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1. Introduction

All groups considered in this paper are finite.
Let G be a group. Let π(G) and πe(G) denote the set of primes dividing

the order of G and the set of orders of elements of G, respectively. Let m1(G)
and m2(G) denote the largest element order and the second largest element
order of G, respectively. G is said to be a Kn-group if π(G) consists of exactly
n distinct primes. For a group G, as in [23], we construct its prime graph
Γ(G) as follows: the vertices are the primes in π(G) and two vertices p and
r are connected by an edge if and only if G contains an element of order pr.
Denote by T (G) = {πi(G)|1 ⩽ i ⩽ s(G)} the set of all connected components
of the graph Γ(G), where s(G) is the number of the connected components of
Γ(G). If the order of G is even, we always assume that 2 ∈ π1(G). The other
notation and terminologies in this paper are standard and the reader is referred
to ATLAS [4] and [8] if necessary.

It was conjectured by W.J. Shi in 1980s that every simple group S can be
determined by |S| and πe(S) (see [15] for example), which has been proved to
be true by Shi and Mazurov et al (see [6,15,16,18–20,22]). In the proof of this
characterization, we see that not all elements of πe(S) should be considered. In
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fact, sometimes, we only need some special element orders of S. Additionally,
Kantor and Seress proved that the characteristic of a simple group S of Lie
type of odd characteristic can be determined by m1(S) and m2(S) (see [12]).
Hence, it is natural to ask that whether a simple group S can be determined by
the order of S and some special element orders of S. Along this direction, many
interesting results have been obtained. In [9–11, 27], L.G. He and Q.L. Zhang
et al proved that the simple K3-groups and some L2(q) were determined by
their orders together with their largest element orders or second largest element
orders. In [13], Li, Shi and Yu showed that each L2(p) with p ̸= 7 a prime can
be characterized by its order and largest element order.

Our main result is as follows.

Theorem 1.1. Let G be a group and S be a simple K4-group of type L2(q).
Then G ≃ S if and only if |G| = |S| and m1(G) = m1(S).

2. Preliminaries

In this section, we first list some information about simple K4-groups.
By [2, 17], simple K4-groups consist of the following five classes of groups.
C1: L2(r) with r a prime satisfying

r2 − 1 = 2a3buc,(2.1)

where a ⩾ 1, b ⩾ 1, c ⩾ 1, u > 3 a prime.
C2: L2(2

m) with

(2.2)

{
2m − 1 = u

2m + 1 = 3t,

where m ⩾ 1, u and t are primes and t > 3.
C3: L2(3

m) with

(2.3)

{
3m − 1 = 2u

3m + 1 = 4t,

where m ⩾ 1, u and t are primes.
C4: L2(2

4), L2(5
2), L2(7

2), L2(3
4), L2(3

5).
C5:

M11,M12, J2,

A7, A8, A9, A10,

L3(4), L3(5), L3(7), L3(8), L3(17),

S4(4), S4(5), S4(7), S4(9),

U3(4), U3(5), U3(7), U3(8), U3(9),

L4(3), S6(2), O
+
8 (2), G2(3), U4(3), U5(2),

3 D4(2),
2 F4(2)

′, Sz(8), Sz(32).
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In addition, there are 8 simple K3-groups, which are contained in
C6: A5, L2(7), L2(8), A6, L2(17), L3(3), U3(3), U4(2).
The following lemma is a special case of Theorem 1.1, which was proved

in [13].

Lemma 2.1. Let G be a group and p > 3 a prime. Suppose that |G| =
|L2(p)| = (p − 1)p(p + 1)/2 and m1(G)=m1(L2(p))=p. Then G is isomorphic
to L2(p) or to

[[Z2 × Z2 × Z2]Z7]Z3,

a 2-Frobenius group of order 168.

The following lemma is straightforward.

Lemma 2.2. Suppose that G has a normal series 1 ⊆ H ⊆ K ⊆ G. Let
K = K/H be a nonabelian simple group. Then there exists a normal subgroup
C of G such that K ≲ G/C ⩽ Aut(K).

