BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 93-XX Systems Theory; Control Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain Chen M. School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, ‎P‎. ‎R‎. ‎China. 01 11 2016 42 5 1027 1038 08 10 2014 19 06 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_862.html

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎\$mathbb{T}=mathbb{R}/(2pimathbb{Z})\$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

Forced oscillation‎ ‎Korteweg-de Vries equation‎ ‎stability‎ ‎time-periodic solution‎
J. L. Bona, S. M. Sun and B. Y. Zhang, Forced oscillations of a damped Korteweg-deVries equation in a quarter plane, Commun. Contemp. Math. 5 (2003), no. 3, 369--400. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part II: The KdV equation, Geom. Funct. Anal. 3 (1993), no. 3, 209--262. W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math. 46 (1993), no. 11, 1409--1498. C. Laurent, L. Rosier and B.Y. Zhang, Control and Stabilization of the Korteweg-deVries Equation on a Periodic Domain, Comm. Partial Differential Equations 35 (2010), no. 4, 707--744. P. H. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967) 145--205. D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Control Optim. 31 (1993), no. 3, 659--676. D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3643--3672. M. Usman and B. Y. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability, J. Syst. Sci. Complex. 20 (2007), no. 2, 284--292. C. E.Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127 (1990), no. 3, 479--528. B. Y. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability, Control of Nonlinear Distributed Parameter Systems (College Station, TX, 1999), 337--357, Lecture Notes in Pure and Appl. Math., 218, Dekker, New York, 2001.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 65-XX Numerical Analysis Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method Boundary temperature reconstruction Garshasbi M‎. ‎ School of Mathematics‎, ‎Iran University of Science and Technology‎, ‎Tehran‎, ‎Iran. ‎Hassani F. School of Mathematics‎, ‎Iran University of Science and Technology‎, ‎Tehran‎, ‎Iran. 01 11 2016 42 5 1039 1057 21 02 2015 20 06 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_863.html

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linear algebraic equations is ill-posed‎, ‎the Tikhonov first-order regularization procedure is employed to obtain a stable solution‎. ‎Determination of regularization parameter is based on L-curve technique‎. ‎Some numerical examples for the feasibility of the proposed method are presented‎.

Inverse boundary problem heat equation boundary integral equation method regularization.‎
O. M. Alifanov, E. A. Artyukhin and S. V. Rumyantsev, Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems, Begell House, New York, 1995. S. Andrieux, T. Baranger and A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional, Inverse Problems 22 (2006), no. 1, 115--133. G. Bastay, V. A. Kozlov and B. O. Turesson, Iterative methods for an inverse heat conduction problem, J. Inverse Ill-Posed Probl. 9 (2001), no. 4, 375--388. C. Babenko, R. Chapko and B. T. Johansson, On the numerical solution of the Laplace equation with complete and incomplete Cauchy data using integral equations, CMES: Comput. Model. Eng. Sci. 101 (2014), no. 5, 299--317. A.S. Carasso, Determining surface temperatures from interior observations, SIAM J. Appl. Math. 42 (1982), no. 3, 558--574. H. T. Chen, S. Y. Lin and L. C. Fang, Estimation of surface temperature in two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer 44 (2001) 1455--1463. R. Chapko, R. Kress and J. R. Yoon, On the numerical solution of an inverse boundary value problem for the heat equation, Inverse Problems 14 (1998), no. 4, 853--867. R. Chapko and R. Kress, On a quadrature method for a logarithmic integral equation of the first kind, Contributions in numerical mathematics, 127--140, World Sci. Ser. Appl. Anal., 2, World Sci. Publ., River Edge, NJ, 1993. R. Chapko, B. T. Johansson and Y. Savka, On the use of an integral equation approach for the numerical solution of a Cauchy problem for Laplace equation in a doubly connected planar domain, Inverse Probl. Sci. Eng. 22 (2014), no. 1, 130--149. R. Chapko, B. T. Johansson, On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach, Inverse Probl. Imaging 6 (2012), no. 1, 25--38. L. B. Drenchev and J. Sobczak, Inverse Heat Conduction Problems and Application to Estimate of Heat Parameters in 2-D Experiments, in 2nd Int. Conf. High Temperature Capillarity, Cracow, Poland, 29 June-2 July 1997, Foundry Research Institute, Krakow (Poland), 1998, pp. 355-361. H. W. Engl, Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates, J. Optim. Theory Appl. 52 (1987), no. 2, 209--215. H. Fenga and D. Jiangb, Convergence rates of Tikhonov regularization for parameter identi_cation in a Maxwell system, Appl. Anal. 94 (2015), no. 2, 361--375. R. B. Guenther and J. W. Lee, Partial Differential Equations of Mathematical Physics and Integral Equations, Dover Publications, Inc., Mineola, 1996. D. N. H_ao, Methods for inverse heat conduction problems Habilitationsschrift, University of Siegen, Siegen, 1996, Methoden und Verfahren der Mathematischen Physik, 43, Peter Lang, Frankfurt am Main, 1998. P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev. 34 (1992), no. 4, 561--580. P. C. Hansen and D. P. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput. 14 (1993), no. 6, 1487--1503. Y. C. Hon and T. Wei, A fundamental solution method for inverse heat conduction problem, Eng. Anal. Bound. Elem. 28 (2004) 489--495. G. C. Hsiao and J. Saranen, Boundary integral solution of the two-dimensional heat equation, Math. Methods Appl. Sci. 16 (1993), no. 2, 87--114. X. Z. Jia and Y. B. Wang, A Boundary Integral Method for Solving Inverse Heat Conduction Problem, J. Inverse Ill-Posed Probl. 14 (2006), no. 4, 375--384. S. I. Kabanikhin, Definitions and examples of inverse and ill-posed problems, J. Inverse Ill-Posed Probl. 16 (2008), no. 4, 317--357. R. Kress and I. H. Sloan, On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation, Numer. Math. 66 (1993), no. 2, 199--214. K. Kunisch and J. Zou, Iterative choices of regularization parameters in linear inverse problems, Inverse Problems 14 (1998), no. 5, 1247--1264. D. Lesnic, L. Elliott and D. B. Ingham, Application of the boundary element method to inverse heat conduction problems, Int. J. Heat Mass Transfer 39 (1996) 1503--1517. N. N. Lebedev, Special Functions and Their Applications, Revised English edition, Translated and edited by Richard A. Silverman, Prentice Hall Inc., Englewood Cliffs, 1965. C. S. Liu, A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems, Acta Appl. Math. 123 (2013) 285--307. D. A. Murio, The mollification method and the numerical solution of ill-posed problems, John Wiley & Sons, Inc., New York, 1993. H. J. Reinhardt, D. N. Hao, J. Frohne and F. T. Suttmeier, Numerical solution of inverse heat conduction problems in two spatial dimensions, J. Inverse Ill-Posed Probl. 15 (2007), no. 2, 181--198. J. C. Saut and B. Scheurer, Remarques sur un theoreme de prolongement unique de Mizohata, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 6, 307--310. A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems, Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C., John Wiley & Sons, New York-Toronto, Ont.-London, 1977.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 20-XX Group theory and generalizations On a generalization of condition (PWP) On a generalization of condition (PWP) Liang X. Department of Mathematics‎, ‎Lanzhou University‎, ‎Lanzhou‎, ‎Gansu 730000‎, ‎P.R. China.‎ ‎ Luo Y. Department of Mathematics‎, ‎Lanzhou University‎, ‎Lanzhou‎, ‎Gansu 730000‎, ‎P.R. China. 01 11 2016 42 5 1057 1076 16 01 2015 23 06 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_864.html

‎There is a flatness property of acts over monoids called Condition \$(PWP)\$ which‎, ‎so far‎, ‎has received‎ ‎much attention‎. ‎In this paper‎, ‎we introduce Condition GP-\$(P)\$‎, ‎which is a generalization of Condition \$(PWP)\$‎. ‎Firstly‎, ‎some  characterizations of monoids by Condition GP-\$(P)\$ of their‎ ‎(cyclic‎, ‎Rees factor) acts are given‎, ‎and many known results are generalized‎. ‎Moreover‎, ‎some possible conditions on monoids that describe when their diagonal acts satisfy Condition GP-\$(P)\$ are found‎. ‎Finally‎, ‎using some new types of epimorphisms‎, ‎an alternative description of Condition GP-\$(P)\$ (resp.‎, ‎Condition \$(PWP)\$) is obtained‎, ‎and directed‎ ‎colimits of these new epimorphisms are investigated.

\$S\$-act‎ ‎Condition \$(PWP)\$‎ ‎condition GP-\$(P)\$‎ ‎generally left right ideal‎ ‎quasi G-2-pure epimorphism‎
A. Bailey and J. Renshaw, Covers of acts over monoids and pure epimorphisms, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 3, 589--617. S. Bulman-Fleming, Flat and strongly at S-systems, Comm. Algebra 20 (1992), no. 9, 2553--2567. S. Bulman-Fleming, M. Kilp and V. Laan, Pullbacks and atness properties of acts II, Comm. Algebra 29 (2001), no. 2, 851--878. S. Bulman-Fleming and A. Gilmour, Flatness properties of diagonal acts over monoids, Semigroup Forum 79 (2009), no. 2, 298--314. A. Golchin and H. Mohammadzadeh, On condition (P′), Semigroup Forum 86 (2013), no. 2, 413--430. J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs, Oxford University Press, New York, 1995. M. Kilp, On at acts, (Russian) Tartu Riikl.  Ul. Toimetised Vih. 253 (1970) 66--72. M. Kilp, Commutative monoids all of whose principal ideals are projective, Semigroup Forum 6 (1973), no. 4, 334--339. M. Kilp, Characterization of monoids by properties of their left Rees factors, (Russian) Tartu Riikl. Ul. Toimetised Vih. 640 (1983) 29--37 . M. Kilp, U. Knauer and A. V. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter & Co., Berlin, 2000. V. Laan, Pullbacks and atness properties of acts I, Comm. Algebra 29 (2001), no. 2, 829--850. Z. K. Liu and Y. B. Yang, Monoids over which every at right act satisfies condition (P), Comm. Algebra 22 (1994), no. 8, 2861--2875. P. Normak, On equalizer-at and pullback-at acts, Semigroup Forum 36 (1987), no. 3, 293--313. H. S. Qiao, Some new characterizations of right cancellative monoids by condition (PWP), Semigroup Forum 71 (2005), no. 1, 134--139. H. S. Qiao, On a generalization of principal weak atness property, Semigroup Forum 85 (2012), no. 1, 147--159. M. Sedaghatjoo, V. Laan and M. Ershad, Principal weak atness and regularity of diagonal acts, Comm. Algebra 40 (2012), no. 11, 4019--4030. B. Stenstrom, Flatness and localization over monoids, Math. Nachr. 48 (1971) 315--334.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 45-XX Integral equations Approximate solution of dual integral equations Approximate solution of dual integral equations ‎Ahdiaghdam S. Faculty of Mathematical Sciences‎, ‎University of Tabriz‎, ‎Tabriz‎, ‎Iran. ‎Ivaz K. Faculty of Mathematical Sciences‎, ‎University of Tabriz‎, ‎Tabriz‎, ‎Iran. ‎Shahmorad S. Faculty of Mathematical Sciences‎, ‎University of Tabriz‎, ‎Tabriz‎, ‎Iran. 01 11 2016 42 5 1077 1086 28 01 2015 23 06 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_865.html

