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1. Introduction

This paper is concerned with the following impulsive boundary value prob-
lem (BVP for short) set on the positive half-line

(1.1)

 −(p(t)u′(t))′ = f(t, u(t)), a.e. t ≥ 0, t ̸= tj
u(0) = u(+∞) = 0,
△(p(tj)u

′(tj)) = h(tj)Ij(u(tj)), j ∈ {1, 2, . . .},
where f : [0,+∞)× R −→ R is a Carathéodory function, i.e.

(i) f(., u) is measurable, for each u ∈ R,
(ii) f(t, .) is continuous, for a.e. t ∈ [0,+∞).

The coefficient p : [0,+∞) −→ (0,+∞) satisfies 1
p ∈ L1[0,+∞), and

M =

∫ +∞

0

(∫ +∞

t

1

p(s)
ds

)
dt < +∞.

As an example for p, one may take the exponential function. Here t0 = 0 <
t1 < t2 < . . . < tj < . . . < tm → +∞, as m → ∞, are the impulse points, while
the impulsive functions Ij : R −→ R are assumed continuous. Finally

△(p(tj)u
′(tj)) = p(t+j )u

′(t+j )− p(t−j )u
′(t−j ),
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where u′(t+j ) = lim
t→t+j

u′(t) and u′(t−j ) = lim
t→t−j

u′(t) stand for the right and the

left limits of u′ at tj , respectively. As for h : [0,+∞) −→ [0,+∞), it is a

continuous function that satisfies
∑+∞

j=1 h(tj) < +∞.

Many phenomena in nonlinear dynamics and natural sciences may be subject
to jump discontinuities in velocity or short-term perturbations that can be seen
as impulses, for instance the administration of a drug in the periodic treatment
of some diseases. We refer the reader to [4] and the references therein for more
details on the derivation of such models and some of their qualitative aspects.
In the recent literature, we can find a lot of mathematical results of stability
and existence of solutions for BVPs set on bounded intervals of the real line
and associated to impulsive equations. Most of these mathematical results use
topological methods (fixed point theorems, Leray-Schauder degree, . . . ). We
cite the papers [5, 7, 10, 12, 17] where boundary value problems associated to
second-order differential operators are investigated. Generally, Mountain Pass
Theorem and Ekeland’s Variational Principle are sufficient to get existence of
single or even multiple solutions; see, e.g., [2, 11, 14] where polynomial type
growth conditions are assumed for the nonlinear source term. However, only
few papers employ variational approaches to deal with such problems on un-
bounded domains. For example, in the paper [7], the following boundary value
problem is posed on the positive half-line:

 −u′′(t) + u(t) = λf(t, u(t)), a.e. t ≥ 0, t ̸= tj
u′(0) = g(u(0)), u′(+∞) = 0,

△u′(tj)) = Ij(u(tj)), j ∈ {1, 2, . . . , l}

where f ∈ C([0,+∞)×R,R), g, Ij ∈ C(R) (1 ≤ j ≤ l), and 0 = t0 < t1 < . . . <
tl < +∞ are finite impulse points. Then existence of solutions are obtained
under some restrictions upon the positive parameter λ.

The aim of this work is to consider the more general differential operator
−(p(.)u′(.))′ and a Carathéodory nonlinearity f satisfying sub-linear, linear
or super-linear growth condition at positive infinity or at the origin. The
impulse point are infinite and the jump conditions concern the derivatives
p(tj)u

′(tj) (j = 1, 2, . . .). The solutions are proved to exist in a weighted
Sobolev space. For this, some continuous and compact embeddings are first
established in Section 2 and three existence theorems are demonstrated in Sec-
tion 3, two of them use Minimization Principal and one employs Mountain Pass
Theorem. Examples of applications illustrate each of the obtained result.
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2. Preliminaries

2.1. The functional framework. Define the space

H1
0,p(0,+∞) = {u ∈ AC[0,+∞),R) | u(0) = u(+∞) = 0,

√
pu′ ∈ L2[0,+∞)}.

