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FORCED ORIENTATION OF GRAPHS

B. FARZAD, M. MAHDIAN* E. S. MAHMOODIAN, A. SABERI AND B. SADRI

Communicated by Cheryl E. Praeger

ABSTRACT. The concept of forced orientation of graphs was first
introduced by Chartrand et al. in 1994. If for a given assignment
of directions to a subset S of the edges of a graph G, there exists
an orientation of E(G) \ S so that the resulting graph is strongly
connected, then that given assignment is said to be extendible to
a strong orientation of G. A forcing set for a strong orientation D
of G is a subset of E(G), for which the assignment of orientations
from D can uniquely be extended to E. The size of the smallest
forcing set for a strong orientation D of G is denoted by fp(G).
In this note, we show that the family of all forcing sets for any
particular strong orientation D of G is a matroid, and therefore all
minimal forcing sets for D have the same cardinality, fp(G). We
also characterize those graphs G that have strong orientations D,
for which fp(G) is equal to the trivial maximum of |E(G)]|.

1. Introduction and preliminaries

In this paper, we consider only connected graphs. The set of vertices
and edges of a graph G are denoted by V(G) and E(G), respectively,
or by V and E when there is no ambiguity. For S C V, we denote by
[S,V \ S] the set of edges in G that have exactly one endpoint in S
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(regardless of the direction of the edge, in case G is a mixed graph). We
follow the definitions and notations of [13] for the concepts not defined
here.

An orientation of a graph G is a digraph D, with the same vertex
set, whose underlying graph is G. A strong orientation is an orientation
that is strongly connected, i.e., for any two vertices u and v there is a
directed path from u to v and a directed path from v to w.

A partial orientation of an undirected graph G is a subset of the edges
of an orientation of G. For a partial orientation F' of GG, we define G
as the mixed graph whose underlying undirected graph is G and its set
of directed edges is precisely F'. A partial orientation F' of G is called
extendible if there is a strong orientation D of G that contains F. A
partial orientation F' is called a strong orientation forcing set or simply
a forcing set for a strong orientation D of G, if D is the only strong
orientation of G which contains F. A minimal forcing set is a forcing
set containing no other forcing set as a proper subset.

Notions similar to forcing sets are studied under different names of
“defining sets” for combinatorial structures such as block designs [12]
and graph colorings [7, 8, 9], and “critical sets” for Latin squares [,
6, 7). In [4], Chartrand et al. introduced and studied this notion for
orientations of graphs. Here we take on this last concept and investigate
some of the remaining problems.

The smallest number of edges in any forcing set for a strong orien-
tation D of G is called the forcing number of D, and is denoted by
fp(G). We also define f(G) (also known as the forcing number of G)
and F(G) as the smallest and the largest values of fp(G), over all strong
orientations D of G. In [4], Chartrand et al. prove the following simple
closed-form formula for f(G).

Theorem A [4]. If G is a 2-edge-connected graph with n vertices and
m edges, then f(G) =m —n + 1.

The structure of this paper is as follows. In Section 2, we present
definitions and general results that will be used throughout the paper.
Section 3, studies the structure of forcing sets of a given strong orienta-
tion of a graph. Our main result of this section states that the family
of the complements of forcing sets of a strong orientation is a matroid,
and therefore every minimal forcing set of a strong orientation is also a
smallest forcing set for that orientation. The results of section 4 give a
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characterization for those graphs G for which F(G) = |E(G)|. Finally,
we conclude with open problems in Section 5.

2. General results

In this section we state some useful results about orientations of
graphs and their extensions. A well-known theorem on graph orien-
tations is Robbins’ theorem, which states that every 2-edge-connected
undirected graph has a strong orientation (see [2]). In this paper, we
use the following generalization of Robbins’ theorem, due to Boesch and
Tindell [3]. Notice that in the following, by a path in a mixed graph,
we mean a path in which the direction of every directed edge conforms
with the direction of the path.

Theorem B [3]. Let G be a mized graph. The following statements are
equivalent.

(i) The undirected edges of G can be oriented in such a way that the
resulting digraph is strongly connected.

(ii) The underlying undirected graph of G is 2-edge-connected and
for every two vertices u and v, there is a path from u to v and a
path from v to u.

(iii) The underlying undirected graph of G is 2-edge-connected and
there is no subset S of the vertices of G such that all of the edges
in [S,V(G)\ S] are directed from S to V(G) \ S.

Theorem B leads us to the following definition.