‎We study dual integral equations which appear in formulation of the‎ ‎potential distribution of an electrified plate with mixed boundary‎ ‎conditions‎. ‎These equations will be converted to a system of‎ ‎singular integral equations with Cauchy type kernels‎. ‎Using‎ ‎Chebyshev polynomials‎, ‎we propose a method to approximate the‎ ‎solution of Cauchy type singular integral equation which will be‎ ‎used to approximate the solution of the main dual integral‎ ‎equations‎. ‎Numerical results demonstrate effectiveness of this method.

Dual integral equation‎ ‎Cauchy type integral‎ ‎equation‎ ‎Fourier transform
U. Basu and B. N. Mandal, Techniques in Applied Mathematics, Alpha Science, Narsu, 2007. A. Chakrabarti and G. V. Berghe, Approximate solution of singular integral equations, Appl. Math. Lett. 17 (2004), no. 5, 533--559. A. Chakrabarti and S. C. Martha, Methods of solution of singular integral equations, Math. Sci. (2012) 29 pages. N. I. Ioakimids, A new method for the numerical solution of singular integral equations appearing in crack and other elasticity problems, Acta Mech. 39 (1981), no. 1-2, 117--125. A. J. Jerry, Introduction to Integral Equations with Applications, Second Edition, Wiley-Interscience, New York, 1999. S. R. Manam, On the solution of dual integral equations, Appl. Math. Lett. 20 (2007), no. 4, 391--395. J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, 2003. C. Nasim and B. D. Aggarwala, On some dual integral equations, Indian J. Pure Appl. Math. 15 (1984), no. 3, 323--340. I. N. Sneddon, The elementary solution of dual integral equations, Proc. Glasgow Math. Assoc. 4 (1960) 108--110. M. N. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Inc., Englewood Cliffs, 1966. M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum's Outline Series, McGraw-Hill, 1968.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 60-XX Probability theory and stochastic processes On the bounds in Poisson approximation for independent geometric distributed random variables On the bounds in Poisson approximation Hung T. L. University of Finance and Marketing, 2/4 Tran Xuan Soan, District 7‎, ‎Ho Chi Minh city‎, ‎Vietnam. ‎Giang L. T. University of Finance and Marketing, 2/4 Tran Xuan Soan, District 7‎, ‎Ho Chi Minh city‎, ‎Vietnam. 01 11 2016 42 5 1087 1096 25 12 2014 29 06 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_866.html

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

Poisson approximation‎ linear operator‎ geometric random variable‎ random sums‎
A. D. Barbour, L. Holst and S. Janson, Poisson Approximation, Oxford Studies in Probability 2, Clarendon Press, Oxford, 1992. L. H. Y. Chen, On the convergence of Poisson binomial to Poisson distribution, Ann. Probab. 2 (1974), no. 1, 178--180. L. H. Y. Chen, Poisson approximation for dependent trials, Ann. Probab. 3 (1975), no. 3, 534--545. L. H. Y. Chen and D. Leung, An Introduction to Stein's Method, Singapore University Press, Singapore, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2005. L. H. Y. Chen and A. Rollin, Approximating dependent rare events, Bernoulli, 19 (2013), no. 4, 1243--1267. P. Deheuvels, A. Karr, D. Pfeifer and R. Sering, Poisson approximations in selected metrics by coupling and semi-group methods with applications, J. Statist. Plann. Inference 20 (1988), no. 1, 1--22. P. Deheuvels and D. Pfeifer, On a relationship between Uspensky's theorem and Poisson approximations, Ann. Inst. Statist. Math. 40 (1988), no. 4, 671--681. T. L. Hung and V. T. Thao, Bounds for the Approximation of Poisson-binomial distribution by Poisson distribution, J. Inequal. Appl. 2013:30, (2013), 1--10. S. Kongudomthrap, Bounds in Poisson Approximation for Random Sums of Bernoulli Random Variables, Journal of Mathematics Research, 4 (2012), no. 3, 29--35. L. Le Cam, An approximation theorem for the Poisson Binomial distribution, Pacific J. Math., 10 (1960) 1181--1197. K. Neammanee, A Nonuniform bound for the approximation of Poisson binomial by Poisson distribution, Int. J. Math. Math. Sci. 48 (2003) 3041--3046. E. Pekoz, Stein's method for geometric approximation, J. Appl. Probab. 33 (1996), no. 3, 707--713. A. Renyi, Probability Theory, North-Holland Publishing Company, Amsterdam-Lodon, 1970. R. J. Sering, A general Poisson approximation theorem, Ann. Probab. 3 (1975), no. 4, 726--731. J. M. Steele, Le Cam's Inequality and Poisson Approximations, Amer. Math. Monthly 101 (1994), no. 1, 48--50. K. Teerapabolarn and P. Wongkasem, Poisson approximation for independent geometric random variables, Int. Math. Forum 2, (2007), no. 65-68, 3211--3218. K. Teerapabolarn, A note on Poisson approximation for independent geometric random variables, Int. Math. Forum, 4 (2009), no. 9-12, 531--535. K. Teerapabolarn, A pointwise approximation for independent geometric random variables, Int. J. Pure Appl. Math. 76 (2012) 727--732. K. Teerapabolarn, A pointwise approximation for random sums of geometric random variables, Int. J. Pure Appl. Math. 89 (2013), no. 3, 353--356. H. F. Trotter, An elementary proof of the central limit theorem, Arch. Math. 10 (1959) 226--234.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 20-XX Group theory and generalizations Which elements of a finite group are non-vanishing? Which elements of a finite group are non-vanishing? Arezoomand M. Department of‎ ‎Mathematical Sciences, Isfahan University‎ ‎of Technology‎, ‎P‎.‎O‎. ‎Box 84156-83111, Isfahan‎, ‎Iran. Taeri B. Department of‎ ‎Mathematical Sciences, Isfahan University‎ ‎of Technology‎, ‎P‎.‎O‎. ‎Box 84156-838111, Isfahan‎, ‎Iran. 01 11 2016 42 5 1097 1106 04 01 2014 02 07 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_867.html

‎Let \$G\$ be a finite group‎. ‎An element \$gin G\$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character \$chi\$ of \$G\$‎, ‎\$chi(g)neq 0\$‎. ‎The bi-Cayley graph \${rm BCay}(G,T)\$ of \$G\$ with respect to a subset \$Tsubseteq G\$‎, ‎is an undirected graph with‎ ‎vertex set \$Gtimes{1,2}\$ and edge set \${{(x,1),(tx,2)}mid xin G‎, ‎ tin T}\$‎. ‎Let \${rm nv}(G)\$ be the set‎ ‎of all non-vanishing elements of a finite group \$G\$‎. ‎We show that \$gin nv(G)\$ if and only if the adjacency matrix of \${rm BCay}(G,T)\$‎, ‎where \$T={rm Cl}(g)\$ is the‎ ‎conjugacy class of \$g\$‎, ‎is non-singular‎. ‎We prove that ‎if the commutator subgroup of \$G\$ has prime order \$p\$‎, ‎then‎  ‎(1) \$gin {rm nv}(G)\$ if and only if \$|Cl(g)|<p\$, ‎(2) if \$p\$ is the smallest prime divisor of \$|G|\$‎, ‎then \${rm nv}(G)=Z(G)\$‎. ‎‎Also we show that‎ (a) if \${rm Cl}(g)={g,h}\$‎, ‎then \$gin {rm nv}(G)\$ if and only if \$gh^{-1}\$ has odd order‎, (b) if \$|{rm Cl}(g)|in {2,3}\$ and \$({rm ord}(g),6)=1\$‎, ‎then \$gin {rm nv}(G)\$‎.

