TY - JOUR
ID - 306
TI - Some difference results on Hayman conjecture and uniqueness
JO - Bulletin of the Iranian Mathematical Society
JA - BIMS
LA - en
SN - 1017-060X
AU - Liu, Kai
AU - Cao, Tingbin
AU - Liu, Xinling
AD - Nanchang university, Department of mathematics
Y1 - 2012
PY - 2012
VL - 38
IS - 4
SP - 1007
EP - 1020
KW - Entire functions
KW - Difference
KW - finite order
KW - uniqueness
KW - Value sharing
DO -
N2 - In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one common value.
UR - http://bims.iranjournals.ir/article_306.html
L1 - http://bims.iranjournals.ir/article_306_332a41daa98fd9beeb51176a86683aae.pdf
ER -