Bulletin of the Iranian Mathematical Society Vol. 32 No. 1 (2006), pp 65-78.

0-DERIVATIONS IN BANACH ALGEBRAS

M. MIRZAVAZIRI* AND M. S. MOSLEHIAN

Communicated by Heydar Radjavi

ABSTRACT. We introduce the notions of (inner) o-derivation, (in-
ner) o-endomorphism and one-parameter group of o-endomorphisms
(o-dynamics) on a Banach algebra. We associate a o-derivation to
any o-dynamics as its ”o-infinitesimal generator”. We show that
the o-infinitesimal generator of a o-dynamics of inner
o-endomorphisms is an inner o-derivation and we study the re-
verse statement. We also establish a generalized Leibniz formula
and generalize Kleinenckr-Sirokov theorem for o-derivations under
certain conditions.

1. Introduction

Let A be a Banach algebra. Recall that a derivation d defined on a
(dense) subalgebra D of A is a linear mapping satisfying d(ab) = d(a)b+
ad(b), where a,b € D. A derivation d is said to be inner if there exists
an element u € A such that d(a) = ua — au for all @ € A. There are
nonzero derivations defined on a commutative algebra among which we
may consider the ordinary derivative d/dt : C'([0,1]) — C([0, 1]), where
C1(]0,1]) is the algebra of all continuously differentiable functions on
[0,1]. This example gives an idea to define a derivation on a dense
subalgebra of a given algebra A.
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Derivations play essential role in some important branches of math-
ematics and physics such as dynamical systems. The general theory of
dynamical systems is the paradigm for modeling and studying phenom-
ena that undergo spatial and temporal evolution. The application of
dynamical systems has nowadays spread to a wide spectrum of disci-
plines including physics, chemistry, biochemistry, biology, economy and
even sociology. In particular, the theory of dynamical systems concerns
the theory of derivations in Banach algebras and is motivated by ques-
tions in quantum physics and statistical mechanics, cf. [13].

It is known that the relation T'S — ST = I is impossible for bounded
operators T and S on Banach spaces; cf. [13] and references therein.
In fact the study of this relation as a special case of T'o(S) — o(5)T =
R, where o is a linear mapping, leads the theory of derivations to be
extensively developed.

The above considerations motivate us to generalize the notion of
derivation as follow. Let D be a subalgebra of a Banach algebra A
and let 0,d : D — A be linear mappings. If d(ab) = d(a)o(b) 4+ o(a)d(b)
for all a,b € D then we say d is a o-derivation (see [1, 2, 3, 8, 9, 11, 12]
and the references therein). There are some interesting questions in this
area of research, e.g. one may ask ‘What are the o-derivations of the
compact operators acting on a separable Hilbert space?” The paper [4]
can be a starting point for answering this question. Note that if o is the
identity map then d (and every so-called inner o-derivation) is indeed a
derivation (inner derivation, respectively) in the usual sense.

In this paper we introduce and study (inner) o-derivations, (inner)
o-endomorphisms and one-parameter group of o-endomorphisms (o-
dynamics). The importance of our approach is that o is a linear map-
ping, not necessarily an algebra endomorphism. It is shown that the
o-infinitesimal generator of a o-dynamics of inner og-endomorphisms is
an inner o-derivation and the converse is true under some conditions.
We give a formula for computation d"(ab), where d is a o-derivation that
is interesting in its own right. We also generalize two known theorems in
the context of Banach algebras, namely the Wielandt—Wintner theorem
and the Kleinecke—Shirokov theorem.

This paper is self-contained. The reader, however, is referred to [5]
for details on Banach algebras and to [6, 7, 13] for more information on
dynamical systems.
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2. o-dynamics

Throughout the paper A denotes a Banach algebra, ¢ is the identity
operator on A, D denotes a subalgebra of A, and o,d : D — A are
linear mappings.

Definition 2.1. d is called a o-derivation if d(ab) = d(a)o(b) + o (a)d(b)
for all a,b € D.

Example 2.2. Let o be an arbitrary linear mapping on D and suppose
that v is an element of A satisfying u(o(ab) — o(a)o(b)) = (o(ab) —
o(a)o(b))u for all a,b € D. Then the mapping d : D — A defined by
d(a) = uo(a) — o(a)u is a o-derivation.

The above o-derivation is called inner. Note that if o is an endomor-
phism then u can be an arbitrary element of A.