Non-vanishing element‎ character‎ conjugacy class‎ ‎Bi-Cayley graph‎
A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, New York, 2012. D. Bubboloni, S. Dolfi and P. Spiga, Finite groups whose irreducible characters vanish only on p-elements, J. Pure Appl. Algebra 213 (2009), no. 3, 370-376. S. Dolfi, G. Navvaro, E. Pacifici, L. Sanus, P. H. Tiep, Non-vanishing elements of finite groups, J. Algebra 323 (2010), no. 2, 540--545. S. F. Du and M. Y. Xu, A classification of semisymmetric graphs of order 2pq, Comm. Algebra 28 (2000), no. 6, 2685--2715.  L. He, S. Yu and J. Lu, A result related to non-vanishing elements of finite solvable groups, Int. J. Algebra 7 (2013), no. 5-8, 223--227. L. He, Notes on non-vanishing elements of finite solvable groups, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 163--169. I. M. Isaacs, G. Navarro, and T.R. Wolf, Finite group elements where no irreducible character vanishes, J. Algebra 222 (1999), no. 2, 413-423. I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York-London, 1976. N. Ito, The spectrum of a conjugacy class graph of a finite group, Math. J. Okayama Univ. 26 (1984) 1--10. N. Ito, On finite groups with given conjugate types I, Nagoya Math. J. 6 (1953) 17--28.  W. Jin and W. Liu, A classification of nonabelian simple 3-BCI-groups, European J. Combin. 31 (2010), no. 5, 1257--1264. T. Y. Lam and K. H. Leung, On vanishing sums of roots of unity, J. Algebra 224 (2000) 91-109. Z. P. Lu, C. Q. Wang, and M. Y. Xu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of An, Ars Combin. 80 (2006) 177--187. M. Miyamoto, Non-vanishing elements in finite groups, J. Algebra 364 (2012) 88--89.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 65-XX Numerical Analysis Numerical approach for solving a class of nonlinear fractional differential equation Numerical approach for solving a class of nonlinear fractional differential equation Irandoust-pakchin S. Department of Applied Mathematics‎, ‎Faculty of Mathematical Sciences, University of Tabriz‎, ‎Tabriz‎, ‎Iran. Lakestani M. Department of Applied Mathematics‎, ‎Faculty of Mathematical Sciences, University of Tabriz‎, ‎Tabriz‎, ‎Iran. ‎Kheiri H. Department of Applied Mathematics‎, ‎Faculty of Mathematical Sciences, University of Tabriz‎, ‎Tabriz‎, ‎Iran. 01 11 2016 42 5 1107 1126 10 01 2015 05 07 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_868.html

‎It is commonly accepted that fractional differential equations play‎ ‎an important role in the explanation of many physical phenomena‎. ‎For‎ ‎this reason we need a reliable and efficient technique for the‎ ‎solution of fractional differential equations‎. ‎This paper deals with‎ ‎the numerical solution of a class of fractional differential‎ ‎equation‎. ‎The fractional derivatives are described based on the‎ ‎Caputo sense‎. ‎Our main aim is to generalize the Chebyshev cardinal‎ ‎operational matrix to the fractional calculus‎. ‎In this work‎, ‎the‎ ‎Chebyshev cardinal functions together with the Chebyshev cardinal‎ ‎operational matrix of fractional derivatives are used for numerical‎ ‎solution of a class of fractional differential equations‎. ‎The main‎ ‎advantage of this approach is that it reduces fractional problems to‎ ‎a system of algebraic equations‎. ‎The method is applied to solve‎  ‎nonlinear fractional differential equations‎. ‎Illustrative examples‎ ‎are included to demonstrate the validity and applicability of the ‎presented technique‎.

Fractional-order differential equation‎ ‎operational matrix‎ ‎of fractional derivative‎ ‎Caputo derivative‎ ‎Chebyshev cardinal function‎ ‎collocation method‎
Q. M. Al-Mdallal, M. I. Syam and M. N Anwar, A collocation-shooting method for solving fractional boundary value problems, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), no. 12, 3814--3822. Z. B. Bai and H. S. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), no. 2, 495--505. H. Bbeyer and S. Kempe, Definition of physically consistent damping laws with fractional derivatives, Z. Angew. Math. Mech. 75 (1995), no. 8, 623--635. L. Blank, Numerical treatment of differential equations of fractional order, Nonlinear World 4 (1997), no. 4, 473--491 J. P. Boyd, The asymptotic Chebyshev coefficients for functions with logarithmic endpoint singularities: mappings and singular basis functions, Appl. Math. Comput. 29 (1989), no. 1, part I, 49--67. J. P. Boyd, Polynomial series versus sinc expansions for functions with corner or endpoint singularities, J. Comput. Phys. 64 (1986), no. 1, 266--270. J. P. Boyd, Chebyshev and Fourier Spectral Methods, Second edition, Dover Publications, Inc., Mineola, 2001. A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlger Wien, New York, 1997. Y. Censiz, Y. Keskin and A. Kurnaz, The solution of the Bagley-Torvik equation with the generalized Taylor collocation method, J. Franklin Inst. 347 (2010), no. 2, 452--466. V. Daftardar-Geiji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl. 301 (2005), no. 2, 508--18. V. Daftardar-Geiji and H. Jafari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl. 328 (2007), no. 2, 1026--1033. M. Dehghan and M. Lakestani, The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation, Numer. Methods Partial Differential Equations 25 (2009), no. 4, 931--938. M. Dehghan, J. Manafian and A. Saadatmandi, The solution of the linear fractional partial differential equations using the homotopy analysis method, Zeitschrift fur Naturforschung, J. Phys. Sci. 65 (2010), no. 11, 935--949. W. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equationd, Nonlinear Anal. 72 (2010), no. 3-4, 1768--1777. W. Gautschi, The Condition of Polynomials in Power Form, Math. Comp. 33 (1979), no. 145, 343--352 I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 3, 674--684. S. Irandoust--pakchin, Exact solutions for some of the fractional differential equations by using modification of He's variational iteration method, Math. Sci. Q. J. 5 (2011), no. 1, 51--60. S. Irandoust-pakchin, M. Dehghan, S. Abdi-mazraeh and M. Lakestani, Numerical solution for a class of fractional convection-diffusion equation using the flatlet oblique multiwavelets, J. Vib. Control 20 (2014), no. 6, 913--924. S. Irandoust-pakchin, H. Kheiri and S. Abdi-Mazraeh, Chebyshev cardinal functions: an effective tool for solving nonlinear Volterra and Fredholm integro-differential equations of fractional order, Iran. J. Sci. Technol. Trans. A Sci. 37 (2013), no. 1, 53--62. S. Irandoust-pakchin, H. Kheiri and S. Abdi-Mazraeh, Efficient computational algorithms for solving one class of fractional boundary value problems, Comput. Math. Math. Phys. 53 (2013), no. 7, 920--932. V. Lakshmikantham and A. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett. 21 (2008), no. 8, 828--834. M. Lakestani, M. Dehghan and S. Irandoust--pakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 3, 1149--1162 M. Lakestani and M. Dehghan, Numerical solution of Riccati equation using the cubic B-spline scaling functions and Chebyshev cardinal functions, Comput. Phys. Commun. 181 (2010), no. 5, 957--966. M. Lakestani and M. Dehghan, The use of Chebyshev cardinal functions for the solution of a partial differential equation With an unknown time-dependent coefficient subject to an extra measurement, J. Comput. Appl. Math. 235 (2010), no. 3, 669--678. M. Lakestani and M. Dehghan, Numerical solution of fourth-order integro-differential equations using Chebyshev cardinal functions, Int. J. Comput. Math. 87 (2010), no. 6, 1389--1394. M. Lia, S. Jimenezc, N. Niea, Y. Tanga and L. Vazqueze, Solving Two--point boundary value problems of fractional differetial equations by spline collocation methods, Available from http://www.cc.ac.cn/2009 researth-report/0903.pdf, (2009), 1--10. V. E. Lynch, B. A. Carreras, D. Del-Castillo-Negrete, K. M. Ferriera-Mejias and H. R. Hicks, Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys. 192 (2003), no. 2, 406--421. F. Mainardi, Fractional relaxiation and fractional diffusion equations: mathematical aspects, Proceedings of the 14th IMACS World Congress, 1 (1994) 329--32. F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics (Udine, 1996), 291--348, CISM Courses and Lectures, 378, Springer, Vienna, 1997.  M. M. Meerschaert, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006), no. 1, 80--90. M. U. Rehman and R. A. Khan, The Legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 11, 4163--4173. M. Ochmann and S. Makarov, Representation of the absorption of nonlinear waves by fractional derivatives, J. Acoust. Soc. Amer. 94 (1993), no. 6, 2--9. Z. Odibat, S. Momani and H. Xu, A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations, Appl. Math. Model. 34 (2010), no. 3, 593--600. Z. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. G. M. Phillips and P. J. Taylor, Theory and Applications of Numerical Analysis, Fifth edition, Academic Press, Inc., 1980. I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, 1999. E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput. 176 (2006), no. 1, 1--6. Z. Shuqin, Existence of solution for a boundary value problem of fractional order, Acta Math. Sci. Ser. B Engl. Ed. 26 (2006), no. 2, 220--228. C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys. 220 (2007), no. 2, 813-- 823. S. A. El-Wakil, A. Elhanbaly and M. A. Abdou, Adomian decomposition method for solving fractional nonlinear differential equations, Appl. Math. Comput. 182 (2006), no. 1, 313--324.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 65-XX Numerical Analysis The use of inverse quadratic radial basis functions for the solution of an inverse heat problem The use of inverse quadratic radial basis functions ‎Parzlivand F. Department of Mathematics‎, ‎Alzahra University‎, ‎Vanak‎, ‎Post Code 19834‎, ‎Tehran‎, ‎Iran. Shahrezaee A. Department of Mathematics‎, ‎Alzahra University‎, ‎Vanak‎, ‎Post Code 19834‎, ‎Tehran‎, ‎Iran. 01 11 2016 42 5 1127 1142 23 12 2014 18 07 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_869.html

‎In this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎The method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadratic‎ ‎radial basis functions (IQ-RBFs)‎. ‎The operational matrix of‎ ‎derivative for IQ-RBFs is introduced and the new computational‎ ‎technique is used for this purpose‎. ‎The operational matrix of‎ ‎derivative is utilized to reduce the problem to a set of algebraic‎ ‎equations‎. ‎Some examples are given to demonstrate the validity and‎ ‎applicability of the new method and a comparison is made with the‎ ‎existing results.

