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ated by Cheryl E. PraegerAbstra
t. The 
on
ept of for
ed orientation of graphs was �rstintrodu
ed by Chartrand et al. in 1994. If for a given assignmentof dire
tions to a subset S of the edges of a graph G, there existsan orientation of E(G) n S so that the resulting graph is strongly
onne
ted, then that given assignment is said to be extendible toa strong orientation of G. A for
ing set for a strong orientation Dof G is a subset of E(G), for whi
h the assignment of orientationsfrom D 
an uniquely be extended to E. The size of the smallestfor
ing set for a strong orientation D of G is denoted by fD(G).In this note, we show that the family of all for
ing sets for anyparti
ular strong orientation D of G is a matroid, and therefore allminimal for
ing sets for D have the same 
ardinality, fD(G). Wealso 
hara
terize those graphs G that have strong orientations D,for whi
h fD(G) is equal to the trivial maximum of jE(G)j.
1. Introdu
tion and preliminariesIn this paper, we 
onsider only 
onne
ted graphs. The set of verti
esand edges of a graph G are denoted by V (G) and E(G), respe
tively,or by V and E when there is no ambiguity. For S � V , we denote by[S; V n S℄ the set of edges in G that have exa
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80 Farzad, Mahdian and Mahmoodian(regardless of the dire
tion of the edge, in 
ase G is a mixed graph). Wefollow the de�nitions and notations of [13℄ for the 
on
epts not de�nedhere.An orientation of a graph G is a digraph D, with the same vertexset, whose underlying graph is G. A strong orientation is an orientationthat is strongly 
onne
ted, i.e., for any two verti
es u and v there is adire
ted path from u to v and a dire
ted path from v to u.A partial orientation of an undire
ted graph G is a subset of the edgesof an orientation of G. For a partial orientation F of G, we de�ne GFas the mixed graph whose underlying undire
ted graph is G and its setof dire
ted edges is pre
isely F . A partial orientation F of G is 
alledextendible if there is a strong orientation D of G that 
ontains F . Apartial orientation F is 
alled a strong orientation for
ing set or simplya for
ing set for a strong orientation D of G, if D is the only strongorientation of G whi
h 
ontains F . A minimal for
ing set is a for
ingset 
ontaining no other for
ing set as a proper subset.Notions similar to for
ing sets are studied under di�erent names of\de�ning sets" for 
ombinatorial stru
tures su
h as blo
k designs [12℄and graph 
olorings [7, 8, 9℄, and \
riti
al sets" for Latin squares [1,6, 7℄. In [4℄, Chartrand et al. introdu
ed and studied this notion fororientations of graphs. Here we take on this last 
on
ept and investigatesome of the remaining problems.The smallest number of edges in any for
ing set for a strong orien-tation D of G is 
alled the for
ing number of D, and is denoted byfD(G). We also de�ne f(G) (also known as the for
ing number of G)and F (G) as the smallest and the largest values of fD(G), over all strongorientations D of G. In [4℄, Chartrand et al. prove the following simple
losed-form formula for f(G).Theorem A [4℄. If G is a 2-edge-
onne
ted graph with n verti
es andm edges, then f(G) = m� n+ 1.The stru
ture of this paper is as follows. In Se
tion 2, we presentde�nitions and general results that will be used throughout the paper.Se
tion 3, studies the stru
ture of for
ing sets of a given strong orienta-tion of a graph. Our main result of this se
tion states that the familyof the 
omplements of for
ing sets of a strong orientation is a matroid,and therefore every minimal for
ing set of a strong orientation is also asmallest for
ing set for that orientation. The results of se
tion 4 give a
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hara
terization for those graphs G for whi
h F (G) = jE(G)j. Finally,we 
on