Example 2.3. Let d be an endomorphism on A. Then d is a
%—derivation.

Example 2.4. Let d,o : C([0,1]) — C([0,1]) be defined by o(f) = £
and d(f) = fhg, respectively. Here hg is an arbitrary fixed element in
C(]0,1]). Then easy observations show that o(1) # 1, d(1) # 0, the

linear mapping ¢ is not endomorphism, and d is a o-derivation.

Example 2.5. Suppose that d,o : C([0,1]) — C([0,1]) are defined by

[ lfet o<t<d
U(f)(t)—{gf(l) %gtﬁ%
and
[ f@ORot) 0<t< !
d(f)(t)—{ f(l)hoo(%) %gtgi ’

respectively, where hg is an arbitrary fixed element of C'([0,1]). Then a
straightforward verification shows that d is a o-derivation and that no
scalar multiple of ¢ is an endomorphism.

Definition 2.6. A linear mapping « : A — A is called o-endomorphism
if (¢ +0—1)(ab) — (a+0—1)(a)(a+ 0 —1)(b) = o(ab) — o(a)o(b) for



68 Mirzavaziri and Moslehian
all a,b € A.

Note that if 0 = ¢+ then a g-endomorphism is nothing more than an
endomorphism on A in the usual sense.

Lemma 2.7. Let a be a linear mapping on A. Then « is a
o-endomorphism if and only if

a(ab) = a(a)a(b) = (a(a) = a)(a(b) = b) + (o(a) = a)((b) = b).
Proof. Straightforward. O

Definition 2.8. A mapping t € R — o € B(A) denoted by {a;}her
is a one-parameter group of bounded operators on A if it satisfies the
following conditions:

(i) apas = gy, for all t,s € R,

(11) apg = L.

In the case that a;’s are bounded o-endomorphisms, {a; }ier is called
a one-parameter group of o-endomorphisms on A. It is said to be uni-
formly continuous if the map t — «ay is continuous in the uniform topol-
ogy, i.e. ||lag—¢|| = 0ast — 0. In this case {A, a} is called a o-dynamics.

Let {A,a} be a o-dynamics. Then for each a € A, if the limit of
t=Yay(a) — t(a)) as t tends to 0 exists, we can define d(a) to be this
limit. This provides a mapping d : D — A, where D is the set of all
elements a in A for which the limit exists. The mapping d is called the
o-infinitesimal generator of the o-dynamics {oy}ier.

Proposition 2.9. Let {A ,a} be a o-dynamics. Then d =

1}in%t*l(ozt(a) —a) is an everywhere defined o-derivation.
e

Proof. We have
d(ab) = hmt Yoy (ab) — o(ab))

= hmt Y(ay + o —1)(ab) — o(ab))
(g + 0 —1)(a)(ay + 0 —1)(b) —o(a)o(b))
= ano(t (e + 0 = 1)(a) = o(a))o(b)
+(ar + 0 =) (@)t ((ar + 0 — 1) (b) — (b))
= d(a)o(b) + o(a)d(b).

= hmt L
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It follows from Proposition 3.1.1 of [6] that d is everywhere defined. [

Definition 2.10. A linear mapping « is called an inner o-endomorphism
if there is an element u € A such that (a+ 0 —1t)(a) = e"o(a)e *,a € A
and u(o(ab) — o(a)o(b)) = (o(ab) — o(a)o(b))u,a,b € A.

Lemma 2.11. Each inner o-endomorphism is indeed a o-endomorphism.
Proof. We have

(a+0—1)(ab) — (a+ 0 —1)(a)(a+ 0o —1)(b)

=e"(o(ab) —o(a)o(b))e™

=e"e “(o(ab) — o(a)o(h))
= o(ab) — o(a)o(b).

0

Theorem 2.12. Let {a;}ier be a one-parameter group of inner o-
endomorphisms. Then the o-infinitesimal generator d of o-dynamics
(A, @) is an inner o-derivation.