Collocation‎ ‎inverse parabolic problem‎ ‎scattered data‎ ‎RBFs‎
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 46-XX Functional Analysis Composition operators and natural metrics in meromorphic function classes \$Q_p\$ Composition operators and natural metrics in meromorphic Kamal A. Port Said University‎, ‎Faculty of Science‎, ‎Department of Mathematics, Port Said 42521‎, ‎Egypt. 01 11 2016 42 5 1143 1154 16 10 2014 21 07 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_870.html

‎In this paper‎, ‎we investigate some results on natural metrics on the \$mu\$-normal functions and meromorphic \$Q_p\$-classes‎. ‎Also‎, ‎these classes are shown to be complete metric spaces with respect to the corresponding metrics‎. ‎Moreover‎, ‎compact composition operators \$C_phi\$ and Lipschitz continuous operators acting from \$mu\$-normal functions to the meromorphic \$Q_p\$-classes are characterized by conditions depending only on \$phi.\$

Meromorphic classes‎ composition operators‎ ‎Lipschitz‎ ‎continuous
J‎. ‎M‎. ‎Anderson‎, ‎J‎. ‎Clunie and Ch‎. ‎Pommerenke‎, ‎On Bloch functions and normal functions‎, J‎. ‎Reine‎. ‎Angew‎. ‎Math. 270 (1974) 12--37‎. R‎. ‎Aulaskari and P‎. ‎Lappan‎, ‎Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal‎, ‎136--146‎, ‎Complex Analysis and its Applications‎, ‎Pitman Res‎. ‎Notes Math‎. ‎Ser.‎, ‎305‎, ‎Longman Sci‎. ‎Tech.‎, ‎Harlow‎, ‎1994‎. F‎. ‎Bagemihl and W‎. ‎Seidel‎, ‎Sequential and continuous limits of meromorphic functions‎, Ann‎. ‎Acad‎. ‎Sci‎. ‎Fenn‎. ‎Math. 280 (1960) 17 pages‎. C‎. ‎Cowen and B‎. ‎D‎. ‎MacCluer‎, ‎Composition Operators on Spaces of Analytic Functions‎, ‎Studies in Advanced Mathematics‎, ‎CRC Press‎, ‎Boca Raton‎, ‎1995‎. M‎. ‎Essen and H‎. ‎Wulan‎, ‎On analytic and meromorphic functions and spaces of \$Q_K\$ type‎, Illinois J‎. ‎Math. 46 (2002)‎, ‎no‎. ‎4‎, ‎1233--1258‎. A‎. ‎El-Sayed Ahmed and M‎. ‎A‎. ‎Bakhit‎, ‎Composition operators on some holomorphic Banach function spaces‎, Math‎. ‎Scand. 104 (2009)‎, ‎no‎. ‎2‎, ‎275--295‎. A‎. ‎Kamal and A‎. ‎El-Sayed Ahmed‎, ‎A property of meromorphic functions with Hadamard gaps‎, J‎. ‎Sci‎. ‎Research Essays 8 (2013)‎, ‎no‎. ‎15‎, ‎633--639‎. M‎. ‎Kotilainen‎, ‎Studies on Composition Operators and Function Spaces‎, ‎Report Series‎, ‎Department of Mathematics‎, ‎University of Joensuu 11‎, ‎Joensuu‎: ‎University of Joensuu‎, ‎Department of Mathematics (Dissertation) 2007‎. P‎. ‎Lappan and J‎. ‎Xiao‎, Qα# bounded composition maps on normal classes‎, Note Mat. 20 (2000/01)‎, ‎no‎. ‎1‎, ‎65--72‎. X‎. ‎Li‎, ‎F‎, ‎Perez-Gonzalez and J‎. ‎Rattya‎, ‎Composition operators in hyperbolic \$Q\$-classes‎, Ann‎. ‎Acad‎. ‎Sci‎. ‎Fenn‎. ‎Math. 31 (2006)‎, ‎no‎. ‎2‎, ‎391--404‎. S‎. ‎Makhmutov and M‎. ‎Tjani‎, ‎Composition operators on some M"obius invariant Banach spaces‎, Bull‎. ‎Aust‎. ‎Math‎. ‎Soc. 62 (2000)‎, ‎no‎. ‎1‎, ‎1--19‎. R‎. ‎A‎. ‎Rashwan‎, ‎A‎. ‎El-Sayed Ahmed and A‎. ‎Kamal‎, ‎Some characterizations of weighted holomorphic Bloch space‎, Eur‎. ‎J‎. ‎Pure Appl‎. ‎Math. 2 (2009)‎, ‎no‎. ‎2‎, ‎250--267‎. M‎. ‎Tjani‎, ‎Compact composition operators on Besov spaces‎, Trans‎. ‎Amer‎. ‎Math‎. ‎Soc. 355 (2003)‎, ‎no‎. ‎11‎, ‎4683--4698‎. J‎. ‎Xiao‎, ‎Holomorphic \$Q\$ Classes‎, ‎Lecture Notes in Mathematics‎, ‎1767‎, ‎Springer‎- ‎Verlag‎, ‎Berlin‎, ‎2001‎. S‎. ‎Yamashita‎, ‎Criteria for function to be Bloch‎, Bull‎. ‎Aust‎. ‎Math‎. ‎Soc. 21 (1980)‎, ‎no‎. ‎2‎, ‎223--227‎. J‎. ‎Zhou‎, ‎Composition operators from \$B^alpha\$ to \$Q_K\$ type spaces‎, J‎. ‎Funct‎. ‎Spaces Appl. 6 (2008)‎, ‎no‎. ‎1‎, ‎89--105‎.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 47-XX Operator theory Multiplication operators on Banach modules over spectrally separable algebras Multiplication operators on Banach modules ‎Bračič J. Department of Materials and Metallurgy‎, ‎Faculty of Natural Sciences and Engineering‎, ‎University of Ljubljana‎, ‎Aškerčeva c‎. ‎12‎, ‎SI-1000 Ljubljana‎, ‎Slovenia. 01 11 2016 42 5 1155 1167 01 04 2015 28 07 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_871.html

‎Let \$mathcal{A}\$ be a commutative Banach algebra and \$mathscr{X}\$ be a left Banach \$mathcal{A}\$-module‎. ‎We study the set‎ ‎\${rm Dec}_{mathcal{A}}(mathscr{X})\$ of all elements in \$mathcal{A}\$ which induce a decomposable multiplication operator on \$mathscr{X}\$‎. ‎In the case \$mathscr{X}=mathcal{A}\$‎, ‎\${rm Dec}_{mathcal{A}}(mathcal{A})\$ is the well-known Apostol algebra of \$mathcal{A}\$‎. ‎We show that \${rm Dec}_{mathcal{A}}(mathscr{X})\$ is intimately related with the largest spectrally separable subalgebra of \$mathcal{A}\$ and in this context‎ ‎we give some results which are related to an open question if Apostol algebra is regular for any commutative algebra \$mathcal{A}\$‎.‎

Commutative Banach algebra‎ ‎decomposable multiplication operator‎ ‎spectrally separable algebra
E‎. ‎Albrecht‎, ‎Decomposable systems of operators in harmonic analysis‎, ‎in‎: ‎Toeplitz Centennial‎, ‎19--35‎, ‎(I‎. ‎Gohberg‎, ‎ed.)‎, ‎Birkhauser‎, ‎Basel‎, ‎1983‎. C‎. ‎Apostol‎, Decomposable multiplication operators‎, Rev‎. ‎Roumaine Math‎. ‎Pures Appl. 17 (1972) 323--333‎. A‎. ‎G‎. ‎Baskakov‎, ‎Spectral synthesis in Banach modules over commutative Banach algebras‎, Math‎. ‎Notes 34 (1983)‎, ‎no‎. ‎4‎, ‎776--782‎. J‎. ‎Bračič‎, ‎Unital strongly harmonic commutative Banach algebras‎, Studia Math. 149 (2002)‎, ‎253--266‎. J‎. ‎Bračič‎, ‎Strongly harmonic operators‎, Acta Sci‎. ‎Math. (Szeged) 68 (2002)‎, ‎797--813‎. ‎ I‎. ‎Colojoara and C‎. ‎Foias‎, ‎Theory of Generalized Spectral Operators‎,  ‎Gordon and Breach‎, ‎New York‎, ‎1968‎. St‎. ‎Frunza‎, ‎A characterization of regular Banach algebras‎, Rev‎. ‎Roumaine Math‎. ‎Pures Appl. 18 (1973)‎, ‎1057--1059‎. ‎ J‎. ‎Inoue and S.-E‎. ‎Takahasi‎, ‎A note on the largest regular subalgebra of a Banach algebra‎, Proc‎. ‎Amer‎. ‎Math‎. ‎Soc. ‎ 116 (1992) 961--962‎. ‎ E‎. ‎Kaniuth‎, ‎A Course in Commutative Banach Algebras‎, ‎Graduate Texts in Mathematics 246‎, ‎Springer‎, ‎New York‎, ‎2009‎. K‎. ‎B‎. ‎Laursen and M‎. ‎M‎. ‎Neumann‎, ‎An Introduction to Local Spectral Theory‎, London Math‎. ‎Soc‎. ‎Monographs 20‎, ‎Clarendon Press‎, ‎Oxford‎, ‎2000‎. M‎. ‎M‎. ‎Neumann‎, ‎Commutative Banach algebras and decomposable operators‎, Monatsh‎. ‎Math. 113 (1992)‎, ‎227--243‎. M‎. ‎M‎. ‎Neumann‎,‎Banach algebras‎, ‎decomposable convolution operators‎, ‎and a spectral mapping property‎, ‎in‎: ‎Function spaces‎, ‎(K‎. ‎Jarosz‎, ‎ed.)‎, ‎Marcel Dekker‎, ‎New York (1992)‎, ‎307--323‎. C‎. ‎E‎. ‎Rickart‎, ‎General Theory of Banach Algebras‎,  ‎Van Nostrand‎, ‎Princeton 1960‎.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 46-XX Functional Analysis On a functional equation for symmetric linear operators on \$C^{*}\$ algebras Functional equations on \$C^{*}\$ algebras Taghavi A. Faculty of Mathematics and Computer Science‎, ‎Damghan University‎, ‎Damghan‎, ‎Iran. 01 11 2016 42 5 1169 1177 19 11 2014 30 07 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_872.html

‎Let \$A\$ be a \$C^{*}\$ algebra‎, ‎\$T‎: ‎Arightarrow A\$ be a linear map which satisfies the functional equation \$T(x)T(y)=T^{2}(xy),;;T(x^{*})=T(x)^{*} \$‎. ‎We prove that under each of the following conditions‎, ‎\$T\$ must be the trivial map \$T(x)=lambda x\$ for some \$lambda in mathbb{R}\$: ‎‎ ‎i) \$A\$ is a simple \$C^{*}\$-algebra‎. ‎ii) \$A\$ is unital with trivial center and has a faithful trace such that each‎ ‎zero-trace element lies in the closure of the span of commutator elements‎. ‎iii) \$A=B(H)\$ where \$H‎\$‎ is a separable Hilbert space‎.  ‎For a given field \$F\$‎, ‎we consider a similar functional equation {\$ T(x)T(y) =T^{2}(xy), T(x^{tr})=T(x)^{tr}, \$} where \$T\$ is a linear map on \$M_{n}(F)\$ and‎ ‎"tr"‎ ‎is the transpose operator‎. ‎We prove that this functional equation has trivial solution for all \$nin mathbb{N}\$ if and only if \$F\$ is a formally real field‎.