Definition 2.1. Let F' be a partial orientation of G, and G denote the
corresponding mixed graph. We say that an edge e € E(G) is forced by
F, if there is a cut [S,V \ S] in GF such that e € [S,V \ S] and all of the
edges in [S,V \ S], except e, are in F, and they are all directed in the
same direction. The following lemma provides an equivalent definition
for an edge being forced by a partial orientation.

Lemma 2.2. Let F be an extendible partial orientation of G and e = uv
be an edge in E(G)\ F. Then e is forced by F if and only if either there
s no path from u to v or from v to u in Gp —e.

Proof. Ifeis forced by F, then for some S C V,u € Sand v € V\ S and
all of edges in [S, V'\ S], except e, are oriented by F' in the same direction,
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say, without loss of generality, from S to V' '\ S. Then apparently, there
is no path in Gr — e from v to u since every edge incident to V' \ S is
directed towards it.

Conversely, suppose there is no path from v to v in Gp —e. Let S be
the set of all vertices of G to which there is a path from v in Gp — e.
Apparently v € V'\ S. Consider any edge zy with z € S and y € V'\ S.
If F does not assign a direction to zy or assigns the direction from x
to y, then the path from u to z can be extended to a path from u to y
by adding zy to it. But then y must belong to S and this contradicts
our choice of S. Thus every edge zy with z € S and y € V' \ S must be
oriented from y to z by F. O

A nice property of the forcing sets is their simultaneous “forcing” of
the direction of every undirected edge of the graph. This is in contrast
to the way most of the corresponding notions in other combinatorial
contexts behave. For example, defining sets of graph colorings [7, 8, 9],
do not necessarily force the color of every uncolored vertex at the same
time and may instead only work in certain orders. The following theorem
establishes this fact and is used in numerous places throughout this

paper.

Theorem 2.3. An extendible partial orientation F of G is a strong
orientation forcing set if and only if every edge e € E(G) \ F' is forced
by F.

Proof. The “if” part is trivial. For the “only if” part, assume to the
contrary that some edge uv in E(G) \ F is not forced by F. By Lemma
2.2, there are paths in Gr —uwv both from u to v and from v to w. Thus,
if we orient uv in either direction, by Theorem B the resulting partial
orientation can be extended into a strong orientation of G. But then,
there is more than one way to extend F' into a strong orientation. [J

It is worth mentioning that the above theorem gives a polynomial
time algorithm for recognizing forcing sets. This is in contrast to the
result of Colbourn et al. [5] on the NP-hardness of recognizing critical
sets in Latin squares.
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3. The forcing set matroid

In this section we study the properties of forcing sets for any particular
strong orientation of a graph. We will prove that the family of the
complements of forcing sets for any orientation D forms a matroid. This
leads to an efficient algorithm for finding a smallest forcing set for a given
strong orientation. At the heart of our proof is the following definition
of a binary relation “<” between the edges of a digraph.

Definition 3.1. For any two edges e; and es of a strongly connected
digraph D, e; = ey if every directed cycle C of D containing e; also
contains eg. Moreover, we write e; ~ eg if e = eg and ey < e1. It
is easy to see that the relation < is a preorder, i.e., it is reflexive and
transitive. This implies that the relation =~ is an equivalence relation
and thus partitions the set of edges of D into equivalence classes. The
relation < induces a partial order among the equivalence classes of =.
The following two lemmas give a characterization of these equivalence
classes.

Lemma 3.2. In a strongly connected digraph D we have e1 = ey if and
only if there is a cut [S,V \ S] such that ey is from S to V '\ S, ey from
V\ S to S, and every other edge in the cut is from S to V'\ S.

Proof. The “if” part is trivial. For the “only if” part, let e; = ww
and suppose e; =< eg. If there exists a path from v to u in D — e9,
this path together with e;, would make a cycle containing e; but not
es, contradicting the assumption that e; =< es. Now, let S be the set
of vertices that are not reachable from v in D — es. Then, u € S and
v e V\S, and every edge in [S,V \ S] except e, is directed from S to
V'\'S. On the other hand, D is strongly connected and thus es must be
directed from V '\ S to S. O

Lemma 3.3. Let D be a strongly connected digraph. For any two edges
e1 and ey in D, ey = eq if and only if {e1,es} is a cut set.

