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Abstract. In the present study, we consider a regular curve in Galilean
4-space G4 whose position vector is written as a linear combination of its

Frenet vectors. We characterize such curves in terms of their curvature
functions. Further, we obtain some results of rectifying, constant ratio,
T -constant and N -constant curves in G4.
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1. Introduction

Rectifying curves in Euclidean 3-space E3 were introduced by B.Y. Chen
in [5] as space curves whose position vectors (denoted also by α) lie in their
rectifying planes spanned by the tangent and binormal vector fields t(s) and
b(s) of the curve. In the same paper, B.Y. Chen gave a simple characterization
of rectifying curves. In particular, it is shown in [6] that there exists a simple
relation between rectifying curves and centrodes which play an important role
in mechanics, kinematics as well as in differential geometry in defining the
curves of constant procession.

In recent years, researchers have begun to investigate the curves and surfaces
in Galilean space and thereafter psedou-Galilean space. The theory of the
curves in Galilean space is extensively studied in Röschel [17]. Furthermore,
many works related to Galilean geometry have been done by several authors.
In [11], the authors studied helices in Galilean space G3, and in [15] authors
studied some curves in Galilean space. Similar studies about Galilean geometry
are found in [1,2] and [12]. In [18], the authors constructed Frenet-Serret frame
of a curve in the Galilean 4-space. Also in [13], the author studied Bertrand
curves in Galilean 4-space.
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For a unit speed regular curve α : I ⊂ R → G4, the hyperplanes at each
point of α(s) spanned by {t, n, b} , {t, n, e} are known as osculating hyperplanes.
If the position vector α lies on its osculating hyperplane, then α(s) is called as
an osculating curve. In [19], D. W. Yoon, J. W. Lee and C.W. Lee considered
the osculating curves in the Galilean 4-space G4.

For a regular curve α(s), the position vector α can be decomposed into its
tangential and normal components at each point:

(1.1) α = αT + αN .

A curve α(s) with κ(s) > 0 is said to be of constant ratio if the ratio
∥∥αT

∥∥ :∥∥αN
∥∥ is constant on α(I), where

∥∥αT
∥∥ and

∥∥αN
∥∥ denote the length of αT and

αN , respectively [3].
A curve in En is called T -constant (resp. N -constant) if the tangential

component αT (resp. the normal component αN ) of its position vector α is of
constant length [4]. Regarding this study, in [8], the authors gave necessary
and sufficient conditions for twisted curves in Euclidean 3-space E3 to become
T -constant and N -constant.

In the present study, we consider a curve in the Galilean 4-space G4 as a
curve whose position vector satisfies the parametric equation

(1.2) α(s) = m0(s)t(s) +m1(s)n(s) +m2(s)b(s) +m3(s)e(s),

for some differentiable functions, mi(s), 0 ≤ i ≤ 3, where {t, n, b, e} is the
curve’s Frenet frame. We characterize such curves in terms of their curvature
functions mi(s) and give necessary and sufficient conditions for such curves to
become rectifying, constant ratio, T -constant and N -constant curves in G4.

2. Basic notations

In this section, some fundamental properties of curves in four dimensional
Galilean space are given for the purpose of the requirements [18].

In the affine coordinates, the Galilean scalar product between two points

(2.1) Pi = (pi1, pi2, pi3, pi4), i = 1, 2

is defined as
(2.2)

g(P1, P2) =

{
|p21 − p11| , if p21 ̸= p11(
(p22 − p12)

2 + (p23 − p13)
2 + (p24 − p14)

2
) 1

2 , if p21 = p11

}
.

The Galilean cross product in G4 for the vectors
→
u = (u1, u2, u3, u4),

→
v =

(v1, v2, v3, v4) and
→
w = (w1, w2, w3, w4) is defined as

(2.3)
→
u × →

v × →
w =

∣∣∣∣∣∣∣∣
0 e2 e3 e4
u1 u2 u3 u4

v1 v2 v3 v4
w1 w2 w3 w4

∣∣∣∣∣∣∣∣ ,
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where ei, 1 ≤ i ≤ 4, are the standard basis vectors.

The scalar product of two vectors
→
u = (u1, u2, u3, u4) and

→
v = (v1, v2, v3, v4)

in G4 is defined as

(2.4)
⟨
→
u,

→
v
⟩
G4

=

{
u1v1, if u1 ̸= 0 or v1 ̸= 0
u2v2 + u3v3 + u4v4 if u1 = 0 , v1 = 0.

}
.

The norm of vector
→
u = (u1, u2, u3, u4) is defined as

(2.5)
∥∥∥→u∥∥∥

G4

=

√∣∣∣∣⟨→u,→u⟩G4

∣∣∣∣.
Let α : I ⊂ R → G4, α(s) = (s, y(s), z(s), w(s)) be a curve parametrized by

arclength parameter s in G4. The first vector of the Frenet-Serret frame, that
is, the tangent vector of α, is defined as

(2.6) t = α′(s) = (1, y′(s), z′(s), w′(s))

Since t is a unit vector, we can express

(2.7) ⟨t, t⟩G4
= 1.

