of finite order of a
difference equation of the form

U(z, f)P (z, f) = Q(z, f),
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where U(z, f), P (z, f) and Q(z, f) are difference polynomials with all the co-
efficients aλ(z) being small functions as understood in the usual Nevanlinna’s
theory, i.e., T (r, aλ(z)) = O(rσ−1+ε) + S(r, f). The maximum total degree
degf U(r, f) = n in f(z) and its shifts, and degf Q(r, f) ≤ n. Moreover, we
assume that U(r, f) contains just one term of maximal total degree in f(z) and
its shifts. Then for each ε > 0,

m(r, P (z, f)) = O(rσ−1+ε) + S(r, f),

possibly outside of an exceptional set of finite logarithmic measure.

In what follows, we say that f(z) is a meromorphic function with more than
S(r, f) poles of a certain type in the sense that the integrated counting function
of these poles is not of type S(r, f), and we use ∞k (0l) to denote a pole (zero)
of f(z) with multiplicity k (l).

Lemma 2.3. (see [6]) Suppose that f(z) is a meromorphic solution of (1.3)
with more than S(r, f) poles (counting multiplicities). Let zj denote the zeros
and poles of the coefficients ai which are small meromorphic functions with
respect to f(z). Let mj be the maximum order of the zeros and poles of the
functions ai at zj. Then for any ε > 0, there are at most S(r, f) points zj such
that

f(zj) = ∞kj ,

where mj ≥ εkj.

Lemma 2.4. (see [10]) Let f(z) be a meromorphic function, then for all irre-
ducible rational function in f(z)

R(f(z)) =
apf(z)

p + ap−1f(z)
p−1 + · · ·+ a1f(z) + a0

bqf(z)q + bq−1f(z)q−1 + · · ·+ b1f(z) + b0
,

with meromorphic coefficients as (s = 0, · · · , p) and bt (t = 0, · · · , q) which
are small functions of f(z) and d = max{p, q}, the characteristic function of
R(f(z)) satisfies

T (r,R(f(z))) = dT (r, f) + S(r, f).

Lemma 2.5. (see [3]) Let f(z) be a meromorphic function with order σ = σ(f),
σ < ∞, and let c be a fixed nonzero complex number, then for each ε > 0, we
have

T (r, f(z + c)) = T (r, f) +O(rσ−1+ε) +O(log r).

Lemma 2.6. (see [3]) Let f(z) be a meromorphic function with order σ = σ(f),
σ < ∞, and let c be a fixed nonzero complex number, then for each ε > 0, we
have

N(r, f(z + c)) = N(r, f) +O(rσ−1+ε) +O(log r).
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Lemma 2.7. (see [7]) Let f(z) be a nonconstant finite order meromorphic
solutions of P (z, f) = 0, where P (z, f) is a polynomial in f(z). If P (z, a) ̸≡ 0
for a meromorphic function a(z) satisfying T (r, a) = S(r, f), then we have

m

(
r,

1

f − a

)
= S(r, f).

3. Proof of Theorem 1.3

Proof. (1) We use a similar argument as that in the proof of Proposition 5.4
in [9]. Suppose on the contrary that f(z) is a transcendental meromorphic
solution of (1.3) of finite order σ. For simplicity, let

FL(z) :=
n∑

j=1

f(z + cj)

and

FR(z) :=
apf(z)

p + ap−1f(z)
p−1 + · · ·+ a1f(z) + a0

bqf(z)q + bq−1f(z)q−1 + · · ·+ b1f(z) + b0
.

Since p > q+1, then by Lemma 2.2, we conclude that m(r, f) = S(r, f). There-
fore, f has more than S(r, f) poles, counting multiplicity. Denoting points in
the pole sequence by zi. We may invoke the notation introduced in Lemma
2.3 to denote f(zi) = ∞ki . By Lemma 2.3, f has more than S(r, f) poles so
that we have mi < εki at zi. Here mi refers to the coefficients ap, · · · , a0 and
bq, · · · , b0 of (1.3). Denote the sequence of such poles by z1,i, and take this
sequence as our starting point. Supposing, as we may, that ε < 1/4, we see
that

FR(z1,i) = ∞k′
2,i , k′2,i ≥ (p− ε)k1,i − (q + ε)k1,i ≥ (2− 2ε)k1,i.

Comparing this with FL, we conclude that at least one of the points z1,i + c1,
· · · , z1,i+ cn is a pole of f of multiplicity k2,i ≥ k′2,i. We first apply Lemma 2.3

to obtain that there are more than S(r, f) such points z2,i with f(z2,i) = ∞k′
2,i

and m2,i < εk2,i. We then pick only one of these points, denoting it by z2,i.

Continuing to the next phase, we observe that FR(z2,i) = ∞k′
3,i , and we fix,

for each permitted z2,i, a pole z3,i of the next phase so that f(z3,i) = ∞k3,i ,
where

k3,i ≥ k′3,i ≥ (2− 2ε)k2,i ≥ (2− 2ε)2k1,i.

Then by induction, we may finally choose a sequence zm of poles of f(z) which
satisfy the conditions f(zm) = ∞km and km ≥ (2− 2ε)m−1k1 ≥ (2− 2ε)m−1.
We now estimate the counting function N(r, f). Let C = max (|c1|, · · · , |cn|)
and denote rm = |z1|+ (m− 1)C, then it is geometrically obvious that

zm ∈ B(z1, (m− 1)C) ⊂ B(0, |z1|+ (m− 1)C) = B(0, rm).
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For m large enough, we have rm ≤ 2(m− 1)C, which suggests that

n(rm, f) ≥ (2− 2ε)m−1 ≥ (3/2)m−1.