lude with open problems in Se
tion 5.2. General resultsIn this se
tion we state some useful results about orientations ofgraphs and their extensions. A well-known theorem on graph orien-tations is Robbins' theorem, whi
h states that every 2-edge-
onne
tedundire
ted graph has a strong orientation (see [2℄). In this paper, weuse the following generalization of Robbins' theorem, due to Boes
h andTindell [3℄. Noti
e that in the following, by a path in a mixed graph,we mean a path in whi
h the dire
tion of every dire
ted edge 
onformswith the dire
tion of the path.Theorem B [3℄. Let G be a mixed graph. The following statements areequivalent.(i) The undire
ted edges of G 
an be oriented in su
h a way that theresulting digraph is strongly 
onne
ted.(ii) The underlying undire
ted graph of G is 2-edge-
onne
ted andfor every two verti
es u and v, there is a path from u to v and apath from v to u.(iii) The underlying undire
ted graph of G is 2-edge-
onne
ted andthere is no subset S of the verti
es of G su
h that all of the edgesin [S; V (G) n S℄ are dire
ted from S to V (G) n S.Theorem B leads us to the following de�nition.De�nition 2.1. Let F be a partial orientation of G, and GF denote the
orresponding mixed graph. We say that an edge e 2 E(G) is for
ed byF , if there is a 
ut [S; V nS℄ in GF su
h that e 2 [S; V nS℄ and all of theedges in [S; V n S℄, ex
ept e, are in F , and they are all dire
ted in thesame dire
tion. The following lemma provides an equivalent de�nitionfor an edge being for
ed by a partial orientation.Lemma 2.2. Let F be an extendible partial orientation of G and e = uvbe an edge in E(G) nF . Then e is for
ed by F if and only if either thereis no path from u to v or from v to u in GF � e.Proof. If e is for
ed by F , then for some S � V , u 2 S and v 2 V nS andall of edges in [S; V nS℄, ex
ept e, are oriented by F in the same dire
tion,



82 Farzad, Mahdian and Mahmoodiansay, without loss of generality, from S to V n S. Then apparently, thereis no path in GF � e from v to u sin
e every edge in
ident to V n S isdire
ted towards it.Conversely, suppose there is no path from u to v in GF � e. Let S bethe set of all verti
es of G to whi
h there is a path from u in GF � e.Apparently v 2 V n S. Consider any edge xy with x 2 S and y 2 V n S.If F does not assign a dire
tion to xy or assigns the dire
tion from xto y, then the path from u to x 
an be extended to a path from u to yby adding xy to it. But then y must belong to S and this 
ontradi
tsour 
hoi
e of S. Thus every edge xy with x 2 S and y 2 V n S must beoriented from y to x by F . �A ni
e property of the for
ing sets is their simultaneous \for
ing" ofthe dire
tion of every undire
ted edge of the graph. This is in 
ontrastto the way most of the 
orresponding notions in other 
ombinatorial
ontexts behave. For example, de�ning sets of graph 
olorings [7, 8, 9℄,do not ne
essarily for
e the 
olor of every un
olored vertex at the sametime and may instead only work in 
ertain orders. The following theoremestablishes this fa
t and is used in numerous pla
es throughout thispaper.Theorem 2.3. An extendible partial orientation F of G is a strongorientation for
ing set if and only if every edge e 2 E(G) n F is for
edby F .Proof. The \if" part is trivial. For the \only if" part, assume to the
ontrary that some edge uv in E(G) n F is not for
ed by F . By Lemma2.2, there are paths in GF �uv both from u to v and from v to u. Thus,if we orient uv in either dire
tion, by Theorem B the resulting partialorientation 
an be extended into a strong orientation of G. But then,there is more than one way to extend F into a strong orientation. �It is worth mentioning that the above theorem gives a polynomialtime algorithm for re
ognizing for
ing sets. This is in 
ontrast to theresult of Colbourn et al. [5℄ on the NP-hardness of re
ognizing 
riti
alsets in Latin squares.