Differentiating (2.7) with respect to s, we have

(2.8) ⟨t′, t⟩G4
= 0.

The vector function t′ gives us the rotation measurement of the curve α. The
real valued function

(2.9) κ(s) = ∥t′(s)∥ =
√

(y′′(s))2 + (z′′(s))2 + (w′′(s))2

is called the first curvature of the curve α. For all s ∈ I, we assume that
κ(s) ̸= 0. Similar to space G3, the principal normal vector is defined as

(2.10) n(s) =
t′(s)

κ(s)
;

in other words,

(2.11) n(s) =
1

κ(s)
(0, y′′(s), z′′(s), w′′(s)).

By the aid of the differentiation of the principal normal vector given in
(2.11), the second curvature function is defined as

(2.12) τ(s) = ∥n′(s)∥G4
.

This real valued function is called torsion of the curve α. The third vector field,
namely, binormal vector field of the curve α, is defined as

(2.13) b(s) =
1

τ(s)

(
0,

(
y′′(s)

κ(s)

)′

,

(
z′′(s)

κ(s)

)′

,

(
w′′(s)

κ(s)

)′
)
.
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Thus, the vector b(s) is perpendicular to both t and n. The fourth unit vector
is defined as

(2.14) e(s) = µt(s)× n(s)× b(s).

Here, the coefficient µ is taken ±1 to make the determinant of the [t, n, b, e]
matrix +1.

The third curvature of the curve α is defined as

(2.15) σ = ⟨b′, e⟩G4
.

Here, as well known, the set {t, n, b, e, κ, τ, σ} is called the Frenet-Serret ap-
paratus of the curve α. We know that the vectors {t, n, b, e} are mutually
orthogonal vectors satisfying

⟨t, t⟩G4
= ⟨n, n⟩G4

= ⟨b, b⟩G4
= ⟨e, e⟩G4

= 1,

⟨t, n⟩G4
= ⟨t, b⟩G4

= ⟨t, e⟩G4
= 0,(2.16)

⟨n, b⟩G4
= ⟨n, e⟩G4

= ⟨b, e⟩G4
= 0.

For the curve α in G4, we have the following Frenet-Serret equations:

t′ = κ(s)n(s),

n′ = τ(s)b(s),(2.17)

b′ = −τ(s)n(s) + σ(s)e(s),

e′ = −σ(s)b(s).

If the Serret-Frenet curvatures κ(s), τ(s) and σ(s) of α are constant func-
tions, then α is called a screw line or a helix [7]. Since these curves are the
traces of 1-parameter family of the groups of Euclidean transformations, F.
Klein and S. Lie called them W-curves [9]. If the tangent vector t of the curve
α makes a constant angle with the unit vector u of G4, then this curve is called
a general helix (or inclined curve) in G4 [16]. It is known that a regular curve
in G4 is said to have constant curvature ratios if the ratios of the consecutive
curvatures are constant [10]. The Frenet curves with constant curvature ratios
are called ccr-curves [16]. We remark that a regular curve in G4 is a ccr-curve
if H1(s) =

κ
τ (s) and H2(s) =

σ
τ (s) are constant functions.

3. Characterization of curves in G4

In the present section, we characterize a curve given with the arclength pa-
rameter s in G4 in terms of their curvatures. Let α : I ⊂ R → G4 be a unit
speed regular curve with curvatures κ(s) ≥ 0, τ(s) and σ(s). For some differ-
entiable functions mi(s), 0 ≤ i ≤ 3, the position vector of the curve satisfies
the vectorial equation (1.2). Differentiating (1.2) with respect to arclength
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parameter s and using the Serret-Frenet equations (2.17), we obtain

α′(s) = m′
0(s)t(s)

+ (m′
1(s) + κ(s)m0(s)− τ(s)m2(s))n(s)(3.1)

+ (m′
2(s) + τ(s)m1(s)− σ(s)m3(s)) b(s)

+ (m′
3(s) + σ(s)m2(s)) e(s).

Hence,

m′
0(s) = 1,

m′
1(s) + κ(s)m0(s)− τ(s)m2(s) = 0,(3.2)

m′
2(s) + τ(s)m1(s)− σ(s)m3(s) = 0,

m′
3(s) + σ(s)m2(s) = 0.

Theorem 3.1 ([18]). Let α(s) = (s, y(s), z(s), w(s)) be a curve parametrized by
arclength parameter s in G4 with the Frenet-Serret equations (2.17). Tangent
vector of α in G4 satisfies a vector differential equation of fourth order as
follows:

(3.3)

{
1

σ

[
1

τ

(
t′

κ

)′
]′}′

+
[ τ

κσ

]′
+

σ

τ

(
t′

κ

)′

= 0.