Proof. We have

limi™ (av(a) —a) = lim¢™ ((o¢ + 0 —0)(a) ~ o(a))
= limt~!(e"o(@)e ™ ~ o(a))
= %i_r)ré(uema(a)e e —eMo(a)ue™"™)

= wo(a)+ o(a)u.
Note that we use L’Hospital’s rule to get the third equality. O
Lemma 2.13. Let d: A — A be the inner o-derivation d(a) = uo(a) —
o(a)u. If 0? = 0 and o(au) = o(a)u,o(ua) = uo(a) for alla € A. Then
Z(—l) " ubo(a)u™F = (=1)"d" (a) (2.1)
k=0 k

for alla e A,0 <k <r,wherer > 1.
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Proof. We use induction on r. For r = 1 there is nothing to do. Assume
that (2.1) holds for . We have

(=)@t (@) = (=1)"'d(d"(a))
= —uo((—=1)"d"(a)) + o((~1)"d"(a))u
- -y ,’;>uk+lo(a>u’"—’“
k=0
+i(_1)k<;’;>uka(a)ur—k+l
k=0
= —i(—l)k@“kﬂa(a)u”“
k=0
r—1

= (=D)"wu"o(a) + o(a)u™ !
r—1
_ ];)(_l)k( (Z) + (k _7;_ 1) )uk—l—la(a)ur—k
= (=D)"u"o(a) + o(a)u™ !

r—1
r+1 ,_
_ Z(_l)k (k N 1) ukﬂa(a)u k
k=0
= (=D)""Wlo(a) + o(a)u™ ! +

S (-1 ( . l>uka<a>u’"+l-k

k=1
r+1
1
= Z(—l)k<r—]: )uka(a)u’"‘i'l_k.
k=0

0

Theorem 2.14. Let d : A — A be the inner o-derivation d(a) =
uo(a) — o(a)u. If 0> = o and o(au) = o(a)u,o(ua) = uo(a) for all
a € A, then there exists a one-parameter group of operators {a;}ier
such that d is its o-infinitesimal generator and oy — o + 1 is an inner
o-homomorphism for all t € R.
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>t dn
Proof. Put ay(a) = Z n'(a)' Using Lemma 2.13 we have
n=0 ’
' P = (—t)™um
Mol = (X TS S
= ZZ (' )' u"o(a)u™
= = nlm!
o~ o (=) R r—k
- gk:[] R — Ry ol
o _tr T
= Z( ') Z(—l)k " ubo(a)u"F
=0 k=0 k
o ty-
= Z—'d’"(a)
bl
= wyfa)

Since ((ap — o + 1) + 0 —1)(a) = ay(a) = e o(a)e ™, we deduce that
oy — 0 + ¢ is an inner g-endomorphism. Obviously ooy = ay4s and

_ o0 t"ndr
a0 = 1. Tn addition, 1im 29 =9 _ limS @ _ 4a). O
t—0 t =04 n!

Definition 2.15. Let d be a o-derivation. We say d multiplizes o if
o(ab) — o(a)o(b) C ker(d). In this case d is called a multiplizing o-
derivation.

Example 2.16. Each inner o-derivation d is multiplizing. Let d(a) =
uo(a)—o(a)u for some u € A. Then we have d(ab) = d(a)o(b)+o(a)d(b),
and so uo(ab) — o(ab)u = (uo(a) — o(a)u)o(b) + o(a)(uc(b) — o(b)u),
which implies that u(o(ab) — o(a)o(b)) — (o(ab) — o(a)o(b))u = 0 or
d(o(ab) — o(a)o(b)) = 0. Thus d is a multiplizing o-derivation.

Proposition 2.17. Let A be an algebra with no zero divisor. Then d
is a multiplizing o-derivation if and only if o(bo(ab)) = o(b)o?(ab) for
all a,b € A.

Proof. For each a,b,c € D we have
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d(abc) = d(ab
= (d(a
= d(a)o(b)o(c) + o(a)d(b)o(c) + o(ab)d(c).
On the other hand,
d(abc) = d(a)

Therefore,
d(a)(o(bec) — a(b)o(c)) = (o(ab) — o(a)a(b))d(c),

for each a,b,c € D. Putting ¢ = o(ab) — o(a)o(b), we have o(ab) —
o(a)o(b) € ker(d) if and only if o(b(o(ab) — o(a)o(b))) — o(b)o(o(ab) —
o(a)o(b)) = 0, which implies the result. O

3. Generalized Leibniz rule

In the rest of the paper we need a family of mappings {¢n & }nen,0<k<2n—1
to simplify the notations. We introduce these mappings by representing
the natural numbers in base 2.

Let n be a natural number and 0 < k < 2" — 1. Note that 2" — 1 =
(1...1)9 and each 0 < k < 2™ — 1 has at most n digits in base 2. Now

n times
assume that ¢, ; is the mapping derived from writing & in base 2 with

exactly n digits and put d for 1’s and o for 0’s.