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ed orientation of graphs 833. The for
ing set matroidIn this se
tion we study the properties of for
ing sets for any parti
ularstrong orientation of a graph. We will prove that the family of the
omplements of for
ing sets for any orientation D forms a matroid. Thisleads to an eÆ
ient algorithm for �nding a smallest for
ing set for a givenstrong orientation. At the heart of our proof is the following de�nitionof a binary relation \�" between the edges of a digraph.De�nition 3.1. For any two edges e1 and e2 of a strongly 
onne
teddigraph D, e1 � e2 if every dire
ted 
y
le C of D 
ontaining e1 also
ontains e2. Moreover, we write e1 � e2 if e1 � e2 and e2 � e1. Itis easy to see that the relation � is a preorder, i.e., it is re
exive andtransitive. This implies that the relation � is an equivalen
e relationand thus partitions the set of edges of D into equivalen
e 
lasses. Therelation � indu
es a partial order among the equivalen
e 
lasses of �.The following two lemmas give a 
hara
terization of these equivalen
e
lasses.Lemma 3.2. In a strongly 
onne
ted digraph D we have e1 � e2 if andonly if there is a 
ut [S; V n S℄ su
h that e1 is from S to V n S, e2 fromV n S to S, and every other edge in the 
ut is from S to V n S.Proof. The \if" part is trivial. For the \only if" part, let e1 = uvand suppose e1 � e2. If there exists a path from v to u in D � e2,this path together with e1, would make a 
y
le 
ontaining e1 but note2, 
ontradi
ting the assumption that e1 � e2. Now, let S be the setof verti
es that are not rea
hable from v in D � e2. Then, u 2 S andv 2 V n S, and every edge in [S; V n S℄ ex
ept e2, is dire
ted from S toV n S. On the other hand, D is strongly 
onne
ted and thus e2 must bedire
ted from V n S to S. �Lemma 3.3. Let D be a strongly 
onne
ted digraph. For any two edgese1 and e2 in D, e1 � e2 if and only if fe1; e2g is a 
ut set.Proof. By Lemma 3.2 we know that there exits a 
ut [S; V n S℄ 
on-taining both e1 and e2 su
h that all of its edges ex
ept e2 are dire
tedfrom S to V n S. We 
laim that [S; V n S℄ does not 
ontain any edgesother than e1 and e2. Assume to the 
ontrary that there exists an edge



84 Farzad, Mahdian and Mahmoodianuv in [S; V n S℄ other than e1 and e2. Strong 
onne
tivity of D impliesthat there is a path P1 from the head of e2 to u. This path 
annot passthrough V nS sin
e the only edge from V nS to S is e2. Similarly, thereis a path P2 in V n S from v to the tail of e2. The two paths P1 andP2 along with e2 and uv form a 
y
le whi
h 
ontains e2, but not e1 andthis is a 
ontradi
tion. �Lemma 3.4. Let e1 and e2 be two edges in a strongly 
onne
ted digraphD su
h that e2 6� e1. If F is a for
ing set for D 
ontaining e2 but note1, then e1 is for
ed by F n fe2g. In other words, if we remove an edge efrom a for
ing set F of a strongly 
onne
ted digraph D, then the set ofedges that are not for
ed by F nfeg is a subset of the set fx 2 E j e � xg.Proof. By Theorem 2.3, there is a 
ut [S; V n S℄ 
ontaining e1, su
hthat every edge of this 
ut, ex
ept e1 belongs to F and is dire
ted fromS to V n S while e1 is dire
ted from V n S to S. If e2 62 [S; V n S℄ weare done. Otherwise, if e2 2 [S; V n S℄, then by Lemma 3.2 we obtaine2 � e1, a 
ontradi
tion. �Lemma 3.5. Let D be a strongly 
onne
ted digraph and e1 and e2 betwo edges of D su
h that e1 � e2. If F is a for
ing set for D, thenF [ fe1g n fe2g is also a for
ing set for D.Proof. It is suÆ
ient to prove that F [ fe1g n fe2g for
es the dire
tionof e2. Assume to the 
ontrary that this does not happen. By Lemma3.2, we know that there is a 
ut [S; V n S℄, 
ontaining e1 and e2, so thatall of its edges ex
ept e2 are dire
ted toward S. Let e 2 [S; V n S℄ be anedge other than e2. If F n fe2g does not for
e the dire
tion of e, then byLemma 3.4, we have e2 � e. On the other hand, by Lemma 3.2, we havee � e2. This means that e � e2. An argument like the one in the proofof Lemma 3.3 shows that [S; V nS℄ = fe; e2g. But sin
e e1 2 [S; V nS℄, e
annot be any edge other than e1. Thus every edge in [S; V nS℄ n fe2g isfor
ed by F [fe1gnfe2g. This, together with the fa
t that e2 is the onlyedge in [S; V n S℄ dire
ted toward V n S, show that the dire
tion of e2 isfor
ed by the set F [fe1gnfe2g. Thus, F [fe1gnfe2g is a for
ing set. �An equivalen
e 
lass C of the relation � is 
alled minimal if for notwo edges e 2 C and e0 2 E n C, we have e0 � e.



