TY - JOUR
ID - 255
TI - Horvitz-Thompson estimator of population mean under inverse sampling designs
JO - Bulletin of the Iranian Mathematical Society
JA - BIMS
LA - en
SN - 1017-060X
AU - Mohammadi, Mohammad
AU - Salehi Marzijarani, Mohammad
AD - School of Mathematical Science, Isfahan University of Technology, Isfahan, Iran.
AD - Department of Mathematical Sciences, Isfahan University of Technology 84156-83111, Iran;
Department of Mathematics, Statistics and Physics, Qatar University, P.O.Box 2713, Doha, Qatar.
Y1 - 2012
PY - 2012
VL - 38
IS - 2
SP - 333
EP - 347
KW - Finite Population
KW - Inverse Sampling
KW - Post-stratification
KW - Random Sample Size
DO -
N2 - Inverse sampling design is generally considered to be appropriate technique when the population is divided into two subpopulations, one of which contains only few units. In this paper, we derive the Horvitz-Thompson estimator for the population mean under inverse sampling designs, where subpopulation sizes are known. We then introduce an alternative unbiased estimator, corresponding to post-stratification approach. Both of these are not location-invariant, but this is ignorable for alternative estimator. Using a simulation study, we find that Horvitz-Thompson estimator is an efficient estimator when the mean of the off-interest subpopulation is close to zero while the alternative estimator appears to be an efficient estimator in general.
UR - http://bims.iranjournals.ir/article_255.html
L1 - http://bims.iranjournals.ir/article_255_8bc393a21f635d83fc2a4bdda66f1e39.pdf
ER -