Lemma 2.1. H1
0,p(0,+∞) embeds in L2(0,+∞).

Proof. For u ∈ H1
0,p(0,+∞), we have

|u(t)| =
∣∣∣∣∫ +∞

t

u′(s)ds

∣∣∣∣ =
∣∣∣∣∣
∫ +∞

t

√
p(s)u′(s)

1√
p(s)

ds

∣∣∣∣∣ .
Then, by the Cauchy-Schwartz inequality

|u(t)|2 ≤
(∫ +∞

t
p(s)u′2(s)ds

)(∫ +∞
t

1
p(s)ds

)
≤

(∫ +∞
0

p(s)u′2(s)ds
)(∫ +∞

t
1

p(s)ds
)
.

Hence ∫ +∞
0

|u(t)|2dt ≤
(∫ +∞

0
(
∫ +∞
t

1
p(s)ds)dt

)(∫ +∞
0

p(s)|u′(s)|2ds
)
,

that is

∥u∥L2 ≤
√
M∥√pu′∥L2 .

□

Notice that H1
0,p(0,+∞) is a Banach space equipped with the norm

∥u∥0,p =

√∫ +∞

0

p(t)u′2(t)dt+

∫ +∞

0

u2(t)dt,

or the equivalent norm

∥u∥p = ∥u∥L2 + ∥√pu′∥L2 .

Moreover the space H1
0,p(0,+∞) is reflexive. Indeed

Lemma 2.2. (a) The operator

T : H1
0,p(0,+∞)−→T (H1

0,p(0,+∞)) ⊂ L2(0,+∞)× L2(0,+∞) : = L2
2(0,+∞)

u −→T (u) = (u,
√
pu′)

is an isometric isomorphism.
(b) H1

0,p(0,+∞) is a reflexive space.

Proof. (a) It is clear that T is a linear operator and that T preserves norm,
i.e.,

∀u ∈ H1
0,p(0,+∞), ∥Tu∥L2

2
= ∥u∥p.
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Indeed

∥Tu∥L2
2

= ∥(u,√pu′)∥L2
2

= ∥u∥L2 + ∥√pu′∥L2

= ∥u∥p.
(b) Since L2(0,+∞) is a reflexive Banach space, the cartesian product L2

2(0,
+∞) is also a reflexive Banach space with respect to the norm

∥u∥L2
2
= ∥u1∥L2 + ∥u2∥L2 , where u = (u1, u2) ∈ L2

2(0,+∞).

From part (a), T (H1
0,p(0,+∞)) is a closed subspace of L2

2(0,+∞); then by [9,

Theorem 4.10.5], the space T (H1
0,p(0,+∞)) is reflexive. Consequently H1

0,p(0,
+∞) is also reflexive, see [9, Lemma 4.10.4]. □

Lemma 2.3. On H1
0,p(0,+∞), the quantity ∥u∥ =

√∫ +∞
0

p(t)u′2(t)dt is a

norm which is equivalent to the H1
0,p(0,+∞)-norm.

Proof. Given u ∈ H1
0,p(0,+∞), in view of Lemma 2.1, we have∫ +∞

0

|u(t)|2dt ≤ M∥u∥2.

Then∫ +∞

0

p(t)u′2(t)dt ≤
∫ +∞

0

(
u2(t) + p(t)u′2(t)

)
dt ≤ (1 +M)

∫ +∞

0

p(t)u′2(t)dt,

that is
∥u∥ ≤ ∥u∥0,p ≤

√
1 +M∥u∥.

□
Lemma 2.4.(H1

0,p(0,+∞), ∥·∥) embeds in (C0[0,+∞), ∥u∥∞),where C0[0,+∞)
= {u ∈ C([0,+∞),R) | limt→+∞ u(t) = 0} and ∥u∥∞ = supt∈[0,+∞) |u(t)|.

