@article {
author = {Lunqun, O. and Jingwang, L. and Yueming, X.},
title = {Ore extensions of skew $pi$-Armendariz rings},
journal = {Bulletin of the Iranian Mathematical Society},
volume = {39},
number = {2},
pages = {355-368},
year = {2013},
publisher = {Iranian Mathematical Society (IMS)},
issn = {1017-060X},
eissn = {1735-8515},
doi = {},
abstract = {For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We next show that all $(alpha,delta)$-compatible $NI$ rings are skew $pi$-Armendariz, and if a ring $R$ is an $(alpha,delta)$-compatible $2$-$primal$ ring, then the polynomial ring $R[x]$ is skew $pi$-Armendariz.},
keywords = {skew Armendariz ring,skew $pi$-Armendariz ring,$pi$-Armendariz ring},
url = {http://bims.iranjournals.ir/article_315.html},
eprint = {http://bims.iranjournals.ir/article_315_670f68e3782d06daa57d42c7aaf944da.pdf}
}