Proof. By Lemma 3.2 we know that there exits a cut [S,V \ S] con-
taining both e; and ey such that all of its edges except es are directed
from S to V'\ S. We claim that [S,V \ S| does not contain any edges
other than e; and es. Assume to the contrary that there exists an edge
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uv in [S,V \ S] other than e; and ey. Strong connectivity of D implies
that there is a path P; from the head of eo to u. This path cannot pass
through V'\ S since the only edge from V'\ S to S is e3. Similarly, there
is a path P, in V' \ S from v to the tail of es. The two paths P; and
P, along with ey and uv form a cycle which contains ey, but not e; and
this is a contradiction. O

Lemma 3.4. Let ey and eq be two edges in a strongly connected digraph
D such that es A e1. If F is a forcing set for D containing es but not
e1, then ey is forced by F'\ {es}. In other words, if we remove an edge e
from a forcing set F' of a strongly connected digraph D, then the set of
edges that are not forced by F\{e} is a subset of the set {x € E | e < x}.

Proof. By Theorem 2.3, there is a cut [S,V \ S] containing e, such
that every edge of this cut, except e; belongs to F' and is directed from
S to V'\ S while e is directed from V' \ S to S. If ex & [S,V \ S| we
are done. Otherwise, if eo € [S,V \ S], then by Lemma 3.2 we obtain
eo = eq, a contradiction. O

Lemma 3.5. Let D be a strongly connected digraph and ey and es be
two edges of D such that e; = ey. If F is a forcing set for D, then
F U{ei} \ {ea} is also a forcing set for D.

Proof. It is sufficient to prove that F' U {e;} \ {e2} forces the direction
of ey. Assume to the contrary that this does not happen. By Lemma
3.2, we know that there is a cut [S, V' \ S], containing e; and es, so that
all of its edges except ey are directed toward S. Let e € [S, V' \ S] be an
edge other than eg. If F'\ {ea} does not force the direction of e, then by
Lemma 3.4, we have e5 < e. On the other hand, by Lemma 3.2, we have
e = ey. This means that e =~ es. An argument like the one in the proof
of Lemma 3.3 shows that [S,V'\ S] = {e,e2}. But sincee; € [S,V'\ 5], e
cannot be any edge other than e;. Thus every edge in [S, V' \ S]\ {ea2} is
forced by F'U{e1}\{ea}. This, together with the fact that es is the only
edge in [S, V' \ S] directed toward V' \ S, show that the direction of eg is
forced by the set F'U{e1}\{ea}. Thus, FU{e;}\{e2} is a forcing set. O

An equivalence class C' of the relation =< is called minimal if for no
two edges e € C and ¢’ € E\ C, we have ¢’ < e.
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Lemma 3.6. Let D be a strongly connected digraph and F be an arbi-
trary forcing set for D. Then, any minimal equivalence class under the
relation =<, must have at least one edge in F.

Proof. Assume to the contrary that C is a minimal equivalence class of
the relation < and none of its elements belong to the forcing set F'. Let
e be an edge in C. Then e must be forced by F. So, by Theorem 2.3,
there exists a cut [S, V' \ S] which contains e and all of its edges except e
are directed toward S and are in F. Let ¢’ be an edge in [S, V' \ S]\ {e}.
By Lemma 3.2, ¢/ < e. Also, we know that ¢’ € C, because ¢’ € F and
FNC = (. This contradicts the minimality of the class C' under the
relation <. O

The following theorem characterizes the set of all minimal forcing sets
of a given strong orientation.

Theorem 3.7. A subset F' of the edges of a strongly connected digraph
D is a minimal forcing set for D if and only if F' contains exactly one
edge from each equivalence class of the relation = which is minimal under
the relation <.

Proof. This follows directly from Lemma 3.5 and Lemma 3.6. O

We are now ready to state the main result of this section.

Theorem 3.8. For every strongly connected digraph D, the family M
of subsets of the edges of D whose complement is a forcing set for D is
a matroid.

Proof. It is clear that for every A € M, every subset of A is also in
M. Therefore, to show that M is a matroid, we only need to verify the
exchange property [10]: for any two sets A, B € M, if |A| < |B|, there is
an element e € B\ A such that AU {z} € M. By the definition of M,
this statement is equivalent to the following: for any two forcing sets A
and B for D, if |A| > |B|, then there is an edge e € A\ B such that
A\ {e} is a forcing set for D. We prove this statement as follows: since
equivalence classes of ~ partition the set of edges of D and |A| > |B],
there must be at least one equivalence class C' of ~ which contains more
elements of A than B. Therefore, there must be at least one element
e in C that belongs to A but not B. We claim that A\ {e} is still a
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forcing set of D. By Theorem 3.7, we only need to show that for every
equivalence class C’ of ~, if C’ is minimal under <, then it contains at
least one element of A\ {e}. Since A is a forcing set and therefore sat-
isfies this condition, we only need to verify the above condition for the
class C' = C from which the element e is removed. However, we know
that C contains more elements of A than B, and therefore even after
removal of e, C' contains at least as many elements of A\ {e} as those
of B. Hence, by Theorem 3.7 and using the fact that B is a forcing set,
C contains at least one element of A\ {e}. Hence A\ {e} is a forcing
set. This completes the proof of the theorem.