To illustrate the mappings ¢, x’s, let us give an example. Let n =5
and k£ = 11. Then we can write k¥ = (01011)3 and so @511 = ododd =
odod?.

Lemma 3.1 Let n be a natural number and 0 < k < 2" — 1. Then

(i) donk = Pnt1,27+ks
(ii) denon_1-k = Qpi1on+1-1k,

(iii) OPnk = Pn+l,k;

(iv) o@non_1-k = Ppi1om+1_1-(204k)-

Proof. Assume that &k = (¢, ...c1)s.
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(1) donk = Prti,(len.cr)s = Prt1,204k-
(ii) 2" =1 —k = (¢, ...€1)2, where ¢; + ¢; = 1, since (2" — 1 — k) +
k =2" = (1...1)2. Thus we infer that dp,on 1 1 = dop

Cn..Cl)2 —

Pnt+1,(1cn...c1)2 = Pnt1,2n4(2n—1-k) = Pnt1,2n+1 1—k-
(111) 0Pn,k = Pn+1,(0cp...c1)a — Pn+1k:

(iv) oppon 1k = Pn+1,(06,...¢1)2 = Pnt1,2n—1—k = Pn41,2n+1-1—(2n4k)-
O

Theorem 3.2. For each a,b € D,

Z (Pnk (Pn2" 1- k(b) (31)

Proof. We prove the assertion by induction on n. For n = 1 we have

d(ab) = d(a)o(b) + o(a)d(b) = @1,1(a)p1,0(b) + @1,0(a)p1,1(b).

Now suppose (3.1) is true for n. By Lemma 3.1 we obtain

d"t(ab) = d(d"(ab)) Z O,k (@) P 2n 11 (D))

= Z d(pn k(a)enon—1-k(b))

= Z d(pnk(a))o(enon—1-k(D)) + o(@nr(a))d(Ynan—1-k(b))
= Z Pn+1,2n k(0 <Pn+1 gn+l_1— (2n+k)(b)

+ Z Pnt1,k(0)Ppg1,2n+1 15 (D)

2”+1 1

= Z ‘Pn+1l ‘Pn+12n+1 1-1(b)
[=2n

+ Z n+1,1(a)Ppy1ont1_11(b)

2”+1 1

= Z POn+1,1(a)Pny1,27+1 11 (D). O
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Example 3.3. As an illustration, consider the case n = 3. We have

d*(ab) = @30(a)psr(b) + ¢3,1(a)pse(b)
+p3,2(a)p35(b) + @3,3(a)ps.4(b)
+p3,4(a)p3,3(b) + ©3,5(a)ps,2(b)
+p3,6(a)ps,1(b ) + ¢3,7(a)ps,0(b)
= o’(a)d*(b) + o*d(a)d* o (b)
+odo(a)dod(b) + od?(a)do? (b)
+do (a)ad2(b) + dod(a)odo(b)
+d?0(a)o?d(b) + d*(a)o®(b).

Corollary 3.4. If do = od = d, then

d"(ab) =Y (”) d" (a)d" " (b),

r=0
for each a,b € D.

Proof. If the representation of k to base 2 has r 1's, then ¢, ; = d".
But we have (7) terms in the summand with exactly r 1’s in the repre-
sentation of k. O

Note that by putting 0 = ¢, we get the known results concerning
ordinary derivations.

Our next result generalizes Theorem 3.2. As before, let k be repre-
sented as (¢, . .. c1)2 to base 2. If the number of 1’s in this representation
is 7, we can construct 2"¢ numbers ¢ with the property that 1 occurs in
t only if the corresponding position at the representation of k£ is 1. More
precisely, we can write

Ty ={t=(dp...d1)s : dj=1implies ¢; =1 for each 1 <i < n}.
To illustrate T}’s, let k = 19 = (10011)3. Then
Ti9 = {(00000)3,(00001)3,(00010)2, (00011)s,
(10000)2, (10001)2, (10010)4, (10011)9}
= {0,1,2,3,16,17,18,19}.

Here T}, has 22 = 8 elements.
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Lemma 3.5 Suppose n, k are two natural numbers. Then
(i) To = {0}, Ton = {0,2"} and Ton_—1 ={0,1,2,... ,2" — 1},
(il) T = Tp—on U (2" 4+ Tg—on) = Tj_on U{2" +t : t € Tg_on},
provided that 2" < k < 2n+1 — 1,

Proof. (i) This is clear.