The next lemma is easy to see and will be used frequently.

Lemma 2.3. Let G be a group. Let p, q ∈ π(G) such that for every i, j with
1 < qi ⩽ |G|q and 1 < pj ⩽ |G|p, p ∤ qi − 1 and q ∤ pj − 1. If pq /∈ πe(G), then
G has a chief factor M/N such that {p, q} ⊆ π(M/N) and {p, q} ∩ π(N) = ∅.

3. Proof of Theorem 1.1

The necessity is obvious and we only need to consider the sufficiency.
By Lemma 2.1 and [11, Theorem 1], we know that the result is true if S is

isomorphic to L2(2
4), L2(5

2), L2(3
4) and simple K4-groups in C1. Therefore,

we discuss the remaining cases in the sequel.
(I) S = L2(3

m).
By the hypothesis, |G| = 223mtu, where

t =
3m + 1

4
, u =

3m − 1

2
, 3 < t < u.

It is easy to see that

u = 2t− 1.(3.1)

By Table A.1 in [12], it is follows that

m1(G) = m1(S) =
3m + 1

2
= 2t.

We claim that G has a chief factor M/N such that {t, u} ⊆ π(M/N). By
Lemma 2.3 and the hypothesis, we only need to show that t does not divide
u− 1. In fact, if t divides u− 1, then for some positive integer k, we have

3m − 1

2
− 1 = k · 3

m + 1

4
.
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Hence
−k − 6 = (k − 2) · 3m.

But, this equation has no solution. Clearly, M/N is a simple non-abelian chief
factor, and in particular, t and u are the largest and the second largest primes
in π(M/N) respectively, which satisfy condition (3.1). Since G is a K4-group,
M/N is a simple Kn-group with n = 3, 4.

G2(3) and Sz(8) are the only two groups in classes C4, C5 and C6, which
satisfy condition (3.1). But the orders of Sylow 2-subgroup of both groups are
greater than the order of G, a contradiction. Suppose that M/N is isomorphic
to a group L2(r) in C1. Then r = u. By the order of G and condition (2.1), we
have

u2 − 1 = 223bt, b ⩽ m.

It follows from condition (3.1) that

(2t− 1)2 − 1 = 223bt.

Thus,
t(t− 1) = 3bt

and
t− 1 = 3b,

a contradiction. Assume thatM/N is isomorphic to a group in C2. By condition
(2.2), we have

u = 3t− 2.(3.2)

Combining (3.1) and (3.2), we have t = 1, which is impossible.
Therefore, M/N must be isomorphic to a group in C3 and so one can easily

deduce that G ≃ S, completing the proof of this case.
(II) S = L2(2

m).
By the hypothesis, we have |G| = 2m3tu, where

t =
2m + 1

3
, u = 2m − 1,

and u = 3t−2. Note that m1(G) = m1(S) = 2m+1 = 3t, by [12] Table A.1. It
is clear that t does not divide u− 1 and so, similar to (I), G has a chief factor
M/N such that {t, u} ⊆ π(M/N). Furthermore, M/N is a simple group. If
M/N is isomorphic to a group in classes C4-C6, then M/N ≃ L4(3) or U3(8),
which contradicts the fact that the Sylow 3-subgroups of G have order 3. If
M/N is isomorphic to one in C1, then t ⩽ 3. Checking the information shows
that t = 1, a contradiction. Analogous to (I), M/N is not contained in C3.
Thus M/N must be contained in C2 and therefore G ≃ S.

(III) S = L2(7
2).

It is obvious that |G| = 24 · 3 · 52 · 72 and m1(G) = m1(S) =
72+1

2 = 25.
We first show that G is insoluble. Note that 35 /∈ πe(G). Replacing {p, q}

with {5, 7} in Lemma 2.3 guarantees the existence of a chief factor M/N of
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G such that {5, 7} ⊆ π(M/N) and {5, 7} ∩ π(N) = ∅. This implies that G is
insoluble. Let K be the largest soluble normal subgroup of G. Write G = G/K.

Again, Lemma 2.3 shows that K is a {5, 7}′
-group.