Theorem 3.2. Let α : I ⊂ R →G4 be a curve with κ > 0, and let s be its
arclength function. If α is a W -curve, then the curvature functions are given
as

m0(s) = s+ c,

m1(s) =
τc1
a

sin as− τc2
a

cos as− κσ2

a2

(
s2

2
+ cs+ c3

)
,(3.4)

m2(s) = c1 cos as+ c2 sin as+
κτ

a2
(s+ c) ,

m3(s) = −σc1
a

sin as+
σc2
a

cos as− κτσ

a2

(
s2

2
+ cs+ c4

)
,

where ci, 0 ≤ i ≤ 4, are integral constants and a =
√
τ2 + σ2 is a real constant.

Proof. Let α be a W -curve in G4, then by the use of the equations (3.2), we
get

(3.5) m′′
2(s) + (τ2 + σ2)m2(s) = κτ (s+ c) .

One can show that equation (3.5) has a non-trivial solution:

m2(s) = c1 cos
√
τ2 + σ2s+ c2 sin

√
τ2 + σ2s+

κτ

τ2 + σ2
(s+ c) .

Further, substituting this equation into (3.2), we get the result. □
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Definition 3.3 ([1]). Let α be a regular curve in Galilean space G4 given with
the Frenet frame {t, n, b, e} and κ be its curvature. If κ = 0, then α is called a
straight line with respect to the Frenet frame.

3.1. Osculating curves in G4.

Definition 3.4 ([19]). Let α be a unit speed curve in G4. If its position vector
always lies in the orthogonal complement b⊥ or e⊥ of b or e, then α is called
an osculating curve in G4. Consequently, for some smooth functions, mi(s),
0 ≤ i ≤ 3, an osculating curve can be expressed as

(3.6) α(s) = mo(s)t(s) +m1(s)n(s) +m3(s)e(s)

or

(3.7) α(s) = mo(s)t(s) +m1(s)n(s) +m2(s)b(s).

Theorem 3.5 ([19]). Let α be a unit speed curve in G4 with non-zero curvatures
κ, τ and σ. Then α is an osculating curve if and only if

(3.8) − d

κ
(H ′

2) = s+ c,

where H2(s) =
σ(s)
τ(s) and c,d are non-zero constants.

Corollary 3.6 ([19]). None of a unit speed W -curve with non-zero curvatures
κ, τ and σ in G4 is an osculating curve.

Corollary 3.7. None of a unit speed ccr-curve with non-zero curvatures κ, τ
and σ in G4 is an osculating curve.

Proof. Let α be a unit speed ccr-curve in G4, then we know, H2 is constant.
If this curve is an osculating curve, H2 cannot be a constant in equation (3.8).
That is a contradiction. So, none of a unit speed ccr-curve inG4 is an osculating
curve. □

3.2. Rectifying curves in G4.

Similar to [14], we give the following definition:

Definition 3.8. Let α : I ⊂ R → G4 be a regular curve in G4 given with the
arclength parameter s. If the position vector α lies in the hyperplane spanned
by {t, b, e} , then α is called a rectifying curve in G4.

Theorem 3.9. Let α : I ⊂ R → G4 be a unit speed curve in G4. Then α is a
rectifying curve if and only if the position vector of α satisfies the equality:

(3.9) α(s) = (s+ c) t(s) +H1 (s+ c) b(s) +
1

σ
(H ′

1 (s+ c) +H1) e(s),

where H1(s) =
κ
τ (s).
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Proof. Assume that α : I ⊂ R → G4 is a rectifying curve in G4 given with
the arclength parameter s. By definition, the curvature function m1 vanishes
identically. Therefore, from (3.2), we get

m′
0(s) = 1,

κ(s)m0(s)− τ(s)m2(s) = 0,(3.10)

m′
2(s)− σ(s)m3(s) = 0,

m′
3(s) + σ(s)m2(s) = 0,

and

m0(s) = s+ c,

m2(s) = H1 (s+ c) ,(3.11)

m3(s) =
1

σ
(H ′

1 (s+ c) +H1) ,

where H1(s) = κ
τ (s). Thus, the position vector of α satisfies the equality

(3.9). □
By the use of (3.10) with (3.11), we obtain the following result.

Proposition 3.10. α : I ⊂ R → G4 is congruent to a unit speed rectifying
curve in G4 if and only if

(3.12) (H1 (s+ c))
2
+

1

σ2
(H ′

1 (s+ c) +H1)
2
= c1,

where H1(s) =
κ
τ (s) and c, c1 ∈ R.

As a consequence of (3.12), we obtain the following result.