The above theorem assigns a matroid to every strongly connected
digraph. A natural question will then be whether this matroid is related
to the other known matroids on graphs.

The following is an immediate corollary of the above theorem.

Corollary 3.9. Let D be a strong orientation of a graph G. Then all
minimal forcing sets for D have the same size.

Note that Corollary 3.9 yields an efficient algorithm for constructing
the smallest forcing set for a given strong orientation of a graph: the
algorithm starts with the forcing set that consists of all edges of the
graph, and iteratively removes edges that are forced by the remaining
edges in the set, until it finds a minimal forcing set. By Corollary 3.9,
any minimal forcing set is a forcing set of smallest size.

4. Orientations with a large forcing number

The forcing number of any orientation D of a graph G with n vertices
and m edges is lower bounded by m —n + 1 (by Theorem A) and upper
bounded by m. In this section, we give a simple characterization of
graphs for which there is an orientation that attains this upper bound.
In other words, we characterize graphs G with F(G) = m.

Lemma 4.1. Let D be a strong orientation of an undirected graph G
with m edges. Then fp(G) = m if and only if for every edge e, D — e is
strongly connected.
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Proof. To prove sufficiency, assume to the contrary that D has a forcing
set F' of size strictly less than m. Let e be an edge not in F. Now,
since D — e is strongly connected, e is not forced by F'. But this is in
contradiction with Theorem 2.3.

For the necessity, assume that there is an edge e in D, such that
D — e is not strongly connected and thus there is no path in D — e
from one of the endpoints of e to the other. But this implies that e is
forced by D —e and therefore D —e is a forcing set of size m—1 for D. [

According to the terminology of [13], a digraph D is i-strongly con-
nected, if for any set S of i —1 edges of D, the graph D\ S is strongly con-
nected. Using this definition, Lemma 4.1 can be restated as “fp(G) = m
if and only if D is a 2-strongly connected orientation of G.”

The next theorem gives a necessary and sufficient condition for a
graph to have a 2-strong orientation.

Theorem 4.8. For a graph G with m edges, F(G) = m if and only if
G 1is 4-edge-connected.

Proof. Assume that G is 4-edge-connected. By a theorem of Nash-
Williams (see for example [13]) this implies that G has a 2-strong orien-
tation D. Therefore by Lemma 4.1, fp(G) = m, implying F(G) = m.
Now suppose F(G) = m and let D be a strong orientation of G for
which fp(G) = m and suppose that G has a cut set [S,V \ S] of size 3
or smaller. Each of the three edges of this cut are either directed from
StoV\S,orfromV\S toS. Since D is a strong orientation, not all
of these three edges can agree in their directions and thus exactly one,
which we call e, must disagree with the other two. However, this means
that D — e is not strongly connected and therefore e is forced by D — e.
Thus, by Lemma 4.1, fp(G) < m, a contradiction. O

5. Conclusion and open problems

The main result of this paper was a nice characterization of forcing
sets of a particular orientation of a graph, leading to polynomial time
algorithms for recognizing forcing sets and finding minimal forcing sets
in a digraph.
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A family of problems, analogous to those considered in this papers,
can be introduced by replacing strong orientations with unilateral ori-
entations in the definition of forcing sets (see [4, 11]). A wunilateral
orientation of a graph G, is an orientation of G in which for every pair
of vertices u,v € V(G), there exists either a path from u to v, or one
from v to u (or both). Many of the problems regarding unilateral forced
orientations are open. For example, we do not know of any efficient
algorithm for recognizing unilateral forcing sets, or finding the smallest
unilateral forcing set in a given digraph.

Another open problem is to find a simple way to compute F(G) for
a given undirected graph G. Results of Section 4 solve this problem for
4-edge-connected graphs. For graphs of edge-connectivity 2 and 3 this
problem is widely open.
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