Denote L = Soc(G), where Soc(G) denotes the socle of G. Then L =
L1 × L2 × · · · × Lr, where Li’s are nonabelian simple groups. By the order of
G and the orders of simple Kn-groups with n = 3, 4, we have r = 1. In fact, G
is an almost simple group such that L ⩽ G ⩽ Aut(L). By [4], L is isomorphic
to one of

L2(5), L2(7), L2(7
2).

Suppose that L ≃ L2(5) or L2(7). Since

|Out(L2(5))| = 2, |Out(L2(7))| = 2,

both 5 and 7 divide the order of K, which contradicts that K is a {5, 7}′
-group.

Hence L must be isomorphic to L2(7
2) and therefore G ≃ L2(7

2), as desired.
(IV) S = L2(3

5).

First, we have |G| = 22 · 35 · 112 · 61 and m1(G) = m1(S) =
35+1

2 = 2 · 61,
by Table A.1 in [12].

Since 11 ·61 /∈ πe(G), Lemma 2.3 implies G has a chief factor M/N such that
{11, 61} ⊆ π(M/N). By the order of G, we see that M/N is simple. By [4],
M/N is isomorphic to L2(3

5) and so is G, as wanted.
Thus, the proof is complete. □

4. Automorphism groups of simple K4-groups

In the ensuing analysis, we concern the automorphism groups of simple K4-
groups of type L2(q). It is well known that if q = pd, then Aut(L2(q)) ≃
PGL(2, q).Zd, where Zd denotes a cyclic group of order d. In particular,
Aut(L2(p)) ≃ PGL(2, p), where p is a prime. By [7, Table 3], we know that

m1(Aut(L2(q))) = q + 1.

In [13], we show that the automorphism group of L2(p) with p a prime can
be determined by their orders and largest element orders.

Theorem 4.1. Let G be a group. Then G ≃ PGL(2, p) if and only if |G| =
|PGL(2, p)| and m1(G)=m1(PGL(2, p))=p+ 1, where p is a prime.

Lemma 4.2. Let G be a Frobenius group of even order with H and K its kernel
and complement, respectively. Then s(G) = 2 and T (G) = {π(K), π(H)}.

Proof. See [3, Theorem 1]. □

The following lemma is well known.
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Lemma 4.3. Let G be a Frobenius group with kernel F and complement C.
Then the following assertions hold.

(1) F is a nilpotent group.
(2) |F | ≡ 1 (mod |C|).
(3) Every subgroup of C of order p · q, with p, q primes (not necessarily

distinct), is cyclic. In particular, every Sylow subgroup of C of odd order
is cyclic and every Sylow 2-subgroup of C is either cyclic or a generalized
quaternion group. If C is a insoluble group, then C has a subgroup of index at
most 2 isomorphic to SL(2, 5)×M , where M has cyclic Sylow p-subgroups and
(|M |, 30) = 1.

Lemma 4.4. Let G be a finite group with s(G) ≥ 2 with 2 ∈ π1(G) := π1.
Then G is one of the following groups:

(1) G is a Frobenius or 2-Frobenius group. In particular, a 2-Frobenius group
is soluble.

(2) G has a normal series 1 ⊴ H ◁ K ⊴ G such that H is a nilpotent π1-
group, G/K is a π1-group and K/H is a finite non-abelian simple group such
that |G/H| divides |Aut(K/H)|. Moreover, any odd order component of G is
also an odd order component of K/H.

Proof. See [23]. □

From now on, we discuss the automorphism groups of simple K4-groups in
classes C2 − C4 case by case.

The following lemma will be useful in our discussing.

Lemma 4.5 ([26, Theorem 1.1]). Let G be a simple group of order 2n · 3 · p1 ·
p2 · · · pm, where p1, p2, . . . , pm are distinct primes greater than 3. Then G is
isomorphic to J1 or some L2(q).

Proposition 4.6. Let G be a group and S a simple K4-group of type L2(2
m).

If m1(G) = m1(Aut(S)) and |G| = |Aut(S)|, then G ≃ Aut(S).