Proof. For u ∈ H1
0,p(0,+∞), we have

|u(t)| = |u(t)− u(0)| =
∣∣∣∫ t

0
u′(s)ds

∣∣∣ = ∣∣∣∣∫ t

0

√
p(s)u′(s) 1√

p(s)
ds

∣∣∣∣
≤

(∫ t

0
p(s)u′2(s)ds

) 1
2
(∫ t

0
1

p(s)ds
) 1

2

≤
(∫ +∞

0
p(s)u′2(s)ds

) 1
2
(∫ +∞

0
1

p(s)ds
) 1

2

.

Hence

∥u∥∞ ≤

√∥∥∥∥1p
∥∥∥∥
L1

∥u∥.

□
Corollary 2.5.H1

0,p(0,+∞)embeds continuously in C0[0,+∞)and in L2(0,+∞).
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To prove that H1
0,p(0,+∞) embeds compactly in C0[0,+∞), we appeal to

Corduneanu’s compactness criterion:

Lemma 2.6 ([8]). Let H ⊂ C0([0,+∞),R) be a bounded set. Then H is
relatively compact if the following conditions hold:

(a) H is equicontinuous on any compact sub-interval of [0,+∞), i.e.,

∀ J ⊂ [0,+∞) compact subinterval , ∀ ε > 0, ∃ δ > 0, ∀ t1, t2 ∈ J :
|t1 − t2| < δ =⇒ |u(t1)− u(t2)| ≤ ε, ∀u ∈ H,

(b) H is equiconvergent at +∞, i.e.,

∀ ε > 0, ∃T = T (ε) > 0 such that
∀ t1, t2 ∈ J : t1, t2 ≥ T (ε) =⇒ |u(t1)− u(t2)| ≤ ε, ∀u ∈ H.

Lemma 2.7. The embedding

H1
0,p(0,+∞) ↪→ C0[0,+∞)

is compact.

Proof. LetD ⊂ H1
0,p(0,+∞) be a bounded set; then it is bounded in C0[0,+∞)

by Lemma 2.4. Let R > 0 be such that for all u ∈ D, ∥u∥ ≤ R, we have

(a) D is equicontinuous on every compact interval of [0,+∞). For u ∈ D
and t1, t2 ∈ [0,+∞), we have

|u(t1)− u(t2)| =
∣∣∣∫ t1

t2
u′(τ)dτ

∣∣∣ = ∣∣∣∣∫ t1
t2

√
p(τ)u′(τ) 1√

p(τ)
dτ

∣∣∣∣
≤

(∫ t1
t2

1
p(τ)dτ

) 1
2 ∥u∥

≤ R
(∫ t1

t2
1

p(τ)dτ
) 1

2

and the right-hand side tends to 0, as |t1 − t2| → 0 for 1
p ∈ L1(0,+∞).

(b) D is equiconvergent. For t ∈ [0,+∞) and u ∈ D, using the fact that
u(+∞) = 0, we have

|u(t)− u(+∞)| = |u(t)|
=

∣∣∣∫ +∞
t

u′(τ)dτ
∣∣∣

≤
(∫ +∞

t
1

p(τ)dτ
) 1

2
(∫ +∞

t
p(τ)u′2(τ)dτ

) 1
2

.

≤
(∫ +∞

t
1

p(τ)dτ
) 1

2 ∥u∥

≤ R
(∫ +∞

t
1

p(τ)dτ
) 1

2 −→ 0, as t → +∞.

The result then follows from Lemma 2.6. □
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2.2. Critical point theory. Now we recall some essential facts from critical
point theory. (See [1, 3, 13]).

Definition 2.8. Let (X, ∥ · ∥) be a Banach space, Ω ⊂ X an open subset, and
J : Ω −→ R a functional. We say that J is Fréchet differentiable at u ∈ Ω if
there exists an operator A ∈ X ′ such that

lim
v∈Ω, ∥v∥→0

J(u+ v)− J(u)−Av

∥v∥
= 0.

The operator A, which is unique, is called the Fréchet differential of J at u and
is denoted by A = J ′

F (u) or A = J ′(u) when there is no confusion.