"Functional Equations" "\$C^{*}\$ algebras" " Formally real fields"
E‎. ‎T‎. ‎Bell‎, ‎Partitions polynomials‎, Ann‎. ‎of Math‎. ‎(2) 29 (1927)‎, ‎no‎. ‎1-4‎, ‎38--46‎. ‎J‎. ‎Chmielinski‎, ‎Linear mappings approximately preserving orthogonality‎, J‎. ‎Math‎. ‎Anal‎. ‎Appl. 304 (2005)‎, ‎no‎. ‎1‎, ‎158--169‎. ‎P‎. ‎Civin and B‎. ‎Yood‎, ‎The second conjugate space of a Banach algebra as an algebra‎, Pacific J‎. ‎Math. 11 (1961) 847--870‎. K‎. ‎I‎. ‎Davidson‎, ‎\$Csp *\$-algebras by example‎, ‎Fields Institute Monographs‎, ‎6‎, ‎American Mathematical Society‎, ‎Providence‎, ‎1996‎. D‎. ‎E‎. ‎Evans and Y‎. ‎Kawahigashi‎, ‎Quantum Symmetries on Operator Algebras‎, ‎Oxford Mathematical Monographs‎, ‎Oxford Science Publications‎. ‎The Clarendon Press‎, ‎Oxford University Press‎, ‎New York‎, ‎1998‎. P‎. ‎Fan and C‎. ‎K‎. ‎Fong‎, ‎Which operators are the self commutators of compact operators‎, Proc‎. ‎Amer‎. ‎Math‎. ‎Soc. 80 (1980)‎, ‎no‎. ‎1‎, ‎58--60‎. B‎. ‎E‎. ‎Johnson‎, ‎An introduction to the theory of centralizers‎, Proc‎. ‎Lond‎. ‎Math‎. ‎Soc‎. ‎(3) 14 (1964) 299--320‎. N‎. ‎E‎. ‎Wgge-Olsen‎, ‎K-Theory and \$C^*\$ Algebras‎, ‎Oxford University Press‎, ‎Oxford‎, ‎1994‎.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 20-XX Group theory and generalizations The Fischer-Clifford matrices and character table of the maximal subgroup \$2^9{:}(L_3(4){:}S_3)\$ of \$U_6(2){:}S_3\$ The maximal subgroup \$2^9{:}(L_3(4){:}S_3)\$ of \$U_6(2){:}S_3\$ Prins A. L. Department of‎ ‎Mathematics‎, ‎Faculty of Military Science, Stellenbosch‎ University‎‎, ‎Private Bag X2, Saldanha‎, ‎7395‎, ‎South Africa. 01 10 2016 42 5 1179 1195 18 03 2015 30 07 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_873.html

The full automorphism group of \$U_6(2)\$ is a group of the form \$U_6(2){:}S_3\$. The group \$U_6(2){:}S_3\$ has a maximal subgroup \$2^9{:}(L_3(4){:}S_3)\$ of order 61931520. In the present paper, we determine the Fischer-Clifford matrices (which are not known yet) and hence compute the character table of the split extension \$2^9{:}(L_3(4){:}S_3)\$.

‎Coset analysis‎ ‎Fischer-Clifford matrices‎ ‎permutation character‎ ‎fusion map
F‎. ‎Ali‎, ‎Fischer-Clifford Theory for Split and Non-Split Group Extensions‎, ‎PhD Thesis‎, ‎University of Natal‎, ‎2001‎. F‎. ‎Ali and J‎. ‎Moori‎, ‎The Fischer-Clifford matrices of a maximal subgroup of \$Fi'_24\$‎, Represent‎. ‎Theory 7 (2003) 300--321‎. F‎. ‎Ali and J‎. ‎Moori‎, ‎The Fischer-Clifford matrices and character table of a maximal subgroup of \$Fi_24\$‎, Algebra Colloq. 17 (2010)‎, ‎no‎. ‎3‎, ‎389--414‎. F‎. ‎Ali and J‎. ‎Moori‎, ‎Fischer-Clifford matrices and character table of‎ ‎the split extension \$2^6:S_8\$‎, Hacet‎. ‎J‎. ‎Math‎. ‎Stat. 43 (2014)‎, ‎no‎. ‎2‎, ‎153--171‎ W‎. ‎Bosma and J‎. ‎J‎. ‎Canon‎, ‎Handbook of Magma Functions‎, ‎Department of Mathematics‎, ‎University of Sydney‎, ‎1994‎. J‎. ‎J‎. ‎Cannon‎, ‎An introduction to the group theory language‎, Cayley.Computational group theory (Durham‎, ‎1982)‎, ‎145--183‎, ‎Academic Press‎, ‎London‎, ‎1984‎. J‎. ‎H‎. ‎Conway‎, ‎R‎. ‎T‎. ‎Curtis‎, ‎S‎. ‎P‎. ‎Norton‎, ‎R‎. ‎A‎. ‎Parker‎, ‎and R‎. ‎A‎. ‎Wilson‎, ‎Atlas of Finite Groups‎, ‎Oxford University Press‎, ‎Eynsham‎, ‎1985‎. B‎. ‎Fischer‎, ‎Clifford-matrices‎, ‎Representation theory of finite groups and finite-dimensional algebras (Bielefeld‎, ‎1991)‎, ‎1--16‎, ‎Progr‎. ‎Math.‎, ‎95‎, ‎Birkh"auser‎, ‎Basel‎, ‎1991‎. R‎. ‎L‎. ‎Fray and A‎. ‎L‎. ‎Prins‎, ‎The Fischer-Clifford matrices of the inertia group \$2^7:O^-(6,2)\$ of a maximal subgroup \$2^7:SP(6,2)\$ in \$Sp_8(2)\$‎, Int‎. ‎J‎. ‎Group Theory 2 (2013)‎, ‎no‎. ‎3‎, ‎19--38‎. R‎. ‎L‎. ‎Fray and A‎. ‎L‎. ‎Prins‎, ‎The Fischer-Clifford matrices of an extension group of the form \$2^7:(2^5:S_6)\$‎, Int‎. ‎J‎. ‎Group Theory 3 (2014)‎, ‎no‎. ‎2‎, ‎21--39‎. R‎. ‎L‎. ‎Fray and A‎. ‎L‎. ‎Prins‎, ‎On the inertia groups of the maximal subgroup \$2^7:SP(6,2)\$ in \$Aut(Fi_22)\$‎, Quaest‎. ‎Math. 38 (2015)‎, ‎no‎. ‎1‎, ‎83--102‎. D‎. ‎Gorenstein‎, ‎Finite Groups‎, ‎Harper and Row Publishers‎, ‎New York‎, ‎1968‎. G‎. ‎Karpilovsky‎, ‎Group Representations‎: ‎Introduction to Group Representations and Characters‎, ‎North-Holland Publishing Co.‎, ‎Amsterdam‎, ‎1992‎. J‎. ‎Moori‎, ‎On the Groups \$G^+\$ and \$overlineG\$ of the Forms \$2^10:M_22\$ and \$2^10:overlineM_22\$‎, ‎PhD Thesis‎, ‎University of Birmingham‎, ‎1975‎. J‎. ‎Moori‎, ‎On certain groups associated with the smallest Fischer group‎, J‎. ‎Lond‎. ‎Math‎. ‎Soc‎. ‎(2) 23 (1981)‎, ‎no‎. ‎1‎, ‎61--67‎. J‎. ‎Moori and Z‎. ‎E‎. ‎Mpono‎, ‎The Fischer-Clifford matrices of the group \$2^6:SP_6(2)\$‎, Quaest‎. ‎Math. 22 (1999)‎, ‎no‎. ‎2‎, ‎257--298‎. J‎. ‎Moori and Z‎. ‎E‎. ‎Mpono‎, ‎Fischer-Clifford matrices and the character table of a maximal subgroup of \$overlineF_22\$‎, Int‎. ‎J‎. ‎Math‎. ‎Game Theory and Algebra 10 (2000)‎, ‎no‎. ‎1‎, ‎1--12‎. Z‎. ‎Mpono‎, ‎Fischer-Clifford Theory and Character Tables of Group‎ ‎Extensions‎, ‎PhD Thesis‎, ‎University of Natal‎, ‎1998‎. H‎. ‎Pahlings‎, ‎The character table of \$2^1+22^cdotCo_2\$‎, J‎. ‎Algebra 315 (2007)‎, ‎no‎. ‎1‎, ‎301--325‎. ‎A‎. ‎L‎. ‎Prins‎, ‎Fischer-Clifford Matrices and Character Tables of Inertia Groups of Maximal Subgroups of Finite Simple Groups of Extension Type‎, ‎PhD Thesis‎, ‎University of the Western Cape‎, ‎2011‎. ‎The GAP Group‎, ‎em GAP‎ ‎--Groups,‎ ‎Algorithms‎, ‎and Programming‎, ‎Version 4.6.3; 2013‎. ‎(http://www.gap-system.org)‎. T‎. ‎T‎. ‎Seretlo‎, ‎Fischer Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups \$O^+_10(2)\$‎, ‎\$HS\$ and \$Ly\$‎, ‎PhD Thesis‎, ‎University of KwaZulu Natal‎, ‎2011‎. R‎. ‎A‎. ‎Wilson‎, ‎P‎. ‎Walsh‎, ‎J‎. ‎Tripp‎, ‎I‎. ‎Suleiman‎, ‎S‎. ‎Rogers‎, ‎R‎. ‎Parker‎, ‎S‎. ‎Norton‎, ‎S‎. ‎Nickerson‎, ‎S‎. ‎Linton‎, ‎J‎. ‎Bray and R‎. ‎Abbot‎, ‎em ATLAS of Finite Group Representations‎, http://brauer.maths.qmul.ac.uk/Atlas/v3/‎.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 16-XX Associative rings and algebras Some commutativity theorems for \$*\$-prime rings with \$(sigma,tau)\$-derivation Some commutativity theorems for \$*\$-prime rings with \$(sigma,tau)\$-derivation Ashraf M. Department of Mathematics,‎ ‎Aligarh Muslim University‎, ‎Aligarh‎, ‎202002, India. Parveen N. Department of Mathematics,‎ ‎Aligarh Muslim University‎, ‎Aligarh‎, ‎202002, ‎India. 01 11 2016 42 5 1197 1206 25 09 2014 01 08 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_874.html