Proof. Since S is a simple K4-group, by Table 3 in [7], we have

m1(Aut(S)) = 2m + 1 = 3t.

Since 2m − 1 = u is a prime, m is also a prime. By Fermat’s little theorem, we
have m|u− 1 and m|t− 1 and so it is obvious that m ̸= u, t and u ∤ m− 1.

Note that |G| = |Aut(S)| = 2m ·3 · t ·u ·m with m > 3 and u = 3t+2. It is to
check that t ∤ u−1 by the hypothesis and so, in view of Lemma 2.3, there exists
a chief factor M/N of G such that {t, u} ⊆ π(M/N) and π(N) ∩ {t, u} = ∅.
Obviously, M/N is a simple non-abelian group with order 2n·3i·tj ·uk ·ml, where
n ⩽ m and i, j, k, l ∈ {0, 1}. If i = 0, then 3 ∤ |M/N | and M/N is a simple
K3-group or K4-group. Then one can easily check that M/N is isomorphic
to Sz(8) with t = 7, u = 13 or Sz(32) with t = 31, u = 41. In both cases,
however, t, u do not satisfy u = 3t+ 2. Hence, 3 ∈ π(M/N). Now, by Lemma
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4.5, M/N is isomorphic to J1 or some L2(q). Since J1 is a K6-group, that is
|π(J1)| = 6, M/N is isomorphic to some L2(q). Thus, by direct calculation,
we have M/N ≃ L2(2

m). By Lemma 2.2, there exists a normal subgroup C
of G such that S ⩽ G/C ⩽ Aut(S). If m ∈ π(C), then G has an element of
order um since m− 1 is not divisible by u, a contradiction. Hence C = 1 and
so G ≃ Aut(S), as wanted. □

Proposition 4.7. Let G be a group and S a simple K4-group of type L2(3
m).

If m1(G) = m1(Aut(S)) and |G| = |Aut(S)|, then
G ≃ Aut(S) or Z2.L2(3

m).Zm.

Proof. First, by the hypothesis and Table 3 in [7], we have

|G| = |Aut(S)| = 23 · 3m · t · u ·m, m1(G) = m1(Aut(S)) = 3m + 1 = 4t,

where 3m − 1 = 2u with u > 3 a prime. It is easy to see that m is a prime and
u = 2t− 1. By Fermat’s little theorem, m|u− 1 and m|t− 1 and consequently
m ̸= t, u. By the hypothesis and Lemma 2.3, G/N has a chief factor M/N
such that π(N) ∩ {t, u} = ∅ and {t, u} ⊆ π(M/N). Clearly, M/N is simple.
Since m1(G) = 4t, a Sylow 2-subgroup G2 of G has a cyclic maximal subgroup
of order 4. G2 can not be cyclic because G is insoluble by above argument.
Therefore, G2 is one of the following types:

(1) the direct product of a cyclic group of order 4 and one of order 2,
(2) the dihedral group D8,
(3) the quaternion group Q8.
According to Theorem 8.6, Theorem 8.7 and Theorem 11.1 of Chapter 6

in [21], M/N is isomorphic to A7 or L2(q) for an odd prime power q > 3.
If M/N ≃ A7, then t = 5, u = 7, which do not satisfy u = 2t − 1. Hence,
M/N ≃ L2(q) for some odd prime power q. Then we can easily obtain q = 3m

and so M/N ≃ L2(3
m) = S.

By Lemma 2.2, there exists a normal subgroup C of G such that M/N ⩽
G/C ⩽ Aut(M/N). Thus, |C| ⩽ 2m. If m ∈ π(C), then Cm is normal in G,
where Cm is a Sylow m-subgroup of C. Let g be an element of G of order t.
Since by Fermat’s little theorem t ∤ m− 1, g acts trivially on Cm and therefore
mt ∈ πe(G), which violates the largest element order in G is 4t when m > 4.
If m ⩽ 4, then m = 3 since S is a simple K4-group isomorphic to L2(3

3). But
now, 3 · 13 ∈ πe(G) since an element in G with order 13 acts trivially on Cm.
This contradiction shows that 3 does not divide |C|. Hence, m ∤ |C|.