Definition 2.9. Let X be a Banach space, Ω ⊂ X an open subset, and J :
Ω −→ R a functional. We say that J is Gâteaux differentiable at u ∈ Ω if there
exists A ∈ X ′ such that

lim
t→0

J(u+ tv)− J(u)

t
= Av,

for all v ∈ X. The operator A, which is unique, is denoted by A = J ′
G(u) or

merely J ′.

The mapping which sends to every u ∈ Ω the mapping J ′
G(u) is called the

Gâteaux differential of J and is denoted by J ′
G.

Proposition 2.10 ([1]). Let X be a Banach space, Ω ⊂ X an open subset, and
J : Ω −→ R a Gâteaux differentiable functional at some point u ∈ Ω. If J ′

G is
continuous at u, then J is Fréchet differentiable at u and J ′

F (u) = J ′
G(u).

We say that J ∈ C1 if J ′
G is continuous at every u ∈ Ω.

Definition 2.11. Let X be a Banach space, Ω ⊂ X an open subset, and
J : Ω −→ R a Gâteaux differentiable functional. A point u ∈ Ω is called a
critical point of J if J ′(u) = 0, i.e., J ′(u)v = 0, for every v ∈ X. If further
J(u) = c, we say that u is a critical point of J at level c.

Clearly, every point of a local minimum of a Gâteaux differentiable functional
J is a critical point of J .

Definition 2.12. Let X be a Banach space. A functional J : X −→ R is
called coercive if, for every sequence (uk)k∈N ⊂ X,

∥uk∥ → +∞ =⇒ J(uk) → +∞.

Definition 2.13. LetX be a Banach space. A functional J : X −→ (−∞,+∞]
is said to be sequentially weakly lower semi-continuous (swlsc for short) if

J(u) ≤ lim inf
n→+∞

J(un),

as un ⇀ u in X, when n → ∞.

Then we have:
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Lemma 2.14 ([6, Minimization Principal]). Let X be a reflexive Banach space
and J a functional defined on X such that

(1) lim
∥u∥→+∞

J(u) = +∞ (coercivity condition),

(2) J is sequentially weakly lower semi-continuous.

Then J is lower bounded on X and achieves its lower bound at some point u0.

Definition 2.15. LetX be a real Banach space, J ∈ C1(X,R). If any sequence
(un) ⊂ X for which (J(un)) is bounded in R and J ′(un) −→ 0 as n → +∞
in X ′ possesses a convergent subsequence, then we say that J satisfies the
Palais-Smale condition, (PS) condition for brevity.

Lemma 2.16 (Mountain Pass Theorem). (See, e.g., [15, Theorem 2.2] or [16,
Theorem 3.1]). Let X be a Banach space and let J ∈ C1(X,R) satisfy J(0) = 0.
Assume that J satisfies (PS) and there exist positive numbers ρ and α such that

(1) J(u) ≥ α if ∥u∥ = ρ,
(2) there exists u0 ∈ X such that ∥u0∥ > ρ and J(u0) < α.

Then there exists a critical point. Furthermore it is characterized by

J ′(u) = 0, J(u) = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u0}.

3. Existence of weak solutions

Take v ∈ H1
0,p(0,+∞), multiply the equation in problem (1.1) by v, and

then integrate over (0,+∞); we get

−
∫ +∞

0

(p(t)u′(t))′v(t)dt =

∫ +∞

0

f(t, u(t))v(t)dt.

The left-hand term is

−
∫ +∞
0

(p(t)u′(t))′v(t)dt = −
∑+∞

j=0

∫ tj+1

tj
(p(t)u′(t))′v(t)dt

=
∑+∞

j=1 h(tj)Ij(u(tj))v(tj) +
∫ +∞
0

p(t)u′(t)v′(t)dt.

Hence∫ +∞

0

p(t)u′(t)v′(t)dt = −
+∞∑
j=1

h(tj)Ij(u(tj))v(tj) +

∫ +∞

0

f(t, u(t))v(t)dt.