‎Let \$R\$ be a \$*\$-prime ring with center‎ ‎\$Z(R)\$‎, ‎\$d\$ a non-zero \$(sigma,tau)\$-derivation of \$R\$ with associated‎ ‎automorphisms \$sigma\$ and \$tau\$ of \$R\$‎, ‎such that \$sigma\$‎, ‎\$tau\$‎ ‎and \$d\$ commute with \$'*'\$‎. ‎Suppose that \$U\$ is an ideal of \$R\$ such that \$U^*=U\$‎, ‎and \$C_{sigma,tau}={cin‎ ‎R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.\$ In the present paper‎, ‎it is shown that if characteristic of \$R\$ is different from two and‎ ‎\$[d(U),d(U)]_{sigma,tau}={0},\$ then \$R\$ is commutative‎. ‎Commutativity of \$R\$ has also been established in case if‎ ‎\$[d(R),d(R)]_{sigma,tau}subseteq C_{sigma,tau}.\$

Prime-rings‎ ‎derivations‎ ‎ideal‎ involution map
M. Ashraf and A. Khan, Commutativity of  prime rings with generalized derivations, Rend. Semin. Mat. Univ. Padova 125 (2011) 75--79. M. Ashraf and N. Rehman, On derivation and commutativity in prime rings, East-West J. Math. 3 (2001), no. 1, 87--91. M. Ashraf and N. Rehman, On commutativity of rings with derivation, Results Math. 42 (2002), no. 1-2, 3--8. N. Aydin and K. Kaya, Some generalizations in prime rings with \$(σ,τ)\$-derivation, Doga Mat. 16 (1992), no. 3, 169--176. I. N. Herstein, Rings with Involution, University of Chicago press, Chicago, 1976. I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), no. 3, 369--370. I. N. Herstein, A note on derivations II, Canad. Math. Bull. 22 (1979), no. 4, 509--511. S. Huang, Some generalizations in certain classes of rings with involution, Bol. Soc. Paran. Mat. (3) 29 (2011), no. 1, 9--16. K. Kaya, On  \$(σ,τ)\$-derivations of prime rings, (Turkish) Doga Mat. 12 (1988), no. 2, 42--45. P. H. Lee and T. K. Lee, On derivations of prime rings, Chin. J. Math. 9 (1981), no. 2, 107--110. L. Okhtite, On derivations in prime rings, Int. J. Algebra 1 (2007), no. 5-8, 241--246. L. Okhtite, Some properties of derivations on rings with involution, Int. J. Mod. Math. 4 (2009), no. 3, 309--315. L. Okhtite, Commutativity conditions on derivations and Lie ideals in prime rings, Beitr. Algebra Geom. 51 (2010), no. 1, 275--282.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 49-XX Calculus of variations and optimal control; optimization Common solutions to pseudomonotone equilibrium problems Common solutions to pseudomonotone equilibrium problems ‎Hieu D. V. Department of Mathematics‎, ‎Ha Noi University of Science‎, ‎VNU‎. ‎334,‎ ‎Nguyen Trai Street, ‎‎‎Ha Noi‎, ‎Vietnam. 01 10 2016 42 5 1207 1219 21 01 2015 06 08 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_875.html

‎In this paper‎, ‎we propose two iterative methods for finding a common solution of a finite family of equilibrium problems ‎for pseudomonotone bifunctions‎. ‎The first is a parallel hybrid extragradient-cutting algorithm which is extended from the‎ ‎previously known one for variational inequalities to equilibrium problems‎. ‎The second is a new cyclic hybrid‎ ‎extragradient-cutting algorithm‎. ‎In the cyclic algorithm‎, ‎using the known techniques‎, ‎we can perform and develop practical numerical experiments.

Hybrid method‎ ‎parallel algorithm‎ ‎cyclic algorithm‎ ‎extragradient method‎ ‎equilibrium problem‎
P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization 62 (2013), no. 2, 271--283. P. N. Anh, A hybrid extragradient method for pseudomonotone equilibrium problems and fixed point problems, Bull. Malays. Math. Sci. Soc. 36 (2013), no. 1, 107--116. P. K. Anh, Ng. Buong and D. V. Hieu, Parallel methods for regularizing systems of equations involving accretive operators, Appl. Anal. 93 (2014), no. 10, 2136--2157. P. K. Anh and D. V. Hieu, Parallel hybrid methods for variational inequalities, equilibrium problems and common fixed point problems, Vietnam J. Math. 44 (2016), no. 2, 351--374. P. K. Anh and D. V. Hieu, Parallel and sequential hybrid methods for a finite family of asymptotically quasi ϕ -nonexpansive mappings, J. Appl. Math. Comput. 48 (2015), no. 1-2, 241--263. H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38 (1996), no. 3, 367--426. H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejer monotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001), no. 2, 248--264. M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl. 90 (1996), no. 1, 31--43. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123--146. Y. Censor, W. Chen, P. L. Combettes, R. Davidi and G. T. Herman, On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints, Comput. Optim. Appl. 51 (2012), no. 3, 1065--1088. Y. Censor, A. Gibali, S. Reich and S. Sabach, Common solutions to variational inequalities, Set-Valued Var. Anal. 20 (2012), no. 2, 229--247. P. L. Combettes, The convex feasibility problem in image recovery, in, P.Hawkes(Ed.), 95, Advances in Imaging and Electron Physics, 155--270, Academic Press, New York, 1996. A. Dhara and J. Dutta, Optimality Conditions in Convex Optimization: A Finite Dimensional View, CRC Press, Boca Raton, 2012. B. V. Dinh, P. G. Hung and L. D. Muu, Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer. Funct. Anal. Optim. 35 (2014), no. 5, 539--563. D. V. Hieu, A parallel hybrid method for equilibrium problems, variational inequalities and nonexpansive mappings in Hilbert space, J. Korean Math. Soc. 52 (2015), no. 2, 373--388. G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody 12 (1976), 747-756. H. C. Lai and L. J. Lin, Moreau-Rockafellar type theorem for convex set functions, J. Math. Anal. Appl. 132 (1988), no. 2, 558--571. G. Mastroeni, On auxiliary principle for equilibrium problems, Publ. Dipart. Math. Univ. Pisa 3 (2000), 1244--1258. L. D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. 18 (1992), no. 12, 1159--1166. N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), no. 4, 1230--1241. T. D. Quoc, L. D. Muu and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008) 749--776. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970. M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in Hilbert space, Math. Program. 87 (2000), no. 1, 189--202. H. Stark (Ed.), Image Recovery Theory and Applications, Academic Press, Orlando, 1987. S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506--515.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 16-XX Associative rings and algebras \$mathcal{X}\$-injective and \$mathcal{X}\$-projective complexes \$mathcal{X}\$-injective and \$mathcal{X}\$-projective complexes Özen T. Department of Mathematics‎, ‎Abant Izzet Baysal University‎, Gölköy Kampüsü Bolu, Turkey. ‎Yıldırım E. Department of Mathematics‎, ‎Abant Izzet Baysal University‎, Gölköy Kampüsü Bolu, Turkey. 01 10 2016 42 5 1221 1235 12 11 2014 07 08 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_876.html

Let \$mathcal{X}\$ be a class of \$R\$-modules‎. ‎In this paper‎, ‎we investigate ;\$mathcal{X}\$-injective (projective) and DG-\$mathcal{X}\$-injective (projective) complexes which are generalizations of injective (projective) and DG-injecti‎‎ve (projective) complexes‎. ‎We prove that some known results can be extended to the class of ;\$mathcal{X}\$-injective (projective) and DG-\$mathcal{X}\$-injective (projective) complexes for this general settings.

Injective (Projective) complex‎ precover‎ preenvelope
L. L. Avramov and H. B. Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129--155. E. E. Enochs, O. M. G. Jenda and J. Xu, Orthogonality in the category of complexes, Math. J. Okayama Univ. 38 (1996) 25--46. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Ex. Math., 30, Walter de Gruyter & Co., Berlin, 2000. P. Eklof, Homological algebra and set theory, Trans. Amer. Math. Soc. 227 (1977) 207--225. J. Gillespie, The at model structure on Ch(R), Trans. Amer. Math. Soc. 356 (2004), no. 8, 3369--3390. L. X. Mao and N. Q. Ding, L-injective hulls of modules, Bull. Aust. Math. Soc. 74 (2006), no. 1, 37--44. Joseph J. Rotman, An Introduction to Homological Algebra, Springer, New York, 2009. J. T. Stafford and R. B. Wareld, Construction of Hereditary Noetherian Rings, Proc. Lond. Math. Soc. (3) 51 (1985), no. 1, 1--20. J. Trlifaj, Ext and inverse limits, Illinois J. Math. 47 (2003), no. 1-2, 529--538.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 90-XX Operations Research, Mathematical Programming Sufficient global optimality conditions for general mixed integer nonlinear programming problems Sufficient global optimality conditions for MINPP Quan J. Department of Mathematics, Yibin University, Yibin, Sichuan, 644007, China. Wu Z. Y. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China. Li G. Q. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China. 01 10 2016 42 5 1237 1246 29 04 2015 11 08 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_877.html

‎In this paper‎, ‎some KKT type sufficient global optimality conditions‎ ‎for general mixed integer nonlinear programming problems with‎ ‎equality and inequality constraints (MINPP) are established‎. ‎We achieve‎ ‎this by employing a Lagrange function for MINPP‎. ‎In addition‎, ‎verifiable sufficient global optimality conditions for general mixed‎ ‎integer quadratic programming problems are derived easily‎. ‎Numerical‎ ‎examples are also presented.