Assume |C| = 2. Then C ⩽ Z(G). It follows that G is isomorphic to

Z2.L2(3
m).Zm or L2(3

m).Zm × Z2.

Clearly, m1(L2(3
m)) ⩽ m1(L2(3

m).Zm) since L2(3
m) is normal in L2(3

m).Zm.
In fact,

m1(L2(3
m)) = m1(L2(3

m).Zm).
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In order to prove the validity of above equality, we investigate the structure
of maximal subgroups of L2(3

m).Zm. Take q = 3m and T = L2(3
m).Zm.

By [5, Theorem 1.3], the maximal subgroups of L2(3
m).Zm are:

(1) L2(3
m),

(2) Zm
3 ⋊ Z(q−1)/2,

(3) NT (Dq−1),
(4) NT (Dq+1).
The largest element orders of groups in (1) and (2) are less than 2t. Since

NT (Dq−1) ≃ (Zu ⋊ Z2)⋊ Zm,

by [14, Table I], NT (Dq−1) has no element of order mu or 2m and so
m1(NT (Dq−1)) ⩽ 2t. For NT (Dq+1) ≃ (Z2t ⋊ Z2) ⋊ Zm, by [14, Table I],
NT (Dq+1) has no element of mt and so m1(NT (Dq+1)) ⩽ 2t. Hence, by the
above argument, L2(3

m).Zm and L2(3
m) have the same largest element order.

This means that

m1(L2(3
m).Zm × Z2) = 2t.

Since Z2.L2(3
m).Zm is a non-split central extension and m1(L2(3

m).Zm) = 2t,
we have

m1(Z2.L2(3
m).Zm) = 4t,

which satisfies our assumption on G. Therefore, in this case,

G ≃ Z2.L2(3
m).Zm.

If C = 1, then G ∼= Aut(S). Thus, the proof is complete. □

Proposition 4.8. Let G be a group and S a simple K4-group in C4. Suppose
that m1(G) = m1(Aut(S)) and |G| = |Aut(S)|. Then G has a unique chief
factor M/N isomorphic to S. Furthermore, the following cases hold.

(1) If S ≃ L2(2
4), then G ≃ Aut(S).

(2) If S ≃ L2(5
2), then G ≃ Aut(S) or one of the following:

L2(5
2).Z2 × Z2, Z2.L2(5

2)× Z2, L2(5
2)× Z2 × Z2.

(3) If S ≃ L2(3
4), then G ≃ Aut(S) or one of the following:

Z2.L2(3
4).Z4, L2(3

4).Z4 × Z2,

L2(3
4).(Z2 × Z2)× Z2, L2(3

4).Z2 × Z2 × Z2,

L2(3
4)× Z2 × Z2 × Z2, Z2.L2(3

4)× Z2 × Z2, Z2.L2(3
4).Z2 × Z2.

(4) If S ≃ L2(7
2), then G ≃ Aut(S) or one of the following:

Z2.L2(7
2).Z2, L2(7

2).Z2 × Z2, Z2.L2(7
2)× Z2, L2(7

2)× Z2 × Z2.

(5) If S ≃ L2(3
5), then G ≃ Aut(S) or Z2.L2(3

5).Z5.
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Proof. We discuss the automorphism groups of simple K4-groups of type L2(q)
in C4 case by case.

(I) S = L2(2
4).

By the hypothesis and Table 3 in [7], we have

|G| = |Aut(S)| = 26 · 3 · 5 · 17, m1(G) = m1(Aut(S)) = 24 + 1 = 17.

Obviously, Since m1(G) = 17, it follows that 17 is an isolated point of Γ(G)
and s(G) ≥ 2.

First, note that G is insoluble. This follows directly from Lemma 2.3.
Second, G is not a Frobenius group. If G is a Frobenius group, then by

Lemma 4.2 it follows that s(G) = 2 and T (G) = {π(K), π(H)} with H, K its
kernel and complement, respectively. Obviously, π(H) = {2, 3, 5} and π(K) =
{17}. By Lemma 4.3, we have |K| | (|Hp| − 1), where Hp is a Sylow subgroup
of H and p ∈ {2, 3, 5}. It follows that 17 divides |H5| − 1 = 4, a contradiction.