This leads to the natural concept of weak solution for problem (1.1).
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Definition 3.1. We say that a function u ∈ H1
0,p(0,+∞) is a weak solution of

problem (1.1) if∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

h(tj)Ij(u(tj))v(tj)−
∫ +∞

0

f(t, u(t))v(t)dt = 0,

for all v ∈ H1
0,p(0,+∞).

In order to study problem (1.1), we consider the functional J : H1
0,p(0,+∞)→

R defined by

J(u) =
1

2
∥u∥2 +

+∞∑
j=1

h(tj)

∫ u(tj)

0

Ij(τ)dτ −
∫ +∞

0

F (t, u(t))dt,

where

F (t, u) =

∫ u

0

f(t, s)ds.

3.1. The sublinear case.

Theorem 3.2. Suppose that the following conditions hold:

(H1) There exist a constant µ ∈ [0, 1) and positive functions a1, b1 ∈
L1[0,+∞) such that

|f(t, x)| ≤ a1(t)|x|µ + b1(t), for a.e. t ∈ [0,+∞) and all x ∈ R.
(I0) There exist constants k > 0 and γ ∈ [0, 1) such that

|Ij(s)| ≤ k|s|γ , ∀ s ∈ R, ∀ j ∈ {1, 2, . . .}.
Then problem (1.1) has at least one weak solution.

Proof. Claim 1. The functional J is well defined.

Let d =

√∥∥∥ 1
p

∥∥∥
L1
. Given u ∈ H1

0,p(0,+∞), Assumptions (H1) and (I0) guaran-

tee that

|F (t, u(t))| ≤ a1(t)

µ+ 1
|u(t)|µ+1 + b1(t)|u(t)|.

Hence∣∣∣∫ +∞
0

F (t, u(t))dt
∣∣∣ ≤ dµ+1

µ+1 ∥u∥
µ+1

∫ +∞
0

a1(t)dt+ d∥u∥
∫ +∞
0

b1(t)dt

≤ dµ+1

µ+1 ∥u∥
µ+1∥a1∥L1 + d∥u∥∥b1∥L1

and ∣∣∣∑+∞
j=1

∫ u(tj)

0
h(tj)Ij(τ)dτ

∣∣∣ ≤ kd γ+1

γ+1 ∥u∥ γ+1
∑+∞

j=1 h(tj).

Then
|J(u)| ≤ 1

2∥u∥
2 + kd γ+1

γ+1 ∥u∥ γ+1
∑+∞

j=1 h(tj)

+dµ+1

µ+1 ∥u∥
µ+1∥a1∥L1 + d∥u∥∥b1∥L1

< ∞.
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Claim 2. J is sequentially weakly lower semi-continuous.
Let (un) ⊂ H1

0,p(0,+∞) be a sequence such that un ⇀ u in H1
0,p(0,+∞), as

n → ∞. Then (un) converges uniformly to u on [0,+∞) and

lim inf
n→+∞

∥un∥ ≥ ∥u∥.

The continuity of functions f and Ij , j ∈ {1, 2, . . .} together with Lebesgue
Dominated Convergence Theorem yield

lim inf
n→+∞

J(un)

= lim inf
n→+∞

(
1
2∥un∥2 +

∑+∞
j=1

∫ un(tj)

0
h(tj)Ij(τ)dτ −

∫ +∞
0

F (t, un(t))dt
)

≥ 1
2∥u∥

2 +
∑+∞

j=1

∫ u(tj)

0
h(tj)Ij(τ)dτ −

∫ +∞
0

F (t, u(t))dt = J(u).

Therefore, J is sequentially weakly lower semi-continuous.
Claim 3. J is coercive.
In view of (H1) and (I0), Lemma 2.4 implies that

(3.1)
J(u) ≥ 1

2∥u∥
2 − kd γ+1

γ+1 ∥u∥ γ+1
∑+∞

j=1 h(tj)

−dµ+1

µ+1 ∥u∥
µ+1∥a1∥L1 − d∥u∥|∥b1∥L1 .

Since µ < 1 and γ < 1, (3.1) implies

lim
∥u∥−→+∞

J(u) = +∞.

