TY - JOUR
ID - 230
TI - Hybrid steepest-descent method with sequential and functional errors in Banach space
JO - Bulletin of the Iranian Mathematical Society
JA - BIMS
LA - en
SN - 1017-060X
AU - Saeidi, S.
AU - Haydari, H.
AD - University of Kurdistan
Y1 - 2013
PY - 2013
VL - 39
IS - 4
SP - 599
EP - 617
KW - fixed point
KW - hybrid steepest-descent method
KW - Nonexpansive mapping
KW - variational inequality
DO -
N2 - Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences to the unique solution of the variational inequality $VI^*(F, C)$. We also present similar results for a strongly monotone and Lipschitzian operator in the context of a Hilbert space and apply the results for solving a minimization problem.
UR - http://bims.iranjournals.ir/article_230.html
L1 - http://bims.iranjournals.ir/article_230_c22700f2141e4eab510b5c02df17748f.pdf
ER -