Sufficient global optimality conditions‎ ‎mixed‎ ‎integer nonlinear programming‎ ‎mixed integer quadratic‎ ‎programming
A. Beck and M. Teboulle, Global optimality conditions for quadratic optimization problems with binary constraints, SIAM J. Optim. 11 (2000), no. 1, 179--188. B. Borchers and J. E. Mitchell, An improved branch and bound algorithm for mixed integer nonlinear programs, Comput. Oper. Res. 21 (1994), no. 4, 359--367. C. D'Ambrosio and A. Lod, Mixed integer nonlinear programming tools: an updated practical overview, Ann. Oper. Res. 204 (2013) 301--320. M. A. Duran and I. E. Grossmann, An outer-approximation algorithm for a class of mixed integer nonlinear programs, Math. Program. 36 (1986), no. 3, 307--339. R. Fletcher and S. Leyffer, Solving mixed integer nonlinear programs by outer approximation, Math. Program. 66 (1994), no. 3, 327--349. C. A. Floudas, Deterministic Global Optimization: Theory, Algorithms and Applicaions, Kluwer Academic Publishers, Dordrecht, 2000. C. A. Floudas, Nonlinear and Mixed Integer Optimization: Fundamentals and Applications, Oxford University Press, Oxford, 1995. A. M. Geoffrion, Lagrangean relaxation for integer programming, Math. Programming Stud. 2 (1974) 82--114. I. E. Grossmann and N. Sahinidis, Special Issue on Mixed Integer Programming and its Application to Engineering, Part I. Optim. Eng., 3 , no. 3, Kluwer Academic Publishers, Norwell, 2002. I. E. Grossmann and N. Sahinidis, Special Issue on Mixed Integer Programming and its Application to Engineering, Part II, Optim. Eng., 4 no. 1-2, Kluwer Academic Publishers, Norwell, 2003. I. E. Grossmann and Z. Kravanja, Mixed integer nonlinear programming: A survey of algorithms and applications, Large-scale optimization with applications, Part II (Minneapolis, 1995), 73--100, Math. Appl., 93, Springer, New York, 1997. V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions, Math. Program. Ser. A 110 (2007), no. 3, 521--541. V. Jeyakumar, A. M. Rubinov and Z. Y. Wu, Sufficient global optimality conditions for non-convex quadratic minimization problems with box constraints, J. Global Optim. 36 (2006), no. 3, 471--481. V. Jeyakuma, G. Li and S. Srisatkunarajah, Global optimality principles for polynomial optimization over box or bivalent constraints by separable polynomial approximations, J. Global Optim. 58 (2014), no. 1, 31--50.  V. Jeyakumar, S. Srisatkunrajah and N. Q. Huy, Kuhn-Tucker sufficiency for global minimum of multi-extremal mathematical programming problems, J. Math. Anal. Appl. 335 (2007), no. 2, 779--788. S. Leyffer, Integrating SQP and branch-and-bound for mixed integer nonlinear programming, Comput. Optim. Appl. 18 (2001), no. 3, 295--309. T. Mohit and N. V. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Math. Program. 103 (2005), no. 2, 225--249. M. Ruth and C. A. Floudas, ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations, J. Global Optim. 59 (2014), no. 2-3, 1--24. M. Tawarmalani and N. V. Sahinidis, Convexi_cation and Global Optimization in Continuous and Mixed Integer Nonlinear Programming Theory, Algorithms, Software, and Applications, Kluwer Academic Publishers, Dordrecht, 2002. Z. Y. Wu, Sufficient global optimality conditions for weakly convex minimization problems, J. Global Optim. 39 (2007), no. 3, 427--440. Z. Y.Wu, V. Jeyakumar and A. M. Rubinov, Sufficient Conditions for Global Optimality of Bivalent Nonconvex Quadratic Programs with Inequality Constraints, J. Optim. Theo. Appl. 133 (2007), no. 1, 123--130. Z. Y. Wu and F. S. Bai, Global optimality conditions for mixed nonconvex quadratic programs, Optimization 58 (2009), no. 1, 39--47. Z. Wu, J. Tian, J. Quan and J. Ugon, Optimality conditions and optimization methods for quartic polynomial optimization,  Appl. Math. Comput. 232 (2014) 968--982. J. Zhang, P. Liu, Z. Zhou, L. Ma, Z. Li and W. Ni, A mixed integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system, Appl. Ener. 114 (2014) 146--154.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 05-XX Combinatorics A note on Fouquet-Vanherpe’s question and Fulkerson conjecture A note on Fouquet-Vanherpe’s question and Fulkerson conjecture Chen F. Institute of Statistics and Applied Mathematics‎, ‎Anhui University of Finance and Economics‎, ‎Bengbu‎, ‎Anhui‎, ‎233030‎, ‎P‎. ‎R‎. ‎China. 01 10 2016 42 5 1247 1258 15 08 2014 15 08 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_878.html

‎The excessive index of a bridgeless cubic graph \$G\$ is the least integer \$k\$‎, ‎such that \$G\$ can be covered by \$k\$ perfect matchings‎. ‎An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless‎ ‎cubic graph has excessive index at most five‎. ‎Clearly‎, ‎Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5‎, ‎so Fouquet and Vanherpe asked whether Petersen graph is the only one with that property‎. ‎H"{a}gglund gave a negative answer to their question by constructing two graphs Blowup\$(K_4‎, ‎C)\$ and Blowup\$(Prism‎, ‎C_4)\$‎. ‎Based on the first graph‎, ‎Esperet et al‎. ‎constructed infinite families of cyclically 4-edge-connected snarks with excessive index at least five‎. ‎Based on these two graphs‎, ‎we construct infinite families of cyclically 4-edge-connected snarks \$E_{0,1,2,ldots‎, ‎(k-1)}\$ in which \$E_{0,1,2}\$ is Esperet et al.'s construction‎. ‎In this note‎, ‎we prove that \$E_{0,1,2,3}\$ has excessive index at least five‎, ‎which gives a strongly negative answer to Fouquet and Vanherpe's question‎. ‎As a subcase of Fulkerson conjecture‎, ‎H"{a}ggkvist conjectured that every cubic hypohamiltonian graph has a Fulkerson-cover‎. ‎Motivated by a related result due to Hou et al.'s‎, ‎in this note we prove that Fulkerson conjecture holds on some families of bridgeless cubic graphs.

Fulkerson-cover‎ excessive index‎ snark‎ ‎hypohamiltonian graph‎
D. Blanu_sa, Problem ceteriju boja (The problem of four colors), Hrvatsko Prirodoslovno Dru_stvo Glasnik Mat-Fiz. Astr. Ser. 1 (1946) 31--42. J. A. Bondy and U. S .R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976. A. Bonisoli and D. Cariolaro, Excessive factorizations of regular graphs, Graph Theory in Paris, 73--84, Birkhauser Basel, 2007. L. Esperet and G. Mazzuoccolo, On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings, J. Graph Theory 77 (2014), no. 2, 144--157. J. L. Fouquet and J. M. Vanherpe, On the perfect matching index of bridgeless cubic graphs, Computing Research Repository--CORR, abs/0904.1, 2009. D. R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Program. 1 (1971), 168--194. J. Hagglund, On snarks that are far from being 3-edge colorable, Electron. J. Combin. 23 (2016), no. 2, 10 pages. R. X. Hao, J. B. Niu, X. F. Wang, C. Q. Zhang and T. Y. Zhang, A note on Berge-Fulkerson coloring, Discrete Math. 309 (2009), no. 13, 4235--4240. X. M. Hou, H. J. Lai and C. Q. Zhang, On Matching Coverings and Cycle Coverings,preprint, 2012. G. Mazzuoccolo, The equivalence of two conjectures of Berge and Fulkerson, J. Graph Theory 68 (2011), no. 2, 125--128. B. Mohar, R. J. Nowakowski and D. B. West, Research problems from the 5th Slovenian Conference (Bled, 2003), Discrete Math. 307 (2007), no. 3-5, 650--658.  N. Robertson, D. Sanders, P. D. Seymour and R. Thomas, Tutte's edge-colouring conjecture, J. Combin. Theory Ser. B 70 (1997), no. 1, 166--183. P. D. Seymour, On multicolourings of cubic graphs, and conjectures of Fulkerson and Tutte, Proc. Lond. Math. Soc. (3) 38 (1979), no. 3, 423--460. C. Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker Inc., New York, 1997.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 53-XX Differential geometry Operator-valued tensors on manifolds Operator-valued tensors on manifolds ‎Feizabadi H. Faculty of Mathematics & Computer Science‎, ‎Amirkabir University of Technology‎, ‎Tehran‎, ‎Iran. Boroojerdian N. Faculty of Mathematics \& Computer Science‎, ‎Amirkabir University of Technology‎, ‎Tehran‎, ‎Iran. 01 10 2016 42 5 1259 1277 23 11 2014 15 08 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_879.html

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars \$ mathbb{R} \$ by self-adjoint elements of a commutative \$ C^star \$-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian metrics to operator valued metrics‎. ‎Then‎, ‎in this new geometry‎, ‎some essential concepts of Riemannian geometry such as curvature tensor‎, ‎Levi-Civita connection‎, ‎Hodge star operator‎, ‎exterior derivative‎, ‎divergence,..‎. ‎will be considered.

Operator-valued tensors‎ operator-valued semi-Riemannian metrics‎ ‎Levi-Civita connection‎ curvature‎ ‎Hodge star operator
I. G. Avramidi, Matrix general relativity: a new look at old problems, Classical Quantum Gravity 21 (2004), no. 1, 103--120. I. G. Avramidi, Gauged gravity via spectral asymptotics of non-Laplace type operators, J. High Energy Phys. 7 (2004), no. 7, 30 pages. J. Cuntz, A survey of some aspects of noncommutative geometry, Jahresber. Dtsch. Math.-Ver. 95 (1993), no. 2, 60--84. I. Chavel, Riemannian Geometry, A Modern Introduction, Second edition. Cambridge Studies in Advanced Mathematics, 98, Cambridge University Press, Cambridge, 2006. J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977. M. Frank, Geometrical aspects of Hilbert C⋆-modules, Positivity 3 (1999), no. 3, 215--243. A. Frolicher and A. Nijenhuis, Theory of vector-valued differential forms, I, Derivations of the graded ring of differential forms, Nederl. Akad. Wetensch. Proc. Ser. A. 59, Indag. Math. 18 (1956) 338--359. E. Kaniuth, A Course in Commutative Banach Algebras, New York, Springer, New York, 2009. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953) 839--858. E. C. Lance, Hilbert C⋆-Modules: A toolkit for operator algebraists, Cambridge University Press, Cambridge, 1995. N. P. Landsman, Mathematical Topics between Classical Quantum Mechanics, Springer-Verlag, New York, 1998. G. J. Murphy, C⋆-Algebras and Operator Theory, Academic Press, Inc., Boston, 1990. B. O'Neill, Semi-Riemannian Geometry with Applications to General Relativity, Pure and Applied Mathematics, 1983. W. L. Paschke, Inner product modules over B⋆-algebras, Trans. Amer. Math. Soc. 182(1973) 443--468. W. A. Poor, Differential Geometric Structures, McGraw-Hill Book Co., New York, 1981. M. A. Rieffel, Induced representations of C_-algebras, Advances in Math. 13 (1974) 176--257. W. Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991. S. Sternberg, Semi-Riemann Geometry and General Relativity, 2003, http://www.math.harvard.edu/-shlomo/docs/semi_riemannian_geometry.pdf.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 20-XX Group theory and generalizations Irreducible characters of Sylow \$p\$-subgroups of the Steinberg triality groups \${}^3D_4(p^{3m})\$ Characters of Sylow \$p\$-subgroups of \${}^3D_4(q^3)\$ Le T. Mathematics Department‎, ‎North-West University‎, ‎Mafikeng‎, ‎South Africa. 01 10 2016 42 5 1279 1291 02 03 2015 18 08 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_880.html

‎‎Here we construct and count all ordinary irreducible characters of Sylow \$p\$-subgroups of the Steinberg triality groups \${}^3D_4(p^{3m})\$.