Lemma 2.14 guarantees that J has a local minimum which is a critical point
of J . Finally, it is easy to check that under (H1), the functional J is Gâteaux
differentiable and the Gâteaux derivative at a point u ∈ X is given by

(3.2)
(J ′(u), v) =

∫ +∞
0

p(t)u′(t)v′(t)dt+
∑+∞

j=1 h(tj)Ij(u(tj))v(tj)

−
∫ +∞
0

f(t, u(t))v(t)dt,

for all v ∈ H1
0,p(0,+∞). Therefore u is a weak solution of problem (1.1). □

Remark 3.3. If, in addition, u ∈ H2
p (tj , tj+1), for all j ∈ {1, 2, . . .}, where

H2
p (tj , tj+1) = {u ∈ AC[0,+∞),R) :

√
pu′ ∈ L2(tj , tj+1), (pu

′)′ ∈ L2(tj , tj+1)},

then u will be called a strong solution of problem (1.1).

We have:

Proposition 3.4. In (H1), assume further that a1, b1 ∈ L2(0,+∞). Then
every weak solution is a strong solution of problem (1.1).
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Proof. Since u ∈ H1
0,p(0,+∞) is a critical point of J, we have, for any v ∈

H1
0,p(0,+∞), the relation

(3.3)

0 =

∫ +∞

0

p(t)u′(t)v′(t)dt+

+∞∑
j=1

h(tj)Ij(u(tj))v(tj)−
∫ +∞

0

f(t, u(t))v(t)dt.

For j ∈ {1, 2, . . .}, if v ∈ H1
0,p(tj , tj+1) (v = vj), then∫ tj+1

tj

p(t)u′(t)v′(t)dt =

∫ tj+1

tj

f(t, u(t))v(t)dt.

Thus uj ∈ H1
0,p(tj , tj+1) is solution of the equation:

(3.4) − (p(t)u′)′ = f(t, u(t)), t ∈ (tj , tj+1),

Since, u ∈ C0[0,+∞), then by (H1), |f(t, u(t))|2 ≤ 2
(
a1(t)

2∥u∥2µ∞ + b1(t)
2
)

and so uj ∈ H2
p (tj , tj+1). By (3.4), we can also get the limits u′(t+j ), u

′(t−j ),

j ∈ {1, 2, . . .}. An integration by parts in (3.3) yields

0 = −
∑j=+∞

j=0

∫ tj+1

tj
(p(t)u′(t))′v(t)dt−

∑+∞
j=1 △(p(tj)u

′(tj))v(tj)

+
∑+∞

j=1 h(tj)Ij(u(tj))v(tj)−
∫ +∞
0

f(t, u(t))v(t)dt.

Since u satisfies the equation in problem (1.1) a.e. on [0,+∞), we obtain

+∞∑
j=1

h(tj)Ij(u(tj))v(tj) =
+∞∑
j=1

△(p(tj)u
′(tj))v(tj), for all v ∈ H1

0,p.

Finally,

△(p(tj)u
′(tj)) = h(tj)Ij(u(tj)), for every j ∈ {1, 2, . . .}.

□

In fact, u is even a classical solution, i.e., u ∈ C2(tj , tj+1), for all j ∈
{1, 2, . . .}, whenever f : [0,+∞)× R −→ R is further continuous.

Example 3.5. Consider the boundary value problem

(3.5)


−(etu′(t))′ =

√
|u|

(1+t)2 + 1
(1+t)3 , a.e. t ≥ 0, t ̸= tj ,

u(0) = u(+∞) = 0,

△(eju′(j)) =
3
√

u(j)

1+j2 , j ∈ {1, 2, . . .}.

It can be easily checked that all conditions of Theorem 3.2 are satisfied with

f(t, x) =

√
|x|

(1+t)2 + 1
(1+t)3 , µ = 1/2, a1(t) =

1
(1+t)2 , b1(t) =

1
(1+t)3 , Ij(s) = s1/3

γ = 1/3, k = 1, h(t) = 1
1+t2 , and

∑∞
j=1 h(j) =

π
4 . Therefore problem (3.5) has

at least one solution.
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3.2. The limit case µ = 1.