Hence,

N(2rm, f) ≥ (log 2)(3/2)m−1 ≥ (log 2)(3/2)rm/3C .

This means that f(z) is of infinite order, which obviously contradicts to our
assumption that f(z) is of finite order, and hence σ(f) = ∞.

(2) Suppose that f(z) is an entire function of finite order. If q ≥ p ≥ 1, then
we deduce from (1.3) that

apf(z)
p + ap−1f(z)

p−1 + · · ·+ a1f(z) + a0

=

n∑
j=1

f(z + cj)(bqf(z)
q + bq−1f(z)

q−1 + · · ·+ b1f(z) + b0).

By Lemma 2.2 and the above equation, we have

(3.1) m

(
r,

n∑
j=1

f(z + cj)

)
= S(r, f).

By Lemma 2.4 and (1.3), we get

(3.2) T

(
r,

n∑
j=1

f(z + cj)

)
= qT (r, f(z)) + S(r, f).

Equations (3.1) and (3.2) and Lemma 2.6 imply that

nN(r, f) ≥ N

(
r,

n∑
j=1

f(z + cj)

)
+ S(r, f) = qT (r, f(z)) + S(r, f)(3.3)

which is a contradiction to our assumption that f(z) is an entire function.
Therefore, q < p. If p > q + 1, we know from the first part that f(z) is a
meromorphic function of infinite order. So p = q+1. By Lemma 2.4 and (1.3),
we get

(3.4) T

(
r,

n∑
j=1

f(z + cj)

)
= pT (r, f(z)) + S(r, f).

If p ≥ 2, we deduce from Lemma 2.1 and (1.3) that

m

(
r,

n∑
j=1

f(z + cj)

)
= m

(
r,

n∑
j=1

f(z + cj)

f(z)
f(z)

)

≤m

(
r,

n∑
j=1

f(z + cj)

f(z)

)
+m(r, f(z)) ≤ T (r, f) + S(r, f).

(3.5)
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It follows from (3.4) and (3.5) and Lemma 2.6 that

nN(r, f) ≥ N

(
r,

n∑
j=1

f(z + cj)

)
+ S(r, f) ≥ (p− 1)T (r, f(z)) + S(r, f),

which is also a contradiction to that f(z) is an entire function. Thus we get
p = 1 and q = 0. □

4. Proof of Theorem 1.4

Proof. Without loss of generality, we may suppose that

σ0 = σ(ap) > max{σ(as), σ(bt) : 0 ≤ s ≤ p− 1, 0 ≤ t ≤ q}.
We claim that σ(ap) ≤ σ(f). Otherwise, we may suppose that σ(ap) > σ(f),
and we have

T (r, as) = S(r, ap), s = 0, 1, · · · , p− 1,

T (r, bt) = S(r, ap), t = 0, 1, · · · , q,
T (r, f i) = iT (r, f) = S(r, ap), i = 1, · · · ,max{p, q}.

By Lemma 2.4 and the above equations, we have

(4.1) T

(
r,
apf(z)

p + ap−1f(z)
p−1 + · · ·+ a1f(z) + a0

bqf(z)q + bq−1f(z)q−1 + · · ·+ b1f(z) + b0

)
= T (r, ap)+S(r, ap).

On the other hand, by Lemma 2.5, we obtain
(4.2)

T

(
r,

n∑
j=1

f(z + cj)

)
≤

n∑
j=1

T (r, f(z + cj)) + log n ≤ nT (r, f(z)) + S(r, f).

From (1.3), (4.1) and (4.2), we obtain

T (r, ap) + S(r, ap) ≤ nT (r, f(z)) + S(r, f) = S(r, ap) + S(r, f),

which is impossible. So we get σ(ap) ≤ σ(f). However, if σ(f) > σ0 when
p > q + 1, then all the coefficients are small with respect to f(z) and from
Theorem 1.3 (1), we know that σ(f) = ∞, a contradiction. Thus we have
σ(f) = σ0. □

5. Proof of Theorem 1.5

Proof. Suppose that f(z) is a finite order transcendental meromorphic solution
of (1.4). First, we prove that λ(f) = σ(f). We deduce from (1.4) that

P (z, f(z)) =
n∑

j=1

f(z + ηj)(bqf(z)
q + bq−1f(z)

q−1 + · · ·+ b1f(z) + b0)

−apf(z)
p + ap−1f(z)

p−1 + · · ·+ a1f(z) + a0.

We notice that
P (z, 0) = −a0 ̸≡ 0.
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It follows from Lemma 2.7 that

m

(
r,

1

f(z)

)
= S(r, f)

for all r possibly outside of an exceptional set of finite logarithmic measure.
Therefore,

N

(
r,

1

f(z)

)
= T (r, f) + S(r, f)

for all r possibly outside of an exceptional set of finite logarithmic measure.
Thus we have λ(f) = σ(f).

Second, we prove that λ(1/f) = σ(f). Set

H(z, f(z)) = bqf(z)
q + bq−1f(z)

q−1 + · · ·+ b1f(z) + b0,

and rewrite (1.4) into the following form
n∏

j=1

f(z + cj)H(z, f(z)) = apf(z)
p + ap−1f(z)

p−1 + · · ·+ a1f(z) + a0.

Note that p ≤ n. Then by Lemma 2.2 and the above equation, we have

m(r,H(z, f(z))) = S(r, f).(5.1)

By Lemma 2.4 and (1.4), we have

(5.2) T (r,H(z, f(z))) = qT (r, f(z)) + S(r, f).

It follows from (5.1) and (5.2) and Lemma 2.6 that

qT (r, f(z)) + S(r, f) = N(r,H(z, f(z))) + S(r, f) ≤ qN(r, f) + S(r, f).

Thus we have λ(1/f) = σ(f) and this completes the proof. □
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