For
ed orientation of graphs 85Lemma 3.6. Let D be a strongly 
onne
ted digraph and F be an arbi-trary for
ing set for D. Then, any minimal equivalen
e 
lass under therelation �, must have at least one edge in F .Proof. Assume to the 
ontrary that C is a minimal equivalen
e 
lass ofthe relation � and none of its elements belong to the for
ing set F . Lete be an edge in C. Then e must be for
ed by F . So, by Theorem 2.3,there exists a 
ut [S; V nS℄ whi
h 
ontains e and all of its edges ex
ept eare dire
ted toward S and are in F . Let e0 be an edge in [S; V nS℄ n feg.By Lemma 3.2, e0 � e. Also, we know that e0 62 C, be
ause e0 2 F andF \ C = ;. This 
ontradi
ts the minimality of the 
lass C under therelation �. �The following theorem 
hara
terizes the set of all minimal for
ing setsof a given strong orientation.Theorem 3.7. A subset F of the edges of a strongly 
onne
ted digraphD is a minimal for
ing set for D if and only if F 
ontains exa
tly oneedge from ea
h equivalen
e 
lass of the relation � whi
h is minimal underthe relation �.Proof. This follows dire
tly from Lemma 3.5 and Lemma 3.6. �We are now ready to state the main result of this se
tion.Theorem 3.8. For every strongly 
onne
ted digraph D, the family Mof subsets of the edges of D whose 
omplement is a for
ing set for D isa matroid.Proof. It is 
lear that for every A 2 M, every subset of A is also inM. Therefore, to show that M is a matroid, we only need to verify theex
hange property [10℄: for any two sets A;B 2M, if jAj < jBj, there isan element e 2 B n A su
h that A [ fxg 2 M. By the de�nition of M,this statement is equivalent to the following: for any two for
ing sets �Aand �B for D, if j �Aj > j �Bj, then there is an edge e 2 �A n �B su
h that�A n feg is a for
ing set for D. We prove this statement as follows: sin
eequivalen
e 
lasses of � partition the set of edges of D and j �Aj > j �Bj,there must be at least one equivalen
e 
lass C of � whi
h 
ontains moreelements of �A than �B. Therefore, there must be at least one elemente in C that belongs to �A but not �B. We 
laim that �A n feg is still a
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ing set of D. By Theorem 3.7, we only need to show that for everyequivalen
e 
lass C 0 of �, if C 0 is minimal under �, then it 
ontains atleast one element of �A n feg. Sin
e �A is a for
ing set and therefore sat-is�es this 
ondition, we only need to verify the above 
ondition for the
lass C 0 = C from whi
h the element e is removed. However, we knowthat C 
ontains more elements of �A than �B, and therefore even afterremoval of e, C 
ontains at least as many elements of �A n feg as thoseof �B. Hen
e, by Theorem 3.7 and using the fa
t that �B is a for
ing set,C 
ontains at least one element of �A n feg. Hen
e �A n feg is a for
ingset. This 
ompletes the proof of the theorem. �The above theorem assigns a matroid to every strongly 
onne
teddigraph. A natural question will then be whether this matroid is relatedto the other known matroids on graphs.The following is an immediate 
orollary of the above theorem.Corollary 3.9. Let D be a strong orientation of a graph G. Then allminimal for
ing sets for D have the same size.Note that Corollary 3.9 yields an eÆ
ient algorithm for 
onstru
tingthe smallest for
ing set for a given strong orientation of a graph: thealgorithm starts with the for
ing set that 
onsists of all edges of thegraph, and iteratively removes edges that are for
ed by the remainingedges in the set, until it �nds a minimal for
ing set. By Corollary 3.9,any minimal for
ing set is a for
ing set of smallest size.4. Orientations with a large for
ing numberThe for
ing number of any orientation D of a graph G with n verti
esand m edges is lower bounded by m�n+1 (by Theorem A) and upperbounded by m. In this se
tion, we give a simple 
hara
terization ofgraphs for whi
h there is an orientation that attains this upper bound.In other words, we 
hara
terize graphs G with F (G) =m.Lemma 4.1. Let D be a strong orientation of an undire
ted graph Gwith m edges. Then fD(G) = m if and only if for every edge e, D� e isstrongly 
onne
ted.