Theorem 3.6. Assume that (I0) holds both with

(H2) There exist positive functions a2, b2 ∈ L1(0,+∞) with |a2|L1 < 1
d 2 and

|f(t, x)| ≤ a2(t)|x|+ b2(t), for a.e. t ∈ [0,+∞) and all x ∈ R.
Then problem (1.1) has at least one weak solution.

Proof. Arguing as in the proof of Theorem 3.2, we can prove that J is sequen-
tially weakly lower semi-continuous. In addition, under (H2) and (I0), we have
the estimates:

|F (t, u(t))| ≤ a2(t)

2
|u(t)|2 + b2(t)|u(t)|,∣∣∣∫ +∞

0
F (t, u(t))dt

∣∣∣ ≤
∫ +∞
0

(
a2(t)

2
|u(t)|2 + b 2(t)|u(t)|

)
dt

≤ d 2

2
∥u∥ 2∥a 2∥L1 + d∥u∥∥b 2∥L1 .

Then

(3.6) J(u) ≥ 1

2

(
1− d 2∥a 2∥L1

)
∥u∥2 − d∥u∥∥b2∥L1 − kd γ+1

γ + 1
∥u∥ γ+1

+∞∑
j=1

h(tj).

Since ∥a2∥L1 < 1
d2 and γ < 1, (3.6) implies that

lim
∥u∥−→+∞

J(u) = +∞.

Then Lemma 2.14 guarantees that problem (1.1) has at least one weak solution.
□

Example 3.7. Since hypotheses (I0) and (H2) are satisfied, by Theorem 3.6,
the boundary value problem

(3.7)


−(etu′(t))′ = u

(1+t)4 + 1
(1+t)5 , a.e. t ≥ 0, t ̸= tj ,

u(0) = u(+∞) = 0,

△(eju′(j)) =
4
√

u(j)

(1+j)3 , j ∈ {1, 2, . . .},

has at least one solution.

3.3. Nontrivial weak solution. Our third and last result provides existence
of weak solution which is nontrivial for it is obtained by means of Mountain
Pass Theorem.

Theorem 3.8. Suppose that the following conditions hold:

(H3) There exist positive functions φ, g such that φ ∈ L1((0,+∞),R) and
g ∈ C(R,R) with

|f(t, x)| ≤ φ(t)g(x), for a.e. t ∈ [0,+∞) and all x ∈ R.
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(H4) limx→0
f(t,x)

x = 0, uniformly in t ≥ 0.

(H5) There exist positive functions c1, c2 ∈ L1((0,+∞), [0,+∞)) and σ > 2
such that

(a)F (t, x) ≥ c1(t)|x|σ − c2(t), for a.e. t ≥ 0 and all x ∈ R,

(b)σF (t, x) ≤ xf(t, x), for a.e. t ≥ 0 and all x ∈ R \ {0}.
(I1) There exists 0 < γ ≤ 2 such that

γ

∫ x

0

Ij(s)ds ≥ xIj(x) > 0, ∀x ∈ R \ {0}, ∀ j ∈ {1, 2, . . .}.

Then problem (1.1) has at least one nontrivial weak solution.

Proof. Claim 1. Let 0 < ε < 1
M . From (H4), there exists δ > 0 such that

|x| ≤ δ =⇒ |f(t, x)| ≤ ε|x|.
Using Lemma 2.4, we deduce that∫ +∞

0

|F (t, u(t))dt| ≤ ε

2
∥u∥2L2 ≤ ε

2
M∥u∥2, for a.e. t ≥ 0,

whenever ∥u∥∞ ≤ δ. Let 0 < ρ ≤ δ
d and α = 1

2 (1 − εM)ρ2. Then for ∥u∥ =
ρ, we have

J(u) = 1
2∥u∥

2 +
∑+∞

j=1

∫ u(tj)

0
h(tj)Ij(τ)dτ −

∫ +∞
0

F (t, u(t))dt

≥ 1
2∥u∥

2 −
∫ +∞
0

F (t, u(t))dt

≥ 1
2 (1− εM)∥u∥2 = α.