Third, as G is insoluble, by Lemma 4.4, we get that G is not a 2−Frobenius
group.

Hence, it follows from Lemma 4.4 and Table 1 in [25] that G has a chief
factor K/H isomorphic to S = L2(2

4). In addition, |H| ⩽ 4.
If |H| = 1, then G ∼= Aut(S).
If |H| = 2, then H ⩽ Z(G). It follows that 2 · 17 ∈ π(G), which violates the

largest element order in G is 17.
If |H| = 4, it follows that H is non-cyclic. Otherwise, 4 · 17 ∈ π(G), which

violates the largest element order in G is 17. Then H is an elementary abelian
and G/H ≃ S. Since H < CG(H), G = CG(H) and so H ⩽ Z(G). It follows
that G has an element of order 2 · 17, a contradiction.

(II) S = L2(5
2).

By the hypothesis and Table 3 in [7], we have

|G| = |Aut(S)| = 25 · 3 · 52 · 13, m1(G) = m1(Aut(S)) = 52 + 1 = 26.

Clearly, 5 · 13 /∈ πe(G). By Lemma 2.3 and the hypothesis, G has a chief
factor M/N such that {5, 13} ⊆ π(M/N). Thus, it follows that G has a chief
factor M/N isomorphic to S = L2(5

2). By Lemma 2.2, there exists a normal
subgroup C of G such that L2(5

2) ⩽ G/C ⩽ Aut(L2(5
2)). Hence |C| ⩽ 4.

If |C| = 1, then G ≃ Aut(S).
If |C| = 2, then C ⩽ Z(G) and G/C ≃ L2(5

2).Z2. Then one can easily
obtain that G is isomorphic to Z2.L2(5

2).Z2 or L2(5
2).Z2 × Z2. By [4], we see

that G can not be isomorphic to the former case since

m1(Z2.L2(5
2).Z2) ̸= 26.

Since by [4], m1(L2(5
2).Z2) = 13 or 26, we have

m1(L2(5
2).Z2 × Z2) = 26.

Hence, we have G ≃ L2(5
2).Z2 × Z2, which satisfies the hypothesis.
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Let |C| = 4 and suppose that H is cyclic. It follows that that 4 · 13 ∈ π(G),
which violates the largest element order in G is 2 · 13. Therefore, H is an
elementary abelian group. Hence we have G is isomorphic to

L2(5
2)× Z2 × Z2 or Z2.L2(5

2)× Z2,

both of which have the largest element order 26, because m1(L2(5
2)) = 13 and

m1(Z2.L2(5
2)) = 26 (see [4]).

(III) S = L2(3
4).

By the hypothesis and Table 3 in [7], we have

|G| = |Aut(S)| = 27 · 34 · 5 · 41, m1(G) = m1(Aut(S)) = 34 + 1 = 2 · 41.
We first prove that G is insoluble. Since 3 · 41 /∈ πe(G), by Lemma 2.3, G

has a chief factor M/N such that {3, 41} ∩ π(N) = ∅ and {3, 41} ⊆ π(M/N).
Hence G is insoluble.

Let K be the largest soluble normal subgroup of G. Then it is easy to see
that G/K is an almost simple group such that L/K ⩽ G/K ⩽ Aut(L/K),
where L/K is simple. Similar to above, we see that L/K can not be a simple
K3-group. Therefore, L/K is a simple K4-group and moreover, L/K ≃ L2(3

4).
By the order of the outer automorphism of L2(3

4), we know that |K| ⩽ 8.
Obviously, 41 /∈ π(K). Now, we distinguish the following cases.

If |K| = 1, then G ∼= Aut(S).
If |K| = 2, then K ⩽ Z(G). It follows that

G/K ≃ L2(3
4).Z4, or G/K ≃ L2(3

4).(Z2 × Z2).