Corollary 3.11. Let α : I ⊂ R → G4 be a unit speed rectifying curve. If α is
a ccr-curve, then

σ(s) =
H1√

c1 − (H1 (s+ c))
2
,

where c, c1 ∈ R.
3.3. Curves of constant-ratio in G4.

Similar to [3], we give the following definition:

Definition 3.12. Let α : I ⊂ R → G4 be a unit speed curve given with the
arclength parameter s. Then the position vector α can be decomposed into
its tangential and normal components at each point, as in (1.1). If the ratio∥∥αT

∥∥ :
∥∥αN

∥∥ is constant on α(I) then α is said to be of constant-ratio.

Clearly, for a constant ratio curve in Galilean space G4, we have

(3.13)
m2

0(s)

m2
1(s) +m2

2(s) +m2
3(s)

= c1,

where c1 ∈ R.
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Theorem 3.13. Let α : I ⊂ R → G4 be a unit speed curve in G4. Then α is
a constant ratio curve if and only if the position vector of the curve α has a
parametrization of the form:

α(s) = (s+ c)t(s)−
(

1

c1κ

)
n(s) +

(
κ′

c1κ2τ
+

κ

τ
(s+ c)

)
b(s)

+
1

σ

([
κ′

c1κ2τ
+

κ

τ
(s+ c)

]′
− τ

c1κ

)
e(s).

Proof. Let α : I ⊂ R → G4 be a unit speed curve. Then by (3.13), the
curvature functions satisfy

(3.14) m1(s)m
′
1(s) +m2(s)m

′
2(s) +m3(s)m

′
3(s) =

s+ c

c1
.

Also, by the use of the equations (3.2) with (3.14), we have

m1(s) = − 1

c1κ
.

Then, we get

m2(s) =
κ′

c1κ2τ
+

κ

τ
(s+ c),

m3(s) =
1

σ

([
κ′

c1κ2τ
+

κ

τ
(s+ c)

]′
− τ

c1κ

)
,

which completes the proof. □
Corollary 3.14. Let α : I ⊂ R → G4 be a unit speed curve in G4. Then α is
a constant ratio curve if and only if{

1

σ

([
κ′

c1κ2τ
+

κ

τ
(s+ c)

]′
− τ

c1κ

)}′

+
σκ′

c1κ2τ
+

σκ

τ
(s+ c) = 0.

3.4. T -constant curves in G4.

Similar to [4], we give the following definition:

Definition 3.15. Let α : I ⊂ R → G4 be a unit speed curve in G4. If
∥∥αT

∥∥
is constant, then α is called a T -constant curve. Further, a T -constant curve α
is called of the first kind if

∥∥αT
∥∥ = 0; otherwise it is called of the second kind.

As a consequence of (1.2) with (3.2), we get the following result.

Proposition 3.16. There is no unit speed T-constant curve in the Galilean
space G4.

Proof. Let α : I ⊂ R → G4 be a unit speed T -constant curve in G4. Then∥∥αT
∥∥ = m0 is zero or is a non-zero constant. However, m0(s) = s + c by

equations (3.2). As this is a contradiction, the assumption is wrong. □
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3.5. N-constant curves in G4.

Similar to [4], we give the following definition:

Definition 3.17. Let α : I ⊂ R → G4 be a unit speed curve in G4. If
∥∥αN

∥∥
is constant then α is called a N -constant curve. For a N -constant curve α,
either

∥∥αN
∥∥ = 0 or

∥∥αN
∥∥ = µ for some non-zero smooth function µ. Further,

a N -constant curve α is called of the first kind if
∥∥αN

∥∥ = 0; otherwise it is
called of the second kind.

Note that, for a N -constant curve α in G4, we can write

(3.15)
∥∥αN (s)

∥∥2 = m2
1(s) +m2

2(s) +m2
3(s) = c1,

where c1 is a real constant.
As a consequence of (1.2), (3.2) and (3.15), we get the following result.

Lemma 3.18. Let α : I ⊂ R → G4 be a unit speed curve in G4. Then, α is a
N -constant curve if and only if

m′
0(s) = 1,

m′
1(s) + κ(s)m0(s)− τ(s)m2(s) = 0,(3.16)

m′
2(s) + τ(s)m1(s)− σ(s)m3(s) = 0,

m′
3 + σ(s)m2(s) = 0,

m1(s)m
′
1(s) +m2(s)m

′
2(s) +m3(s)m

′
3(s) = 0,

hold.

Proposition 3.19. Let α : I ⊂ R → G4 be a unit speed curve in G4. Then,
α is a N -constant curve if and only if α is congruent to a straight line or a
rectifying curve.

Proof. By the use of the equations (3.16), we get κm0m1 = 0. Thus, κ = 0
or m1 = 0. If κ = 0, α is a straight line. If m1 = 0, then α is a rectifying
curve. □
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