For
ed orientation of graphs 87Proof. To prove suÆ
ien
y, assume to the 
ontrary that D has a for
ingset F of size stri
tly less than m. Let e be an edge not in F . Now,sin
e D � e is strongly 
onne
ted, e is not for
ed by F . But this is in
ontradi
tion with Theorem 2.3.For the ne
essity, assume that there is an edge e in D, su
h thatD � e is not strongly 
onne
ted and thus there is no path in D � efrom one of the endpoints of e to the other. But this implies that e isfor
ed byD�e and therefore D�e is a for
ing set of sizem�1 for D. �A

ording to the terminology of [13℄, a digraph D is i-strongly 
on-ne
ted, if for any set S of i�1 edges of D, the graph DnS is strongly 
on-ne
ted. Using this de�nition, Lemma 4.1 
an be restated as \fD(G) = mif and only if D is a 2-strongly 
onne
ted orientation of G."The next theorem gives a ne
essary and suÆ
ient 
ondition for agraph to have a 2-strong orientation.Theorem 4.8. For a graph G with m edges, F (G) = m if and only ifG is 4-edge-
onne
ted.Proof. Assume that G is 4-edge-
onne
ted. By a theorem of Nash-Williams (see for example [13℄) this implies that G has a 2-strong orien-tation D. Therefore by Lemma 4.1, fD(G) = m, implying F (G) = m.Now suppose F (G) = m and let D be a strong orientation of G forwhi
h fD(G) = m and suppose that G has a 
ut set [S; V n S℄ of size 3or smaller. Ea
h of the three edges of this 
ut are either dire
ted fromS to V n S, or from V n S to S. Sin
e D is a strong orientation, not allof these three edges 
an agree in their dire
tions and thus exa
tly one,whi
h we 
all e, must disagree with the other two. However, this meansthat D� e is not strongly 
onne
ted and therefore e is for
ed by D� e.Thus, by Lemma 4.1, fD(G) < m, a 
ontradi
tion. �5. Con
lusion and open problemsThe main result of this paper was a ni
e 
hara
terization of for
ingsets of a parti
ular orientation of a graph, leading to polynomial timealgorithms for re
ognizing for
ing sets and �nding minimal for
ing setsin a digraph.



88 Farzad, Mahdian and MahmoodianA family of problems, analogous to those 
onsidered in this papers,
an be introdu
ed by repla
ing strong orientations with unilateral ori-entations in the de�nition of for
ing sets (see [4, 11℄). A unilateralorientation of a graph G, is an orientation of G in whi
h for every pairof verti
es u; v 2 V (G), there exists either a path from u to v, or onefrom v to u (or both). Many of the problems regarding unilateral for
edorientations are open. For example, we do not know of any eÆ
ientalgorithm for re
ognizing unilateral for
ing sets, or �nding the smallestunilateral for
ing set in a given digraph.Another open problem is to �nd a simple way to 
ompute F (G) fora given undire
ted graph G. Results of Se
tion 4 solve this problem for4-edge-
onne
ted graphs. For graphs of edge-
onne
tivity 2 and 3 thisproblem is widely open. A
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