Since L ≃ Z2.L2(3
4) or L2(3

4)× Z2, we conclude that G is isomorphic to one
of the following:

Z2.L2(3
4).Z4, Z2.L2(3

4).(Z2×Z2), (L2(3
4).Z4)×Z2, (L2(3

4).(Z2×Z2))×Z2.

With the help of Magma [1], we know that

m1(L2(3
4).Z4) = 41 and m1(L2(3

4).(Z2 × Z2)) = 82.

Hence, m1(Z2.L2(3
4).(Z2×Z2)) = 164 as Z2.L2(3

4).(Z2×Z2) is a non-split
central extension of L2(3

4).(Z2×Z2). On the other hand, it is easy to see that

Z2.L2(3
4).Z4, (L2(3

4).Z4)× Z2, (L2(3
4).(Z2 × Z2))× Z2

have the same largest element order 82, which fulfill our hypothesis on G.
Now suppose that |K| = 4. If K is cyclic, it follows that 4 · 41 ∈ π(G),

which violates our hypothesis for G. Hence K is an elementary abelian group
with order 4. Since G/CG(K) ≲ Aut(K), G/CG(K) = 1 or G/CG(K) ≃ Z2.
If G/CG(K) = 1, then K ⩽ Z(G). Since L/K ≃ L2(3

4), we have that L ≃
L2(3

4) × Z2 × Z2 or L ≃ Z2.L2(3
4) × Z2. Since G/K ≃ L2(3

4).Z2, it follows
that

G ≃ L2(3
4).Z2 × Z2 × Z2 or G ≃ Z2.L2(3

4).Z2 × Z2.
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With the help of Magma [1], we have that m1(L2(3
4).Z2) = 41 or 82. Hence

m1(L2(3
4).Z2 × Z2 × Z2) = 82.

However, since Z2.L2(3
4).Z2 is a non-split central extension of L2(3

4).Z2, we
have

m1(Z2.L2(3
4).Z2 × Z2) = 82,

if m1(L2(3
4).Z2) = 41, and

m1(Z2.L2(3
4).Z2 × Z2) = 164

if m1(L2(3
4).Z2) = 82.

If G/CG(K) ≃ Z2, then CG(K)/K ≃ L/K and so K ⩽ Z(L). Similarly, we
get the same conclusion as above.

At last, we assume that |K| = 8. Then G/K ≃ L2(3
4). If K ≃ Z8 or

Z4×Z2, then 4×41 ∈ πe(G), which contradicts that m1(G) = 2×41. Suppose
that K ≃ Z2 × Z2 × Z2. Since G/CG(K) ≲ Aut(K) and K ⩽ CG(K), we
obtain that G = CG(K). It follows that

G ≃ L2(3
4)× Z2 × Z2 × Z2 or G ≃ Z2.L2(3

4)× Z2 × Z2.

It is obvious that m1(L2(3
4) × Z2 × Z2 × Z2) = 82, since m1(L2(3

4)) = 41.
Because Z2.L2(3

4) is a non-split central extension, we have

m1(Z2.L2(3
4)) = 82,

and so
m1(Z2.L2(3

4)× Z2 × Z2) = 82.

If K is a non-abelian group, then K ≃ D8 or Q8. Since G/CG(K) ≲ Aut(K)
and Aut(K) ≃ D8 or S4, 41 divides the order of CG(K). But K has an element
of order 4. Hence 4× 41 ∈ πe(G), a contradiction.

Thus, the proof is complete.
(IV) S = L2(7

2).
By the hypothesis and Table 3 in [7], we have

|G| = |Aut(S)| = 26 · 3 · 52 · 72, m1(G) = m1(Aut(S)) = 72 + 1 = 2 · 52.
We assert that G is insoluble. Otherwise, G contains a Hall {5, 7}−subgroup

H of order 52 · 72. Since m1(G) = 2 · 52, H5 is a cyclic subgroup of order 25,
where H5 is a Sylow 5-subgroup of H. Let H7 be a Sylow 7-subgroup of H.
Then H7 is normal in H as H5 is cyclc. Since (5, |Aut(H7)|) = 1, G has an
element of order 52 · 7, which contradicts that m1(G) = 2 · 52.