(ii) Let & = (cp...c1)2. We have ¢, = 1, since kK > 2". Let
(dn o d1)2 € Ty. If d, = 0 then (dn .. d1)2 = (dn,1 .. d1)2 € Ty _on,
and ifd,, = 1 then (dn . d1)2 = 2n+(dn,1 . d1)2, where (dn,1 . d1)2 S
Th_on. O

Definition 3.6. A linear mapping o is called a semi-endomorphism if
a(ao(b)) = o(a)o®(b),  o(ad(h)) = o(a)o(d(b))

for all a,b € D. Obviously any endomorphism is semi-endomorphism.

Theorem 3.7. Let o be an endomorphism. Then for each n,k € N with
0<k<2"—1 and a,b € D we have

(3) (pn,k(ab) = Z (pn,l(a)(pn,kfl(b)'
(€T}

Proof. We use induction on n. For n =1, if k = 0 then (3) is clear and
if k=1 then 77 = {0,1} and

¢1,1(ab) = d(ab) = d(a)o(b) +o(a)d(b) = p1,1(a)p1,0(b) +¢1,0(a)p11(b).

Now suppose that (3) is true for n. For 0 < k = (cpp1cp...c1)2 < 27FL,
two cases occur.

Casel. 1 <k < 2™,

In this case, c,41 = 0 and @, 41 % = 0@, . Hence

Pnt1k(ab) = opyk(ab)
= U(Z ‘Pn,f(a)‘Pn,k—é(b))

=

= Y opnia)opnr—i(b)
(€T,

= Y ont1,0(a)ons1p—e(b).
LeTy,

Case2. 2" < k < 2+l — 1.
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In this case, ¢,11 =1 and so ¢, 41,1 = dy, k2. Thus

(anrl,k(ab) = d(pn,kf2”(ab)
= d( Y. ¢nsla)pni—on_(b))
LET), _on
= > [deni(a)opnp—an_e(b)
LET), _on

+0pn.e(a)dpn k—on—¢(D)]

= Y lentr2nre(@)pnirk—2n—e(b)
LET), _on
+@nt1,0(a)Pni1k—e(b)]

= > onr1m(@)ni1p-m(b)
9" <meTy,

+ Z Pn+1,m(@)Pn+1,k-m (D)
27 >meTy,

= > Onr1.m(@)oni1k—m(b). O

meTy

Remark 3.8. Putting £k = 2" —1 in the above theorem we get Theorem
3.2.

The following theorem with ¢ = ¢ is a generalization of Wielandt—
Wintner theorem (cf. Theorem 2.2.1 of [13]).

Theorem 3.9. Let o be a bounded endomorphism on a Banach algebra
A, d be a bounded o-derivation such that do = od = d and d*(a) = 0.
Then d(a) is a quasinilpotent, i.e. r(d(a)) = 0.

Proof. Using induction on n we can establish that d"(a") =
holds for all positive integer n. Indeed if d"~'(a""') = (n — 1)!
then we infer from Corollary 3.4 that

dn(an) — dn(anfla) — Z (:*) dr(anfl)dnfr(a)

r=0
= @ () + (0"
= n(n—1)ld(a)" " d(a) +d(d" " (a" "))
= nld(a)” +d((n — 1)!d(a)""") = nld(a)"™ + 0.

nd()
d(a)"!
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it gy et < llllal
Hence v(d(a) = lim Ja(a)" " = Jim " (@) /) < (i =

0. O

We are ready to extend the Wielandt—Wintner theorem which states
that there are no two elements a and b in a Banach algebra such that
ab — ba =1 (see Corollary 2.2.2 of [13]).

Theorem 3.10. Suppose that o is a bounded endomorphism on a Ba-
nach algebm A. Then there are no three elements a,b,c € A satisfying
ao(b) — o(b)a = ¢ provided that

i) ola)o 2(b) — o*(b)o(a) = ao(b) — o (b)a,
(02(b) = a(b))a = a(o®(b) — o (b)),
ao(c) —o(c)a =0,

18 not quasinilpotent.

Proof. Use the previous theorem with the inner o-derivation d,(u
ao(u) —o(u)a,u € A. In fact, the conditions implies that d?(b) = 0
0 dq(b) = ¢ would be quasinilpotent which is a contradiction.

)

O&a |
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