Irreducible character‎ ‎root system‎ ‎Sylow subgroup‎ ‎Steinberg triality
R. W. Carter, Simple Groups of  Lie Type, Pure Appl. Math., John Wiley & Sons, London-New York-Sydney, 1972. M. Geck, Generalized Gelfand--Graev characters for Steinberg's triality groups and their applications, Comm. Algebra 19 (1991), no. 12, 3249--3269. S. Goodwin, P. Mosch and G. Rohrle, Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley groups of rank six and seven, LMS J. Comput. Math. 17 (2014), no. 1, 109--122. R. Gow, M. Marjoram and A. Previtali, On the irreducible characters of a Sylow 2- subgroup of the finite symplectic group in characteristic 2, J. Algebra 241 (2001), no. 1, 393--409. G. Higman, Enumerating p-groups, I: Inequalities, Proc. Lond. Math. Soc. (3) 10 (1960) 24--30. F. Himstedt, Character tables of parabolic subgroups of Steinberg's triality groups, J. Algebra 281 (2004), no. 2, 774--822. F. Himstedt, K. Magaard and T. Le, Characters of the Sylow p-subgroups of the Chevalley groups D4(pn), J. Algebra 332 (2011) 414--427. I. M. Isaacs, Characters of groups associated with finite algebras, J. Algebra 177 (1995), no. 3, 708--730. T. Le and K. Magaard, On the character degrees of Sylow p-subgroups of Chevalley groups G(pf ) of type E, Forum Math. 27 (2015), no. 1, 1--55. F. Luebeck, Online Data on Character Degrees of the Steinberg triality groups 3D4(q3); http://www.math.rwth-aachen.de/Frank.Luebeck/chev/DegMult/index.html?LANG=en#3D4ad. J. Sangroniz, Character degrees of the Sylow p-subgroups of classical groups, Groups St. Andrews 2001 in Oxford, II, 487--493, London Math. Soc. Lecture Note Ser., 305, Cambridge Univ. Press, Cambridge, 2003. F. Szechtman, Irreducible characters of Sylow subgroups of symplectic and unitary groups, J. Algebra 303 (2006), no. 2, 722--730.
BIMS Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† Bulletin of the Iranian Mathematical Society 1017-060X Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù† 1 05-XX Combinatorics On list vertex 2-arboricity of toroidal graphs without cycles of specific length On list vertex 2-arboricity of toroidal graphs Zhang H. School of Mathematical Science‎, ‎Huaiyin Normal University‎, 111 Changjiang West Road‎, ‎Huaian‎, ‎Jiangsu‎, 223300‎, ‎P‎. ‎R‎. ‎China. 01 10 2016 42 5 1293 1303 08 12 2013 19 08 2015 Copyright © 2016, Ø§Ù†Ø¬Ù…Ù† Ø±ÛŒØ§Ø¶ÛŒ Ø§ÛŒØ±Ø§Ù†. 2016 http://bims.iranjournals.ir/article_881.html

The vertex arboricity \$rho(G)\$ of a graph \$G\$ is the minimum number of subsets into which the vertex set \$V(G)\$ can be partitioned so that each subset induces an acyclic graph‎. ‎A graph \$G\$ is called list vertex \$k\$-arborable if for any set \$L(v)\$ of cardinality at least \$k\$ at each vertex \$v\$ of \$G\$‎, ‎one can choose a color for each \$v\$ from its list \$L(v)\$ so that the subgraph induced by every color class is a forest‎. ‎The smallest \$k\$ for a graph to be list vertex \$k\$-arborable is denoted by \$rho_l(G)\$‎. ‎Borodin‎, ‎Kostochka and Toft (Discrete Math‎. ‎214 (2000) 101-112) first introduced the list vertex arboricity of \$G\$‎. ‎In this paper‎, ‎we prove that \$rho_l(G)leq 2\$ for any toroidal graph without 5-cycles‎. ‎We also show that \$rho_l(G)leq 2\$ if \$G\$ contains neither adjacent 3-cycles nor cycles of lengths 6 and 7.

Vertex arboricity‎ ‎toroidal graph‎ ‎structure‎ ‎cycle
Y. Alavi, D. Green, J. Liu and J. Wang, On linear vertex-arboricity of graphs, Congres. Numer. 82 (1991) 187--192. Y. Alavi, J. Liu and J. Wang, On linear vertex-arboricity of complementary graphs, J. Graph Theory 18 (1994), no. 3, 315--322. O. V. Borodin and A. O. Ivanova, Planar graphs without 4-cycles adjacent to 3-cycles are list vertex 2-arborable, J. Graph Theory 62 (2009), no. 3, 234--240. O. V. Borodin and A. O. Ivanova, List 2-arboricity of planar graphs with no triangles at distance less than two, Sib. Elektron. Mat. Izv. (http://semr.math.nsc.ru) 5 (2008) 211--214. O. V. Borodin, A. V. Kostochka and B. Toft, Variable degeneracy: extension of Brook's and Gallai's theorems, Discrete Math. 214 (2000), no. 1-3, 101--112. S. A. Burr, An inequality involving the vertex arboricity and edge arboricity of a graph, J. Graph Theory 10 (1986), no. 3, 403--404.  L. Cai, W. Wang and X. Zhu, Choosability of toroidal graphs without short cycles, J. Graph Theory 65 (2010), no. 1, 1--15.  G. J. Chang, C. Chen and Y. Chen, Vertex and tree arboricities of graphs, J. Comb. Optim. 8 (2004), no. 3, 295--306. G. Chartrand and H. V. Kronk, The point-arboricity of planar graphs, J. Lond. Math. Soc. 44 (1969) 612--616. G. Chartrand, H. V. Kronk and C. E. Wall, The point-arboricity of a graph, Israel J. Math. 6 (1968) 169--175. Z. Chen and X. He, Parallel complexity of partitioning a planar graph into vertexinduced forests, Discrete Appl. Math. 69 (1996), no. 1-2, 183--198.  M. Chen, A. Raspaud and W. Wang, Vertex-arboricity of planar graphs without intersecting triangles, European J. Combin. 33 (2012), no. 5, 905--923. I. Choi, Toroidal graphs containing neither K􀀀5 nor 6-cycles are 4-choosable, arXiv:1307.3293v1, [math.CO], 2013. I. Choi and H. Zhang, Vertex arboricity of toroidal graphs with a forbidden cycle, Discrete Math. 333 (2014) 101--105.  R. J. Cook, Point-arboricity and girth, J. Lond. Math. Soc. (2) 8 (1974) 322--324.  P. Erdos, A. L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, 1979, Congress. Numer. Utilitas Math., Winnipeg, 1980. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979. W. Goddard, Acyclic colorings of planar graphs, Discrete Math. 91 (1991), no. 1, 91--94. B. Grunbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390--408. S. L. Hakimi and E. F. Schmeichel, A note on the vertex arboricity of a graph, SIAM J. Discrete Math. (2) 2 (1989) 64--67. D. Huang, W. C. Shiu and W. Wang, On the vertex-arboricity of planar graphs without 7-cycles, Discrete Math. 312 (2012), no. 15, 2304--2315. H. V. Kronk, An analogue to the Heawood map-colouring problem, J. Lond. Math. Soc. (2) 1 (1969) 750--752. H. V. Kronk and J. Mitchem, Critical point-arboritic graphs, J. Lond. Math. Soc. (2) 9 (1975) 459--466. M. Matsumoto, Bounds for the vertex linear arboricity, J. Graph Theory 14 (1990), no. 1, 117--126. K. S. Poh, On the linear vertex-arboricity of a planar graph, J. Graph Theory 14 (1990), no. 1, 73--75. A. Raspaud, W. Wang, On the vertex-arboricity of planar graphs, European J. Combin. 29 (2008), no. 4, 1064--1075. P. D. Seymour, A note on list arboricity, J. Combin. Theory Ser. B 72 (1998), no. 1, 150--151. R. _Skrekovski, On the critical point-arboricity graphs, J. Graph Theory 39 (2002), no. 1, 50--61. S. K. Stein, B-Sets and planar maps, Paci_c. J. Math. 37 (1971) 217--224. V. G. Vizing, Coloring the vertices of a graph in prescribed colors, (Russian) Metody Diskret. Anal. 29 (1976) 3--10. J. Wang, On point-linear arboricity of planar graphs, Discrete Math. 72 (1988), no. 1-3, 381--384. W. Wang and K. Lih, Choosability and edge choosability of planar graphs without  vecycles, Appl. Math. Lett. 15 (2002), no. 5, 561--565. N. Xue, B. Wu, List point arboricity of graphs, Discrete Math. Algorithms Appl. 4 (2012), no. 2, 1--10. A. Yang and J. Yuan, On the vertex arboricity of planar graphs of diameter two, Discrete Math. 307 (2007)), no. 19-20, 2438--2447. L. Zhen and B. Wu, List point arboricity of dense graphs, Graphs Combin. 25 (2009), no. 1, 123--128.