Let K be the largest soluble normal subgroup of G and G = G/K. Then, by
the hypothesis and the orders of the simple K3-groups and simple K4-groups,
we know that G/K has a unique minimal non-abelian simple subgroup L/K
such that L/K ⩽ G/K ⩽ Aut(L/K). By [4], L/K is isomorphic to one of
L2(2

2), L2(7), L2(7
2). If L/K ≃ L2(4), then |K| = 2i · 5 · 72, where i = 3, 4.

Let H/K be a Sylow 5-subgroup of G/K. Then H is a soluble group and, as
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above, 52 · 7 ∈ πe(H), a contradiction by the hypothesis. If L/K ≃ L2(7),
then |K| = 2i · 52 · 7, where i = 2, 3. Similarly, we can deduce a contradiction.
Hence, L/K must be isomorphic to L2(7

2). Note that |K| ⩽ 4.
If |K| = 1, then G ≃ Aut(L2(7

2)).
If |K| = 2, then K ⩽ Z(G). Then L ≃ Z2.L2(7

2) or L2(7
2)× Z2. It follows

that G is isomorphic to

Z2.L2(7
2).Z2 or L2(7

2).Z2 × Z2.

By Magma [1], m1(L2(7
2).Z2) = 25 or 50. Hence, if

m1(L2(7
2).Z2) = 25,

then
m1(Z2.L2(7

2).Z2) = 50,

since Z2.L2(7
2).Z2 is a non-split central extension of L2(7

2).Z2. However, in
both cases, we always have

m1(L2(7
2).Z2 × Z2) = 50.

Assume that |K| = 4. Then, as above, K must be an elementary abelian
group. Notice that G/K ≃ L2(7

2). It is easy to see that K ⩽ Z(G). Hence,
G ≃ Z2.L2(7

2)×Z2 or L2(7
2)×Z2×Z2. Since m1(L2(7

2)) = 25 and Z2.L2(7
2)

is a non-split central extension, m1(Z2.L2(7
2)) = 50, therefore

m1(Z2.L2(7
2)× Z2) = 50.

In addition, it is obvious that

m1(L2(7
2)× Z2 × Z2) = 50.

(V) S = L2(3
5).

By the hypothesis and Table 3 in [7], we have

|G| = |Aut(S)| = 23 · 35 · 5 · 112 · 61, m1(G) = m1(Aut(S)) = 35 + 1 = 22 · 61.
By Lemma 2.3 and the hypothesis, we know that G has a chief factor M/N
isomorphic to S = L2(3

5) and {11, 61} ⊆ π(M/N). Also, by Lemma 2.2, there
exists a normal subgroup C of G such that M/N ⩽ G/C ⩽ Aut(M/N). Hence
|C| ⩽ 10. If 5 ∈ π(C), then G has an element of order 5 · 61, which violates
the largest element order in G is 4 · 61. Hence |C| ⩽ 2. If |C| = 1, then
G ≃ Aut(S). If |C| = 2, then C ⩽ Z(G) and G/C ≃ L2(3

5).Z5. It follows that
G is isomorphic to

Z2.L2(3
5).Z5 or L2(3

5).Z5 × Z2.

Since m1(L2(3
5).Z5) = 2 · 61 with the help of Magma [1], we know that

m1(L2(3
5).Z5 × Z2) = 2 · 61,

while
m1(Z2.L2(3

5).Z5) = 22 · 61
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for that Z2.L2(3
5).Z5 is a non-split central extension. Hence G must be iso-

morphic to Z2.L2(3
5).Z5.

Thus, the proof of this result is complete. □

Remark 4.9. In Proposition 4.8, the largest element orders of the groups of
types Z2.L2(3

4).Z2 and Z2.L2(7
2).Z2 are not unique, which have been men-

tioned in the foregoing argument. In fact, by Magma, we have

m1(Z2.L2(3
4).Z2) = 82 or 164,

m1(Z2.L2(7
2).Z2) = 50 or 100.
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