Assumption (1) in Lemma 2.16 is then satisfied.

Claim 2. From (I1), there exists c3 > 0 such that∫ x

0

Ij(s)ds ≤ c3|x|γ , for every x ∈ R.

Now (H5)(a) and Lemma 2.4 guarantee that for some v0 ∈ H1
0,p(0,+∞), v0 ̸=

0, we have

J(ξv0) = 1
2ξ

2∥v0∥2 +
∑+∞

j=1

∫ ξv0(tj)

0
h(tj)Ij(τ)dτ −

∫ +∞
0

F (t, ξv0(t))dt

≤ 1
2ξ

2∥v0∥2 + c3ξ
γd γ∥u0∥γ

∑+∞
j=1 h(tj)

−|ξ|σ
∫ +∞
0

c1(t)|v0(t)|σdt+
∫ +∞
0

c2(t)dt.

Since σ > 2 ≥ γ, then for u0 = ξv0, J(u0) ≤ 0, as ξ → +∞. Hence assumption
(2) in Lemma 2.16 is satisfied.

Claim 3. J satisfies the (PS) condition.
Notice first that by (H3), J ∈ C1(H1

0,p(0,+∞),R). Now, let (un) be a sequence

in H1
0,p(0,+∞) such that (J(un)) is bounded and limn→+∞ J ′(un) = 0. We
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shall prove that the sequence (un) is bounded. Using (H5)(b) and (I1), there
exists some K > 0 such that

K ≥ σJ(un)− ⟨J ′(un), un⟩
= (σ2 − 1)∥un∥2

−
∫ +∞
0

(σF (t, un(t))− f(t, un(t))un(t)) dt

+
∑+∞

j=1 h(tj)
(
σ
∫ un(tj)

0
Ij(t)dt− Ij(un(tj))un(tj)

)
≥ (σ2 − 1)∥un∥2.

Since σ > 2, then the sequence (un) is bounded in H1
0,p(0,+∞). Next, we prove

that (un) converges strongly to some u in H1
0,p(0,+∞).

Since (un) is bounded in the reflexive Banach space H1
0,p(0,+∞), there exists

a subsequence of (un), still denoted (un), such that (un) converges weakly to
some u in H1

0,p(0,+∞). Then (un) converges uniformly to u on [0,+∞) by
Lemma 2.7. Thus

(3.8) lim
n→+∞

+∞∑
j=1

h(tj)(Ij(un(tj))− Ij(u(tj)))(un(tj)− u(tj)) = 0

and

(3.9) lim
n→+∞

∫ +∞

0

(f(t, un(t))− f(t, u(t))) (un(t)− u(t)) dt = 0.

Since limn→+∞ J ′(un) = 0 and (un) converges weakly to some u, we get

(3.10) lim
n→+∞

⟨J ′(un)− J ′(u), un − u⟩ = 0.

It follows from (3.2) that

⟨J ′(un)− J ′(u), un − u⟩ = ∥un − u∥2 +
∑+∞

j=1 h(tj)(Ij(un(tj))

−Ij(u(tj)))(un(tj)− u(tj))

−
∫ +∞
0

(f(t, un(t))− f(t, u(t))) (un(t)− u(t)) dt.

Hence limn→+∞ ∥un−u∥ = 0. Thus (un) converges strongly to u inH1
0,p(0,+∞).

Therefore, J satisfies the (PS) condition. All conditions of Lemma 2.16 are
then fulfilled; as a consequence J has a critical point which is a nontrivial weak
solution of problem (1.1). □

Example 3.9. By Theorem 3.8, the boundary value problem

(3.11)


−(etu′(t))′ = u3(t)

(1+t)3 , a.e. t ≥ 0, t ̸= tj ,

u(0) = u(+∞) = 0,

△(eju′(j)) =
3
√

u(j)

(1+j)2 , j ∈ {1, 2, . . .},

has at least one nontrivial solution.
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